top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2000 Years of Pandemics : Past, Present, and Future / / by Claudia Ferreira, Marie-Françoise J. Doursout, Joselito S. Balingit
2000 Years of Pandemics : Past, Present, and Future / / by Claudia Ferreira, Marie-Françoise J. Doursout, Joselito S. Balingit
Autore Ferreira Claudia <1955->
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (416 pages)
Disciplina 306.461
362.1969
Soggetto topico Internal medicine
Public health
Epidemiology
Emergency medical services
Family medicine
Internal Medicine
Public Health
Emergency Services
General Practice and Family Medicine
Epidèmies
Epidemiologia
Salut pública
Història
Soggetto genere / forma Llibres electrònics
ISBN 3-031-10035-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction. Part-1: Pandemic in the past -- First 1000 Years -- Black Death -- Outbreaks in the new World -- Syphilis, Cholera, and Yellow Fever -- Part-2: Pandemics In The Present -- The World Since 1900: Background to Pandemics in the Present -- Influenza Pandemics -- Coronavirus Pandemics -- Human Immunodeficiency Virus (HIV) -- Vaccines -- Zoonoses -- The Next Pandemic -- The Next Pandemic: Hemorrhagic Fevers -- Part-3:The Next Pandemic: Bioterrorism -- The Next Pandemic: Climate Change -- The Next Pandemic: Antibiotic Resistance -- The Next Pandemic: Challenges and Hopes.
Record Nr. UNINA-9910659484503321
Ferreira Claudia <1955->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence in Covid-19 / / edited by Niklas Lidströmer, Yonina C. Eldar
Artificial Intelligence in Covid-19 / / edited by Niklas Lidströmer, Yonina C. Eldar
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (346 pages)
Disciplina 362.1962414
362.19624140028563
Collana Medicine Series
Soggetto topico Medicine
Artificial intelligence
Virology
Immunology
Epidemiology
Clinical Medicine
Artificial Intelligence
COVID-19
Epidèmies
Processament de dades
Informàtica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 3-031-08506-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1 AI and Pooling Tests for COVID-19 -- 2 AI for Drug Repurposing in the Pandemic Response -- 3 AI and Point Of Care Image Analysis For COVID-19 -- 4 Machine Learning and Laboratory Values in the Diagnosis, Prognosis and Vaccination Strategy of COVID-19 -- 5 AI and the Infectious Medicine of COVID-19 -- 6 AI and ICU Monitoring in COVID-19 -- 7 Symptom Based Detection Models of COVID-19 Infection Using AI -- 8 AI Techniques for Forecasting Epidemic Dynamics: Theory and Practice -- 9 Regulatory Aspects on AI and Pharmacovigilance for COVID-19 -- 10 AI and the Clinical Immunology / Immunoinformatics for COVID-19 -- 11 AI, Epidemiology and Public Health in the Covid Pandemic -- 12 AI and Dynamic Sepsis Prediction in Covid-19.
Record Nr. UNINA-9910624309003321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Epidemics : models and data using R / / Ottar N. Bjørnstad
Epidemics : models and data using R / / Ottar N. Bjørnstad
Autore Bjørnstad Ottar N.
Edizione [Second edition]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (386 pages)
Disciplina 616.9
Collana Use R!
Soggetto topico Communicable diseases
Epidemics
Epidemics - statistics & numerical data
Communicable Diseases
Software
Epidèmies
Malalties infeccioses
Processament de dades
R (Llenguatge de programació)
Soggetto genere / forma Llibres electrònics
ISBN 9783031120565
9783031120558
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910634047503321
Bjørnstad Ottar N.  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The Ethical, Legal and Social Issues of Pandemics : An Analysis from the EU Perspective / / by Iñigo de Miguel Beriain
The Ethical, Legal and Social Issues of Pandemics : An Analysis from the EU Perspective / / by Iñigo de Miguel Beriain
Autore Miguel Beriain Iñigo de <1972->
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (160 pages)
Disciplina 363.349
344.2404369
Collana Medicine Series
Soggetto topico Medical policy
Medical ethics
Medical laws and legislation
Health Policy
Medical Ethics
Medical Law
Epidèmies
Política governamental
Condicions socials
Ètica
Soggetto genere / forma Llibres electrònics
ISBN 9783031038181
9783031038174
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1.Confinement, isolation and tracking -- 2.Immunity Certificates: The New Frontier -- 3.Vaccines (I). Creation and distribution -- 4.Vaccination (II). Vaccination policies -- 5.Triage: when the tsunami hits. .
Record Nr. UNINA-9910574859603321
Miguel Beriain Iñigo de <1972->  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Autore Boado-Penas María del Carmen
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (xx, 298 pages) : illustrations (some color)
Altri autori (Persone) Boado-PenasMaría del Carmen
EisenbergJulia
Şahin‬‬‬Şule
Collana Springer Actuarial
Soggetto topico Epidemics
Insurance - Mathematical models
Insurance - Statistical methods
Social security
Assegurances
Models matemàtics
Estadística matemática
Seguretat social
Epidèmies
Soggetto genere / forma Llibres electrònics
Soggetto non controllato Epidemics
Risk
Insurance
Social protection
Actuarial modelling
Open Access
ISBN 3-030-78334-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space
6.3.2 Insurance Preliminaries
Altri titoli varianti Pandemics
Record Nr. UNISA-996466419903316
Boado-Penas María del Carmen  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin
Autore Boado-Penas María del Carmen
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2021
Descrizione fisica 1 online resource (xx, 298 pages) : illustrations (some color)
Altri autori (Persone) Boado-PenasMaría del Carmen
EisenbergJulia
Şahin‬‬‬Şule
Collana Springer Actuarial
Soggetto topico Epidemics
Insurance - Mathematical models
Insurance - Statistical methods
Social security
Assegurances
Models matemàtics
Estadística matemàtica
Seguretat social
Epidèmies
Soggetto genere / forma Llibres electrònics
ISBN 3-030-78334-0
Classificazione EDU000000LAW014000MAT003000MAT029000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space
6.3.2 Insurance Preliminaries
Altri titoli varianti Pandemics
Record Nr. UNINA-9910504284203321
Boado-Penas María del Carmen  
Cham, : Springer International Publishing AG, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Predicting pandemics in a globally connected world . Volume 1 : toward a multiscale, multidisciplinary framework through modeling and simulation / / edited by Nicola Bellomo and Mark A. J. Chaplain
Predicting pandemics in a globally connected world . Volume 1 : toward a multiscale, multidisciplinary framework through modeling and simulation / / edited by Nicola Bellomo and Mark A. J. Chaplain
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2022]
Descrizione fisica 1 online resource (314 pages)
Disciplina 016.36229
Collana Modeling and Simulation in Science, Engineering and Technology
Soggetto topico Epidemiology - Mathematical models
Epidèmies
COVID-19
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-96562-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Modelling, Simulations, and Social Impact of Evolutionary Virus Pandemics -- 1 Aims and Plan of the Chapter -- 2 On the Contents of the Edited Book -- 3 Reasonings on Research Perspectives -- References -- Understanding COVID-19 Epidemics: A Multi-Scale ModelingApproach -- 1 Introduction -- 2 Mathematical Modeling Applied to Infectious Diseases: COVID-19 as a Case Study -- 2.1 The SIR and SHAR Models -- 2.2 The SHARUCD Modeling Framework -- 2.3 Modeling the Implementation of Control Measures -- 2.4 The Refined SHARUCD Model -- 2.4.1 Further Refinements: Detection Rate and Import -- 3 KTAP Modeling Framework -- 3.1 Modeling Contagion, Progression, and Recovery -- 3.2 Application of the KTAP Model to Selected Case Studies -- 3.2.1 Effect of Lockdown Measures and Restrictions Lifting -- 3.2.2 Effect of Heterogeneity -- 4 Discussion -- References -- Kinetic Modelling of Epidemic Dynamics: Social Contacts, Control with Uncertain Data, and Multiscale Spatial Dynamics -- 1 Introduction -- 2 Kinetic Modelling of Social Heterogeneity in Epidemic Dynamics -- 2.1 Modelling Contact Heterogeneity -- 2.1.1 Kinetic Model for Contact Formation -- 2.1.2 Quasi-Invariant Scaling and Steady States -- 2.1.3 The Macroscopic Social-SIR Dynamics -- 2.1.4 A Social-SIR Model with Saturated Incidence Rate -- 2.1.5 Extrapolation of the Shape of the Incidence Rate from Data -- 2.2 The Interplay Between Economy and the Pandemic -- 2.2.1 Wealth Exchanges in Epidemic Modelling -- 2.2.2 Fokker-Planck Scaling and Steady States -- 2.2.3 The Formation of Bimodal Wealth Distributions -- 2.2.4 The Increase of Wealth Inequalities -- 3 Social Control and Data Uncertainty -- 3.1 Control of Socially Structured Models -- 3.1.1 Optimal Control Formulation -- 3.1.2 Feedback Controlled Compartmental Models.
3.1.3 Containment in Homogeneous Social Mixing Dynamics -- 3.2 Dealing with Data Uncertainty -- 3.2.1 Feedback Controlled and Socially Structured Models with Uncertain Inputs -- 3.2.2 Application to the COVID-19 Outbreak -- 4 Multiscale Transport Models -- 4.1 Spatial Dynamics on Networks -- 4.1.1 1D Hyperbolic Compartmental Model -- 4.1.2 Macroscopic Formulation and Diffusion Limit -- 4.1.3 Extension to Multi-Compartmental Modelling -- 4.1.4 Network Modelling -- 4.1.5 Effect of Spatially Heterogeneous Environments in Hyperbolic and Parabolic Configuration -- 4.1.6 Application to the Emergence of COVID-19 in Italy -- 4.2 Realistic Geographical Settings -- 4.2.1 2D Kinetic Transport Model -- 4.2.2 Macroscopic Formulation and Diffusion Limit -- 4.2.3 Extension to Multi-Compartmental Modelling -- 4.2.4 Application to the Spatial Spread of COVID-19 in Italy in Emilia-Romagna and Lombardy Region -- 5 Concluding Remarks and Research Perspectives -- 5.1 Data sources -- References -- The COVID-19 Pandemic Evolution in Hawai`i and New Jersey: A Lesson on Infection Transmissibility and the Role of HumanBehavior -- 1 Introduction -- 2 Mathematical Models -- 2.1 Agent-Based Models -- 2.1.1 COVID-19 Agent-Based Simulator (Covasim) -- 2.2 Compartmental SEIR Models and Variants -- 2.3 Comparison of Agent-Based and Compartmental Models -- 3 Archipelagos and Islands -- 3.1 March 2020-June 2021 -- 3.1.1 CM Model Fit from March 06, 2020 to January 15, 2021 -- 3.1.2 Comparing CM and ABM Models -- 3.2 July 2021-September 2021 -- 3.3 Discussion -- 4 The Pandemic Waves in New Jersey -- 4.1 Comparing New Jersey to the US -- 4.2 Spatial and Temporal Patterns in COVID-19 Cases in New Jersey -- 4.3 Sociodemographic Variables -- 4.4 Discussion -- 5 The Use of Compartmental Models in New Jersey -- 5.1 Time-Evolution of the Basic Reproduction Number.
5.2 Infected Confirmed Cases, Hospitalizations, and Deaths -- 5.3 Discussion -- 6 Conclusion -- References -- A Novel Point Process Model for COVID-19: Multivariate Recursive Hawkes Process -- 1 Introduction -- 1.1 Hawkes Point Process Modeling of Infectious Diseases -- 1.2 Multivariate Hawkes Processes -- 1.3 Recursive Hawkes Processes -- 1.4 Outline -- 2 Theoretical Properties of Temporal Multivariate Recursive Hawkes Models -- 2.1 Existence -- 2.2 Mean -- 2.3 Variance -- 3 Parameter Fitting and Simulation Algorithms -- 3.1 Parameter Fitting Algorithms -- 3.1.1 Parametric (or Semi-parametric) Estimation -- 3.1.2 Temporal Version of Parameter Fitting Algorithms -- 3.2 Simulation Algorithm -- 4 Reconstruct Multivariate Point Process from Data with Imprecise Time -- 4.1 Time Reconstruction -- 4.2 Category Index Reconstruction -- 5 Numerical Experiments and Results -- 5.1 Synthetic Data Sets -- 5.1.1 Comparison Between Parametric Fitting and Non-parametric Fitting -- 5.1.2 Verification of the Parameter Fitting Algorithm -- 5.1.3 Experiments About Data Sets with Imprecise Time -- 5.2 Experiments on Real COVID-19 Data -- 5.2.1 Model Validation -- 5.2.2 Prediction Based on MRHP and Historical Information -- 6 Conclusion -- References -- Multiscale Aspects of Virus Dynamics -- 1 Introduction -- 1.1 On the Biology of the Virus -- 1.2 Modeling the Complexity of COVID-19 -- 2 Epistemic and Empirical Uncertainties in Compartmental and Individual-Based Models -- 2.1 SIR Model -- 2.2 Individual-Based Interpretation of λ -- 2.3 An Example of Modified SIR Model -- 2.4 Individuals Behind the Modified SIR Model -- 2.5 Time-Discretization -- 3 The Individual-Based Model of FlaLaFauciRiva -- 3.1 A Formula for the Parameter λ of Compartmental Models -- 3.2 Analysis of the Fluctuations -- 3.3 Simulations -- 3.4 Presence of Immunized Population and Virus Variants.
Appendix -- References -- Productivity in Times of Covid-19: An Agent-Based Model Approach -- 1 Introduction -- 2 Model -- 3 Mean Field Approximation -- 4 Setting the Model Functions -- 5 Simulations -- 6 Conclusion -- References -- Transmission Dynamics and Quarantine Control of COVID-19 in Cluster Community -- 1 Introduction -- 2 Mathematical Modeling -- 2.1 Stage 1: SEIR-Type Model Without Quarantine -- 2.2 Stage 2: Transmission-Quarantine (TQ) Model -- 3 Analytic Results and Case Study for Emerging Stage -- 3.1 Analytic Results -- 3.2 A Real World Case Study for Stage 1 -- 4 Case Study and Sensitivity Analysis for Quarantine Stage -- 4.1 A Real World Study for Stage 2 -- 4.2 Sensitivity Analysis -- 5 Discussion -- Appendix: Proofs of Theorems -- References -- A 2D Kinetic Model for Crowd Dynamics with Disease Contagion -- 1 Introduction -- 2 A Simplified Two-Dimensional Kinetic Model -- 3 Discretization in Space and Time -- 4 Numerical Results -- 4.1 Tests with v = 0 -- 4.2 Tests with Prescribed Walking Velocity -- 5 A More Complex 2D Kinetic Model -- 6 Conclusions -- References -- Multiscale Derivation of a Time-Dependent SEIRD Reaction-Diffusion System for COVID-19 -- 1 Introduction -- 2 Phenomenological Modeling of Diffusion Population Dynamics -- 3 From Kinetic Theory Model to SEIRD Reaction-Diffusion System -- 3.1 Kinetic Theory Model -- 3.2 Micro-Macro Formulation -- 4 Numerical Method -- 4.1 Semi-Implicit Time Discretization -- 4.2 Fully Discrete Asymptotic Preserving Numerical Scheme in 1D -- 4.3 Boundary Conditions -- 5 Numerical Results -- 5.1 Test 1: Asymptotic Preserving Numerical Scheme Property -- 5.2 Test 2: Diffusion Effect -- 5.3 Test 3: Role of the Transmission Function -- 6 Conclusion and Perspectives -- References.
Record Nr. UNISA-996490344003316
Cham, Switzerland : , : Birkhäuser, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Predicting Pandemics in a Globally Connected World, Volume 2 : Toward a Multiscale, Multidisciplinary Framework through Modeling and Simulation / / edited by Maira Aguiar, Nicola Bellomo, Mark Chaplain
Predicting Pandemics in a Globally Connected World, Volume 2 : Toward a Multiscale, Multidisciplinary Framework through Modeling and Simulation / / edited by Maira Aguiar, Nicola Bellomo, Mark Chaplain
Autore Aguiar Maira
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Descrizione fisica 1 online resource (233 pages)
Disciplina 570,285
Altri autori (Persone) BellomoN
ChaplainMark
Collana Modeling and Simulation in Science, Engineering and Technology
Soggetto topico Biomathematics
Mathematical models
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
COVID-19
Models matemàtics
Epidèmies
Soggetto genere / forma Llibres electrònics
ISBN 9783031567940
3031567943
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter. 1. Evolutionary Virus Pandemics: From modeling and Simulations to Society -- Chapter. 2. Development and Analysis of Multiscale Models for Tuberculosis: From Molecules to Populations -- Chapter. 3. The use of crowd models for risk analysis during the Covid-19 pandemic -- Chapter. 4. Modeling household effects in epidemics -- Chapter. 5. An analytic look at the last pandemic’s spread and its control by decision-makers -- Chapter. 6. A time-dependent SIRD nonlinear cross-diffusion dpidemic model: Multiscale derivation and computational analysis -- Chapter. 7. Optimal control of an epidemic using compartmental models and measure differential equations -- Chapter. 8. Complex network approaches for epidemic modeling: a case study of COVID-19 -- Chapter. 9. How vaccination helps to relax the population mobility: an agent-based model approach.
Record Nr. UNINA-9910865281503321
Aguiar Maira  
Cham : , : Springer Nature Switzerland : , : Imprint : Birkhäuser, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui