top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial intelligence in COVID-19 / / Niklas Lidströmer and Yonina C. Eldar, editors
Artificial intelligence in COVID-19 / / Niklas Lidströmer and Yonina C. Eldar, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (346 pages)
Disciplina 362.1962414
Soggetto topico COVID-19 (Disease) - Data processing
Medical informatics
Pandemics - Economic aspects
COVID-19
Epidèmies
Processament de dades
Informàtica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-08506-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Contents -- About the Editors -- Chapter 1: Introduction to Artificial Intelligence in COVID-19 -- Pandemics -- History of Pandemics -- The COVID-19 Pandemic -- Origins of the COVID-19 Pandemic -- Continuous Fight for Science and Reason -- Modern Tools for Pandemic Control -- A Brief Chronology of the Chapters of This Book -- Power of Science -- References -- Chapter 2: AI for Pooled Testing of COVID-19 Samples -- Introduction -- System Model -- The PCR Process -- Mathematical Model -- Pooled COVID-19 Tests -- Recovery from Pooled Tests -- Group Testing Methods for COVID-19 -- Adaptive GT Methods -- Non-Adaptive GT Methods -- Pooling Matrix -- Noiseless Linear Non-Adaptive Recovery -- Noisy Non-Linear Non-Adaptive Recovery -- Summary -- Compressed Sensing for Pooled Testing for COVID-19 -- Compressed Sensing Forward Model for Pooled RT-PCR -- CS Algorithms for Recovery -- Details of Algorithms -- Assessment of Algorithm Performance and Experimental Protocols -- Choice of Pooling Matrices -- Choice of Number of Pools -- Use of Side Information in Pooled Inference -- Comparative Discussion and Summary -- References -- Chapter 3: AI for Drug Repurposing in the Pandemic Response -- Introduction -- Desirable Features of AI for Drug Repurposing in Pandemic Response -- Technical Flexibility and Efficiency -- Clinical Applicability and Acceptability -- Major AI Applications for Drug Repurposing in Response to COVID-19 -- Knowledge Mining -- Network-Based Analysis -- In Silico Modelling -- IDentif.AI Platform for Rapid Identification of Drug Combinations -- Project IDentif.AI -- IDentif.AI for Drug Optimization Against SARS-CoV-2 -- IDentif.AI 2.0 Platform in an Evolving Pandemic -- IDentif.AI as a Pandemic Preparedness Platform -- Use of Real-World Data to Identify Potential Targets for Drug Repurposing.
Future Directions -- References -- Chapter 4: AI and Point of Care Image Analysis for COVID-19 -- Introduction -- Motivation for Using Imaging -- Motivation for Using AI with Imaging -- Integration of Imaging with Other Modalities -- Literature Overview -- Chest X-Ray Imaging -- Diagnosis Models -- Prognosis Models -- Use of Longitudinal Imaging -- Fusion with Other Data Modalities -- Common Issues with AI and Chest X-Ray Imaging -- Duplication and Quality Issues -- Source Issues -- Frankenstein Datasets -- Implicit Biases in the Source Data -- Artificial Limitations Due to Transfer Learning -- Computed Tomography Imaging -- Diagnosis Models -- Prognosis Models -- Applications to Regions Away from the Lungs -- Use of Longitudinal Imaging -- Fusion with Other Data Modalities -- Common Issues with AI and Computed Tomography Imaging -- Ultrasound Imaging -- What Can be Observed in LUS -- Models Assisting in Interpreting LUS -- Diagnosis Models -- Prognosis Models -- Use of Longitudinal Imaging -- Common Issues with AI and Ultrasound Imaging -- Conclusions -- Success Stories -- Pitfalls to Focus On -- Lessons Learned and Recommendations -- The Next Pandemic -- References -- Chapter 5: Machine Learning and Laboratory Values in the Diagnosis, Prognosis and Vaccination Strategy of COVID-19 -- Introduction -- COVID-19, Machine Learning and Laboratory Values: The State of the Art -- Literature Search Results -- Diagnostic Studies -- Prognostic Studies -- Considerations on the Literature Reviewed -- Heterogeneity in Patient Selection -- Laboratory Parameters Used by Machine Learning Models -- Types of Models and Their Validation -- Model Implementation -- The Role of Artificial Intelligence in the Vaccination Strategy Against SARS-COV-2 Through Laboratory Tests -- Real-World Vaccination Strategies -- Artificial Intelligence Potentialities -- Conclusions.
Appendix 1 -- Diagnostic Papers (D) -- Prognostic Papers (P) -- Appendix 2: Tool Online -- References -- Chapter 6: AI and the Infectious Medicine of COVID-19 -- Introduction -- AI and ML for SARS-CoV-2 Early Research Using Pathogen Sequence Data -- AI and ML for Research of SARS-CoV-2 Antivirals -- AI and ML for COVID-19 Infectious Medicine Early Research Using Language Data -- AI and ML in Real World Data Analysis of COVID-19 -- AI and ML in Molecular Diagnostics of COVID-19 -- AI and ML in Image-Based Diagnostics of COVID-19 and Clinical Decision Support -- AI and ML in COVID-19 Medical Care -- Prevention, Infection Risk and Epidemiology -- Treatment and Prognosis -- Conclusions -- References -- Chapter 7: AI and ICU Monitoring on the Wake of the COVID-19 Pandemic -- Introduction -- ICU Monitoring Through AI -- ICU Monitoring and AI in Pre-pandemic Times -- The Impact of the COVID-19 Pandemic on the ICU and the Role of AI -- Conclusions -- References -- Chapter 8: Symptom Based Models of COVID-19 Infection Using AI -- Introduction -- Using Machine Learning Methods to Determine Mortality of Patient with COVID-19 -- Using Machine Learning Methods to Detect the Presence of COVID-19 Infection -- Using Machine Learning Methods to Differentiate COVID-19 and Influenza/Common Cold Infections -- Summary, Limitations, Challenges, and Future Applications -- References -- Chapter 9: AI Techniques for Forecasting Epidemic Dynamics: Theory and Practice -- Introduction -- A Review of Model Types and Limits to Forecasting -- Preliminaries -- Model Details -- Metrics for Forecast Evaluations -- AI-Driven Engineering -- An Example of a Real-time Forecasting Model -- Results -- A GNN-Based Spatio-Temporal Model -- Additional Details Regarding the Framework -- Forecasting Performance -- Theoretical Foundations for Forecasting in Network Models -- Overview.
Some Short-Term Forecasting Problems and Their Computational Intractability -- Discussion -- References -- Chapter 10: Regulatory Aspects on AI and Pharmacovigilance for COVID-19 -- What Does Artificial Intelligence Mean According to Legal Definition? -- AI and Health -- The European Union Legal Framework: A Work in Progress -- The Proposed EU Regulation (Artificial Intelligence Act) -- The Use of AI in Research and Developing Medicinal Products and Monitoring Their Quality, Safety and Efficacy -- The Added Value Brought Using Artificial Intelligence in Performing Pharmacovigilance Activities in General and During the COVID-19 Pandemic -- Ethical Issues: A Few Caveats -- The Personal Data Protection Implications -- Provisional Conclusions -- Suggested Reading -- Chapter 11: AI and the Clinical Immunology/Immunoinformatics for COVID-19 -- Introduction -- Challenge for Traditional Vaccines in COVID-19 -- Long Development and Design Period -- Difficulties in Knowing and Optimizing the Efficacy and Side Effects -- Uncertainties with the Development and Other Costs During Production, Storage, and Transportation -- Hard to Tackle Unknown and Emerging Mutations of Viruses -- Existing AI Techniques Help the Traditional Vaccine Development in COVID-19 -- AI Makes the Practical Experimental Results Computational -- AI-Based Computational Tools Can Help the Traditional Vaccine Design -- AI-Based In Silico Vaccine Design -- Our Recently Proposed DeepVacPred Vaccine Design Framework -- Artificial Intelligence for Investigating Viral Evolution and Mutations -- An Algorithmic Information Theoretic Approach to Discover the State Machine Generator Governing the Viral Sequence Structure and Enabling AI Strategies for Viral Mutation Prediction -- Characterizing the Temporal Evolution of SARS-CoV-2 in a Continuous Manner.
Detecting Regions Within Viral Sequences Likely to Exhibit Mutations -- Summary -- References -- Chapter 12: AI and Dynamic Prediction of Deterioration in Covid-19 -- Introduction -- COVID-19: A Novel Disease-Usage of Newer or Older Clinical Decisions Support Systems? -- Clinical Decisions Support System Stable Parameters/Features Using Threshold Values -- Patient Deterioration -- General Prediction Scores -- Early Warning Systems (EWS) -- AI for Prediction of Deterioration -- AI Assisted Patient-Specific Risk Prediction -- AI Assisted Prediction of Critical Illness and Deterioration in COVID-19 Patients -- Mortality Prediction Models for Covid-19 -- Mortality Prediction Models Using High-Frequency Data -- Prediction Models for Sepsis -- Explainable and Interpretable Machine Learning Methods for Clinical Decision Support Systems -- References -- Chapter 13: AI, Epidemiology and Public Health in the Covid Pandemic -- Introduction -- Epidemiology: Definition and Purposes -- Epidemiology and Public Health: How They Relate to Each Other and the Concept of One Health -- Individual Health and Population Health -- The Articulation Between Individual and Population Level -- Biomedical and Biopsychosocial Models of Health: Individual, Environmental and Social Determinants of Health -- From Precision Medicine to Precision Public Health -- Epidemiology and Public Health in the Digital Era: Prerequisites -- A Ubiquitous Digitization -- The Evolutions of the Regulatory Framework on Personal Data -- Connected Devices and Equipment Rates -- Digital and E-health Literacy -- Towards a Real Life Use of AI in Epidemiology and Public Health: Some First Examples -- No Data Means No Artificial Intelligence: A Few Words About Data Federation and "New" Types of Data -- Citizens and Patients as Producers, Actor and Manager of Their Own Health.
At the Population Level, Health Surveillance Systems and AI.
Record Nr. UNINA-9910624309003321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Epidemics : models and data using R / / Ottar N. Bjørnstad
Epidemics : models and data using R / / Ottar N. Bjørnstad
Autore Bjørnstad Ottar N.
Edizione [Second edition]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (386 pages)
Disciplina 616.9
Collana Use R!
Soggetto topico Communicable diseases
Epidemics
Epidemics - statistics & numerical data
Communicable Diseases
Software
Epidèmies
Malalties infeccioses
Processament de dades
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 9783031120565
9783031120558
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910634047503321
Bjørnstad Ottar N.  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Autore Boado-Penas María del Carmen
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (xx, 298 pages) : illustrations (some color)
Altri autori (Persone) Boado-PenasMaría del Carmen
EisenbergJulia
Şahin‬‬‬Şule
Collana Springer Actuarial
Soggetto topico Epidemics
Insurance - Mathematical models
Insurance - Statistical methods
Social security
Assegurances
Models matemàtics
Estadística matemática
Seguretat social
Epidèmies
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Epidemics
Risk
Insurance
Social protection
Actuarial modelling
Open Access
ISBN 3-030-78334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space
6.3.2 Insurance Preliminaries
Altri titoli varianti Pandemics
Record Nr. UNISA-996466419903316
Boado-Penas María del Carmen  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Autore Boado-Penas María del Carmen
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (xx, 298 pages) : illustrations (some color)
Altri autori (Persone) Boado-PenasMaría del Carmen
EisenbergJulia
Şahin‬‬‬Şule
Collana Springer Actuarial
Soggetto topico Epidemics
Insurance - Mathematical models
Insurance - Statistical methods
Social security
Assegurances
Models matemàtics
Estadística matemàtica
Seguretat social
Epidèmies
Soggetto genere / forma Llibres electrònics
ISBN 3-030-78334-0
Classificazione EDU000000LAW014000MAT003000MAT029000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space
6.3.2 Insurance Preliminaries
Altri titoli varianti Pandemics
Record Nr. UNINA-9910504284203321
Boado-Penas María del Carmen  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Predicting pandemics in a globally connected world . Volume 1 : toward a multiscale, multidisciplinary framework through modeling and simulation / / edited by Nicola Bellomo and Mark A. J. Chaplain
Predicting pandemics in a globally connected world . Volume 1 : toward a multiscale, multidisciplinary framework through modeling and simulation / / edited by Nicola Bellomo and Mark A. J. Chaplain
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (314 pages)
Disciplina 016.36229
Collana Modeling and Simulation in Science, Engineering and Technology
Soggetto topico Epidemiology - Mathematical models
Epidèmies
COVID-19
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-96562-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Modelling, Simulations, and Social Impact of Evolutionary Virus Pandemics -- 1 Aims and Plan of the Chapter -- 2 On the Contents of the Edited Book -- 3 Reasonings on Research Perspectives -- References -- Understanding COVID-19 Epidemics: A Multi-Scale ModelingApproach -- 1 Introduction -- 2 Mathematical Modeling Applied to Infectious Diseases: COVID-19 as a Case Study -- 2.1 The SIR and SHAR Models -- 2.2 The SHARUCD Modeling Framework -- 2.3 Modeling the Implementation of Control Measures -- 2.4 The Refined SHARUCD Model -- 2.4.1 Further Refinements: Detection Rate and Import -- 3 KTAP Modeling Framework -- 3.1 Modeling Contagion, Progression, and Recovery -- 3.2 Application of the KTAP Model to Selected Case Studies -- 3.2.1 Effect of Lockdown Measures and Restrictions Lifting -- 3.2.2 Effect of Heterogeneity -- 4 Discussion -- References -- Kinetic Modelling of Epidemic Dynamics: Social Contacts, Control with Uncertain Data, and Multiscale Spatial Dynamics -- 1 Introduction -- 2 Kinetic Modelling of Social Heterogeneity in Epidemic Dynamics -- 2.1 Modelling Contact Heterogeneity -- 2.1.1 Kinetic Model for Contact Formation -- 2.1.2 Quasi-Invariant Scaling and Steady States -- 2.1.3 The Macroscopic Social-SIR Dynamics -- 2.1.4 A Social-SIR Model with Saturated Incidence Rate -- 2.1.5 Extrapolation of the Shape of the Incidence Rate from Data -- 2.2 The Interplay Between Economy and the Pandemic -- 2.2.1 Wealth Exchanges in Epidemic Modelling -- 2.2.2 Fokker-Planck Scaling and Steady States -- 2.2.3 The Formation of Bimodal Wealth Distributions -- 2.2.4 The Increase of Wealth Inequalities -- 3 Social Control and Data Uncertainty -- 3.1 Control of Socially Structured Models -- 3.1.1 Optimal Control Formulation -- 3.1.2 Feedback Controlled Compartmental Models.
3.1.3 Containment in Homogeneous Social Mixing Dynamics -- 3.2 Dealing with Data Uncertainty -- 3.2.1 Feedback Controlled and Socially Structured Models with Uncertain Inputs -- 3.2.2 Application to the COVID-19 Outbreak -- 4 Multiscale Transport Models -- 4.1 Spatial Dynamics on Networks -- 4.1.1 1D Hyperbolic Compartmental Model -- 4.1.2 Macroscopic Formulation and Diffusion Limit -- 4.1.3 Extension to Multi-Compartmental Modelling -- 4.1.4 Network Modelling -- 4.1.5 Effect of Spatially Heterogeneous Environments in Hyperbolic and Parabolic Configuration -- 4.1.6 Application to the Emergence of COVID-19 in Italy -- 4.2 Realistic Geographical Settings -- 4.2.1 2D Kinetic Transport Model -- 4.2.2 Macroscopic Formulation and Diffusion Limit -- 4.2.3 Extension to Multi-Compartmental Modelling -- 4.2.4 Application to the Spatial Spread of COVID-19 in Italy in Emilia-Romagna and Lombardy Region -- 5 Concluding Remarks and Research Perspectives -- 5.1 Data sources -- References -- The COVID-19 Pandemic Evolution in Hawai`i and New Jersey: A Lesson on Infection Transmissibility and the Role of HumanBehavior -- 1 Introduction -- 2 Mathematical Models -- 2.1 Agent-Based Models -- 2.1.1 COVID-19 Agent-Based Simulator (Covasim) -- 2.2 Compartmental SEIR Models and Variants -- 2.3 Comparison of Agent-Based and Compartmental Models -- 3 Archipelagos and Islands -- 3.1 March 2020-June 2021 -- 3.1.1 CM Model Fit from March 06, 2020 to January 15, 2021 -- 3.1.2 Comparing CM and ABM Models -- 3.2 July 2021-September 2021 -- 3.3 Discussion -- 4 The Pandemic Waves in New Jersey -- 4.1 Comparing New Jersey to the US -- 4.2 Spatial and Temporal Patterns in COVID-19 Cases in New Jersey -- 4.3 Sociodemographic Variables -- 4.4 Discussion -- 5 The Use of Compartmental Models in New Jersey -- 5.1 Time-Evolution of the Basic Reproduction Number.
5.2 Infected Confirmed Cases, Hospitalizations, and Deaths -- 5.3 Discussion -- 6 Conclusion -- References -- A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Process -- 1 Introduction -- 1.1 Hawkes Point Process Modeling of Infectious Diseases -- 1.2 Multivariate Hawkes Processes -- 1.3 Recursive Hawkes Processes -- 1.4 Outline -- 2 Theoretical Properties of Temporal Multivariate Recursive Hawkes Models -- 2.1 Existence -- 2.2 Mean -- 2.3 Variance -- 3 Parameter Fitting and Simulation Algorithms -- 3.1 Parameter Fitting Algorithms -- 3.1.1 Parametric (or Semi-parametric) Estimation -- 3.1.2 Temporal Version of Parameter Fitting Algorithms -- 3.2 Simulation Algorithm -- 4 Reconstruct Multivariate Point Process from Data with Imprecise Time -- 4.1 Time Reconstruction -- 4.2 Category Index Reconstruction -- 5 Numerical Experiments and Results -- 5.1 Synthetic Data Sets -- 5.1.1 Comparison Between Parametric Fitting and Non-parametric Fitting -- 5.1.2 Verification of the Parameter Fitting Algorithm -- 5.1.3 Experiments About Data Sets with Imprecise Time -- 5.2 Experiments on Real COVID-19 Data -- 5.2.1 Model Validation -- 5.2.2 Prediction Based on MRHP and Historical Information -- 6 Conclusion -- References -- Multiscale Aspects of Virus Dynamics -- 1 Introduction -- 1.1 On the Biology of the Virus -- 1.2 Modeling the Complexity of COVID-19 -- 2 Epistemic and Empirical Uncertainties in Compartmental and Individual-Based Models -- 2.1 SIR Model -- 2.2 Individual-Based Interpretation of λ -- 2.3 An Example of Modified SIR Model -- 2.4 Individuals Behind the Modified SIR Model -- 2.5 Time-Discretization -- 3 The Individual-Based Model of FlaLaFauciRiva -- 3.1 A Formula for the Parameter λ of Compartmental Models -- 3.2 Analysis of the Fluctuations -- 3.3 Simulations -- 3.4 Presence of Immunized Population and Virus Variants.
Appendix -- References -- Productivity in Times of Covid-19: An Agent-Based Model Approach -- 1 Introduction -- 2 Model -- 3 Mean Field Approximation -- 4 Setting the Model Functions -- 5 Simulations -- 6 Conclusion -- References -- Transmission Dynamics and Quarantine Control of COVID-19 in Cluster Community -- 1 Introduction -- 2 Mathematical Modeling -- 2.1 Stage 1: SEIR-Type Model Without Quarantine -- 2.2 Stage 2: Transmission-Quarantine (TQ) Model -- 3 Analytic Results and Case Study for Emerging Stage -- 3.1 Analytic Results -- 3.2 A Real World Case Study for Stage 1 -- 4 Case Study and Sensitivity Analysis for Quarantine Stage -- 4.1 A Real World Study for Stage 2 -- 4.2 Sensitivity Analysis -- 5 Discussion -- Appendix: Proofs of Theorems -- References -- A 2D Kinetic Model for Crowd Dynamics with Disease Contagion -- 1 Introduction -- 2 A Simplified Two-Dimensional Kinetic Model -- 3 Discretization in Space and Time -- 4 Numerical Results -- 4.1 Tests with v = 0 -- 4.2 Tests with Prescribed Walking Velocity -- 5 A More Complex 2D Kinetic Model -- 6 Conclusions -- References -- Multiscale Derivation of a Time-Dependent SEIRD Reaction-Diffusion System for COVID-19 -- 1 Introduction -- 2 Phenomenological Modeling of Diffusion Population Dynamics -- 3 From Kinetic Theory Model to SEIRD Reaction-Diffusion System -- 3.1 Kinetic Theory Model -- 3.2 Micro-Macro Formulation -- 4 Numerical Method -- 4.1 Semi-Implicit Time Discretization -- 4.2 Fully Discrete Asymptotic Preserving Numerical Scheme in 1D -- 4.3 Boundary Conditions -- 5 Numerical Results -- 5.1 Test 1: Asymptotic Preserving Numerical Scheme Property -- 5.2 Test 2: Diffusion Effect -- 5.3 Test 3: Role of the Transmission Function -- 6 Conclusion and Perspectives -- References.
Record Nr. UNISA-996490344003316
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Predicting pandemics in a globally connected world . Volume 1 : toward a multiscale, multidisciplinary framework through modeling and simulation / / edited by Nicola Bellomo and Mark A. J. Chaplain
Predicting pandemics in a globally connected world . Volume 1 : toward a multiscale, multidisciplinary framework through modeling and simulation / / edited by Nicola Bellomo and Mark A. J. Chaplain
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (314 pages)
Disciplina 016.36229
Collana Modeling and Simulation in Science, Engineering and Technology
Soggetto topico Epidemiology - Mathematical models
Epidèmies
COVID-19
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-96562-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Modelling, Simulations, and Social Impact of Evolutionary Virus Pandemics -- 1 Aims and Plan of the Chapter -- 2 On the Contents of the Edited Book -- 3 Reasonings on Research Perspectives -- References -- Understanding COVID-19 Epidemics: A Multi-Scale ModelingApproach -- 1 Introduction -- 2 Mathematical Modeling Applied to Infectious Diseases: COVID-19 as a Case Study -- 2.1 The SIR and SHAR Models -- 2.2 The SHARUCD Modeling Framework -- 2.3 Modeling the Implementation of Control Measures -- 2.4 The Refined SHARUCD Model -- 2.4.1 Further Refinements: Detection Rate and Import -- 3 KTAP Modeling Framework -- 3.1 Modeling Contagion, Progression, and Recovery -- 3.2 Application of the KTAP Model to Selected Case Studies -- 3.2.1 Effect of Lockdown Measures and Restrictions Lifting -- 3.2.2 Effect of Heterogeneity -- 4 Discussion -- References -- Kinetic Modelling of Epidemic Dynamics: Social Contacts, Control with Uncertain Data, and Multiscale Spatial Dynamics -- 1 Introduction -- 2 Kinetic Modelling of Social Heterogeneity in Epidemic Dynamics -- 2.1 Modelling Contact Heterogeneity -- 2.1.1 Kinetic Model for Contact Formation -- 2.1.2 Quasi-Invariant Scaling and Steady States -- 2.1.3 The Macroscopic Social-SIR Dynamics -- 2.1.4 A Social-SIR Model with Saturated Incidence Rate -- 2.1.5 Extrapolation of the Shape of the Incidence Rate from Data -- 2.2 The Interplay Between Economy and the Pandemic -- 2.2.1 Wealth Exchanges in Epidemic Modelling -- 2.2.2 Fokker-Planck Scaling and Steady States -- 2.2.3 The Formation of Bimodal Wealth Distributions -- 2.2.4 The Increase of Wealth Inequalities -- 3 Social Control and Data Uncertainty -- 3.1 Control of Socially Structured Models -- 3.1.1 Optimal Control Formulation -- 3.1.2 Feedback Controlled Compartmental Models.
3.1.3 Containment in Homogeneous Social Mixing Dynamics -- 3.2 Dealing with Data Uncertainty -- 3.2.1 Feedback Controlled and Socially Structured Models with Uncertain Inputs -- 3.2.2 Application to the COVID-19 Outbreak -- 4 Multiscale Transport Models -- 4.1 Spatial Dynamics on Networks -- 4.1.1 1D Hyperbolic Compartmental Model -- 4.1.2 Macroscopic Formulation and Diffusion Limit -- 4.1.3 Extension to Multi-Compartmental Modelling -- 4.1.4 Network Modelling -- 4.1.5 Effect of Spatially Heterogeneous Environments in Hyperbolic and Parabolic Configuration -- 4.1.6 Application to the Emergence of COVID-19 in Italy -- 4.2 Realistic Geographical Settings -- 4.2.1 2D Kinetic Transport Model -- 4.2.2 Macroscopic Formulation and Diffusion Limit -- 4.2.3 Extension to Multi-Compartmental Modelling -- 4.2.4 Application to the Spatial Spread of COVID-19 in Italy in Emilia-Romagna and Lombardy Region -- 5 Concluding Remarks and Research Perspectives -- 5.1 Data sources -- References -- The COVID-19 Pandemic Evolution in Hawai`i and New Jersey: A Lesson on Infection Transmissibility and the Role of HumanBehavior -- 1 Introduction -- 2 Mathematical Models -- 2.1 Agent-Based Models -- 2.1.1 COVID-19 Agent-Based Simulator (Covasim) -- 2.2 Compartmental SEIR Models and Variants -- 2.3 Comparison of Agent-Based and Compartmental Models -- 3 Archipelagos and Islands -- 3.1 March 2020-June 2021 -- 3.1.1 CM Model Fit from March 06, 2020 to January 15, 2021 -- 3.1.2 Comparing CM and ABM Models -- 3.2 July 2021-September 2021 -- 3.3 Discussion -- 4 The Pandemic Waves in New Jersey -- 4.1 Comparing New Jersey to the US -- 4.2 Spatial and Temporal Patterns in COVID-19 Cases in New Jersey -- 4.3 Sociodemographic Variables -- 4.4 Discussion -- 5 The Use of Compartmental Models in New Jersey -- 5.1 Time-Evolution of the Basic Reproduction Number.
5.2 Infected Confirmed Cases, Hospitalizations, and Deaths -- 5.3 Discussion -- 6 Conclusion -- References -- A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Process -- 1 Introduction -- 1.1 Hawkes Point Process Modeling of Infectious Diseases -- 1.2 Multivariate Hawkes Processes -- 1.3 Recursive Hawkes Processes -- 1.4 Outline -- 2 Theoretical Properties of Temporal Multivariate Recursive Hawkes Models -- 2.1 Existence -- 2.2 Mean -- 2.3 Variance -- 3 Parameter Fitting and Simulation Algorithms -- 3.1 Parameter Fitting Algorithms -- 3.1.1 Parametric (or Semi-parametric) Estimation -- 3.1.2 Temporal Version of Parameter Fitting Algorithms -- 3.2 Simulation Algorithm -- 4 Reconstruct Multivariate Point Process from Data with Imprecise Time -- 4.1 Time Reconstruction -- 4.2 Category Index Reconstruction -- 5 Numerical Experiments and Results -- 5.1 Synthetic Data Sets -- 5.1.1 Comparison Between Parametric Fitting and Non-parametric Fitting -- 5.1.2 Verification of the Parameter Fitting Algorithm -- 5.1.3 Experiments About Data Sets with Imprecise Time -- 5.2 Experiments on Real COVID-19 Data -- 5.2.1 Model Validation -- 5.2.2 Prediction Based on MRHP and Historical Information -- 6 Conclusion -- References -- Multiscale Aspects of Virus Dynamics -- 1 Introduction -- 1.1 On the Biology of the Virus -- 1.2 Modeling the Complexity of COVID-19 -- 2 Epistemic and Empirical Uncertainties in Compartmental and Individual-Based Models -- 2.1 SIR Model -- 2.2 Individual-Based Interpretation of λ -- 2.3 An Example of Modified SIR Model -- 2.4 Individuals Behind the Modified SIR Model -- 2.5 Time-Discretization -- 3 The Individual-Based Model of FlaLaFauciRiva -- 3.1 A Formula for the Parameter λ of Compartmental Models -- 3.2 Analysis of the Fluctuations -- 3.3 Simulations -- 3.4 Presence of Immunized Population and Virus Variants.
Appendix -- References -- Productivity in Times of Covid-19: An Agent-Based Model Approach -- 1 Introduction -- 2 Model -- 3 Mean Field Approximation -- 4 Setting the Model Functions -- 5 Simulations -- 6 Conclusion -- References -- Transmission Dynamics and Quarantine Control of COVID-19 in Cluster Community -- 1 Introduction -- 2 Mathematical Modeling -- 2.1 Stage 1: SEIR-Type Model Without Quarantine -- 2.2 Stage 2: Transmission-Quarantine (TQ) Model -- 3 Analytic Results and Case Study for Emerging Stage -- 3.1 Analytic Results -- 3.2 A Real World Case Study for Stage 1 -- 4 Case Study and Sensitivity Analysis for Quarantine Stage -- 4.1 A Real World Study for Stage 2 -- 4.2 Sensitivity Analysis -- 5 Discussion -- Appendix: Proofs of Theorems -- References -- A 2D Kinetic Model for Crowd Dynamics with Disease Contagion -- 1 Introduction -- 2 A Simplified Two-Dimensional Kinetic Model -- 3 Discretization in Space and Time -- 4 Numerical Results -- 4.1 Tests with v = 0 -- 4.2 Tests with Prescribed Walking Velocity -- 5 A More Complex 2D Kinetic Model -- 6 Conclusions -- References -- Multiscale Derivation of a Time-Dependent SEIRD Reaction-Diffusion System for COVID-19 -- 1 Introduction -- 2 Phenomenological Modeling of Diffusion Population Dynamics -- 3 From Kinetic Theory Model to SEIRD Reaction-Diffusion System -- 3.1 Kinetic Theory Model -- 3.2 Micro-Macro Formulation -- 4 Numerical Method -- 4.1 Semi-Implicit Time Discretization -- 4.2 Fully Discrete Asymptotic Preserving Numerical Scheme in 1D -- 4.3 Boundary Conditions -- 5 Numerical Results -- 5.1 Test 1: Asymptotic Preserving Numerical Scheme Property -- 5.2 Test 2: Diffusion Effect -- 5.3 Test 3: Role of the Transmission Function -- 6 Conclusion and Perspectives -- References.
Record Nr. UNINA-9910595039903321
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui