top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Critical thinking in biology and environmental education : facing challenges in a post-truth world / / edited by Blanca Puig and María Pilar Jiménez-Aleixandre
Critical thinking in biology and environmental education : facing challenges in a post-truth world / / edited by Blanca Puig and María Pilar Jiménez-Aleixandre
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (277 pages)
Disciplina 570.71
Collana Contributions from Biology Education Research
Soggetto topico Teachers - Training of
Environmental sciences - Study and teaching
Biology - Study and teaching
Formació del professorat
Ensenyament de les ciències naturals
Ciències ambientals
Soggetto genere / forma Llibres electrònics
ISBN 3-030-92006-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910551825203321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Current Research in Biology Education [[electronic resource] ] : Selected Papers from the ERIDOB Community / / edited by Konstantinos Korfiatis, Marcus Grace
Current Research in Biology Education [[electronic resource] ] : Selected Papers from the ERIDOB Community / / edited by Konstantinos Korfiatis, Marcus Grace
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (313 pages)
Disciplina 570.76
Collana Contributions from Biology Education Research
Soggetto topico Science - Study and teaching
Teachers - Training of
Education
Study Skills
Biology
Science Education
Teaching and Teacher Education
Study and Learning Skills
Biological Sciences
Ensenyament de les ciències naturals
Investigació
Soggetto genere / forma Llibres electrònics
ISBN 3-030-89480-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Socioscientific issues, Nature of Science and scientific thinking -- 1. The relevancy of science education to public engagement with science -- 2. Engaging in argumentation as critical evaluation of the anti-vaccination movement -- 3. Theory of planned behavior in the context of stem cell donation -- 4. Prior knowledge, epistemic beliefs and socio-scientific topic context as predictors of the diversity of arguments on socio-scientific issues -- 5. Toward a questionnaire to assess biology student teachers’ knowledge of the nature of scientific inquiry (NOSI) -- 6. Introducing primary school students to aspects of the nature of scientific knowledge -- Part II. Teaching and learning in biology -- 7. Digital narratives for biology learning -- 8. Digital first? Effects of digital and analogue learning tools on the plant knowledge acquisition of fututre biology teachers -- 9. Comparing inquiry-based learning and interactive lectures while teaching physiology to undergradate students -- 10. Train the trainer in the jigsaw puzzle of biology education: effects of mentor training on teaching quality -- 11. The assessment of an educational proposal to address the relationship between genetic information and protein synthesis -- 12. Evaluating the effectiveness of a teaching intervention in a marine biology course: the case of Greek vocational students -- 13. Promoting students’ understanding of gene-environment interaction in genetics education -- 14. Students’ conceptions as a neglected perspective in trainee teachers’ biology lesson plans -- Part III. Perceptions of biology and biology education -- 15. Students’ opinions about interdisciplinary lessons -- 16. Correlation between the popularity and difficulty of secondary school biology and perceived importance of knowledge acquired for personal wellbeing -- 17. Perception of biological disciplines by upper secondary school students -- 18. Analyzing the relationships between pre-service biology teachers' modelling processes, scientific reasoning competencies and general cognitive abilities -- 19. The pitfalls of using presentation technology in the biology classroom -- Part IV. Textbook analysis -- 20. Human reproduction in Greek Secondary Education textbooks (1870s to present) -- 21. Exploring logico-semantic relations of historical gene models in similar genetic content in Greek biology school textbooks -- Part V. Outdoor and environmental education -- 22. Children’s interests and orientations towards nature: views from young children in England -- 23. Picturing the urban environment: using photovoice to bring university students’ views and voices into urban environmental education.
Record Nr. UNINA-9910552712503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fostering understanding of complex systems in biology education : pedagogies, guidelines and insights from classroom-based research / / edited by Orit Ben Zvi Assaraf and Marie-Christine P. J. Knippels
Fostering understanding of complex systems in biology education : pedagogies, guidelines and insights from classroom-based research / / edited by Orit Ben Zvi Assaraf and Marie-Christine P. J. Knippels
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (283 pages)
Disciplina 570.71
Collana Contributions from Biology Education Research
Soggetto topico Teacher orientation
Educational technology
Biologia de sistemes
Ensenyament de les ciències naturals
Soggetto genere / forma Llibres electrònics
ISBN 3-030-98144-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Chapter 1: Theoretical Perspectives on Complex Systems in Biology Education -- 1.1 Introduction -- 1.2 Systems Dynamics and Systems Thinking -- 1.3 From Structure, Behavior, Function to Phenomena-Mechanisms-Components -- 1.4 Agent-Based Modeling -- 1.5 Thinking in Levels -- 1.6 Conclusion -- References -- Chapter 2: Long Term Ecological Research as a Learning Environment: Evaluating Its Impact in Developing the Understanding of Ecological Systems Thinking - A Case Study -- 2.1 Introduction -- 2.2 Literature Review -- 2.2.1 The Ecosystem as Complex System -- 2.2.2 The Difficulties Associated with Understanding Complex Ecological Systems -- 2.2.3 Developing and Assessing System Thinking -- 2.3 Methods -- 2.3.1 Setting and Population -- 2.3.2 Research Tools and Data Analysis -- 2.4 Results -- 2.4.1 Analysis Level -- 2.4.2 Synthesis Level -- 2.4.3 Implementation Level -- 2.4.4 Students' Understanding of the Content and the Value of LTER -- 2.5 Discussion -- References -- Chapter 3: Involving Teachers in the Design Process of a Teaching and Learning Trajectory to Foster Students' Systems Thinking -- 3.1 Introduction -- 3.1.1 Definitions of Systems Thinking -- 3.1.2 Teaching Systems Thinking -- 3.1.3 Focus of the Research -- 3.2 Method -- 3.2.1 Participants -- 3.2.2 LS Meetings -- 3.2.3 Designed Lessons -- 3.2.3.1 Lesson 1 -- 3.2.3.2 Lesson 2 -- 3.2.4 Pre- and Post-interviews -- 3.3 Results -- 3.3.1 RQ1: Contributions of the Teachers -- 3.3.2 RQ2: Learning Experiences -- 3.4 Conclusion -- References -- Chapter 4: Supporting University Student Learning of Complex Systems: An Example of Teaching the Interactive Processes That Constitute Photosynthesis -- 4.1 Introduction -- 4.1.1 What Makes Biological Systems Complex? -- 4.1.2 How Students Learn About Complexity.
4.1.3 How Instruction Can Support Student Learning of Complex Systems -- 4.1.4 Teaching and Learning the Complexity of Photosynthesis -- 4.2 Classroom Context and Methods -- 4.3 Results from Implementation -- 4.4 Conclusions and Implications -- References -- Chapter 5: High School Students' Causal Reasoning and Molecular Mechanistic Reasoning About Gene-Environment Interplay After a Semester-Long Course in Genetics -- 5.1 Introduction -- 5.2 Background of the Study -- 5.3 Aims and Objectives -- 5.4 Method -- 5.4.1 Sample -- 5.4.2 Assessment of Students' Reasoning -- 5.4.3 The Interviews -- 5.4.4 Coding the Students' Responses to the Open-Response Task -- 5.5 Results -- 5.5.1 Findings for the First Question of the Task: What Does the Eye Color of Fruit Flies Depend on? -- 5.5.2 Findings for the Second Question of the Task: Tracing Trait Formation -- 5.5.3 Findings from the Interviews -- 5.6 Discussion and Educational Implications -- References -- Chapter 6: Systems Thinking in Ecological and Physiological Systems and the Role of Representations -- 6.1 Introduction -- 6.2 Similarities and Differences of Complex Systems -- 6.3 Systems Thinking -- 6.4 Representations of Complex Systems -- 6.5 Purpose and Methodology -- 6.6 Systems Thinking in Ecological Contexts -- 6.7 Systems Thinking in Physiological Contexts -- 6.7.1 Process Continuity -- 6.7.2 Self-Regulation -- 6.7.3 Causal-Mechanistic Relations -- 6.8 Discussion -- References -- Chapter 7: The Zoom Map: Explaining Complex Biological Phenomena by Drawing Connections Between and in Levels of Organization -- 7.1 Introduction -- 7.2 What Makes Biological Explanations Complex? The Perspective of Scientists -- 7.2.1 Characteristics of Biological Explanations -- 7.2.2 A Plethora of Biological Levels -- 7.2.3 Organizing the Levels of Biological Organization.
7.2.4 Comparing the Levels of Scientific Disciplines -- 7.3 What Makes Biological Explanations Complex? - The Students' Perspective -- 7.3.1 Students' Difficulties for Explaining Phenomena -- 7.3.2 Zooming in on the Construction of Explanations -- 7.4 Guiding the Process of Explaining with the Zoom Map-The Educators' Perspective -- 7.4.1 Theoretical Learning Principles for Teaching Complex Phenomena -- 7.4.2 The Zoom Map -- 7.5 Design of the Study and Materials -- 7.5.1 The Zoom Map Prepared for a Particular Explanation -- 7.5.2 Experience-Based Conceptions Are Needed to Construct an Explanation -- 7.5.3 External Representations Depict the Mechanism -- 7.5.4 Participants -- 7.5.5 Analysis -- 7.6 Results -- 7.6.1 A Zoom Map to Explain Upright and Wilted Leaves -- 7.6.2 A Zoom Map Demands Exhaustive Editing -- 7.6.3 Learners Drill Down to Lower Levels in Their Explanations -- 7.6.4 Direction of Explanation: Top-Down, Bottom-Up, or yo-yo -- 7.7 Discussion -- 7.8 Implications for Biology Teaching -- References -- Chapter 8: Pre-service Teachers' Conceptual Schemata and System Reasoning About the Carbon Cycle and Climate Change: An Exploratory Study of a Learning Framework for Understanding Complex Systems -- 8.1 Introduction -- 8.1.1 Knowledge About the Carbon Cycle and Climate Change -- 8.1.2 Climate Change Education -- 8.1.3 Systems Thinking and the Structure-Behavior-Function (SBF) Conceptual Framework -- 8.1.4 Research Objectives -- 8.2 Methods -- 8.2.1 Participants -- 8.2.2 Learning Intervention -- 8.2.2.1 Concept Maps -- 8.2.2.2 Lab Experiments -- 8.2.2.3 Computer Simulations -- 8.2.2.4 Concept Map Revision and Reflections -- 8.2.3 Data Collection and Analysis -- 8.2.3.1 Concept Map Analysis -- 8.2.3.2 Interview Analysis -- 8.3 Results -- 8.3.1 Group A: Slovenian Pre-service Lower-Secondary-School Biology Teachers.
8.3.2 Group B: Cyprus Pre-service Primary School Teachers -- 8.3.3 Group C: Cyprus Pre-service Preschool Teachers -- 8.4 Discussion -- 8.4.1 Educational Implications and Suggestions for Future Research -- References -- Chapter 9: Teaching Students to Grasp Complexity in Biology Education Using a "Body of Evidence" Approach -- 9.1 Introduction -- 9.1.1 What Is a Body of Evidence Approach? -- 9.1.2 A BOE Approach for Middle School Science: Understanding Goals -- 9.2 Research Questions -- 9.3 Methods -- 9.3.1 Design -- 9.3.2 Participants -- 9.3.3 Curriculum -- 9.3.4 BOE Intervention Components -- 9.4 Data Sources and Analysis -- 9.4.1 Concept Maps -- 9.4.2 Post-interviews -- 9.5 Results -- 9.5.1 Concept Maps -- 9.5.2 Interviews -- 9.5.2.1 Confounding Causal Factors with Sources of Evidence -- 9.5.2.2 Expressing the Value of Multiple Possible Explanations/Models -- 9.5.2.3 Recognizing a Collection of Evidence Intended to Support a Claim -- 9.5.2.4 Making Connections to Other Learning about Evidence -- 9.5.2.5 Acknowledging Ecosystems Science Experimentation as Sensitive to Not Harming the Environment -- 9.6 Discussion -- Appendix -- Overview of the Plus BOE Curriculum -- Experimentation Tools in EcoXPT -- EcoXPT Thinking Move Posters Including a Body of Evidence Approach -- Script for Body of Evidence Approach Thinking Move Video -- Body of Evidence Worksheet -- Thinking About Different Types of Evidence Worksheet (Both Classes) -- Supporting Materials for Body of Evidence Thinking Move -- Learning from Opportunistic Experiments -- Discussion Sheet -- Uncertainty and Constructing a Best Explanation -- Discussion Sheet -- References -- Chapter 10: Science Teachers' Construction of Knowledge About Simulations and Population Size Via Performing Inquiry with Simulations of Growing Vs. Descending Levels of Complexity -- 10.1 Introduction -- 10.1.1 Simulations.
10.1.2 Performing a Simulation-Based Scientific Inquiry -- 10.2 The Study and Its Context -- 10.2.1 Participants -- 10.2.2 Data Collection -- 10.2.3 Data Analysis -- 10.2.4 Procedure -- 10.3 What Did we Learn About Teachers' Knowledge and SBSI? -- 10.3.1 Teachers' Knowledge About Simulations and their Function -- 10.3.2 Teachers' Pedagogical Knowledge and Beliefs About Teaching with Simulations -- 10.3.3 Teachers' Knowledge and Understanding of Population Dynamics and Related Representations -- 10.3.4 Science Teachers' Inquiry Performance -- 10.3.5 SBSI Time Duration -- 10.3.6 Inquiry Phases -- 10.3.7 Teachers' Talk About Population Dynamics and SBSI Experiences -- 10.4 Promoting System Thinking through the Use of Simulations - Few Recommendations for a Pedagogy and a Learning Environment As Well As Implications for Instruction and Learning -- References -- Chapter 11: Designing Complex Systems Curricula for High School Biology: A Decade of Work with the BioGraph Project -- 11.1 Developing a Coherent Understanding of Biological Systems -- 11.2 The BioGraph Curriculum and Instruction Framework -- 11.2.1 Curricular Relevance: What Is Being Learned? -- 11.2.2 Cognitively-Rich Pedagogies: How Does Learning Happen? -- 11.2.3 Tools for Teaching and Learning: What Is Used to Support Instruction and Learning? -- 11.2.4 Content Expertise: What Is the Knowledge to Be Learned? -- 11.3 Designing for Teacher PD -- 11.3.1 Face-to-Face PD: Exploring Teacher Learning and Community Development -- 11.3.2 Online Asynchronous PD: Exploring How to Scale BioGraph Resources -- 11.4 Research Findings -- 11.4.1 Students Improve in Biology and Complex Systems Understanding -- 11.4.2 Students Understanding of Biology as a Coherent Set of Ideas Improves -- 11.4.3 Teachers Indicate High Usability in their Biology Courses -- 11.4.4 Developing Teacher's Social Capital Is Key.
11.5 Benefits of Computer-Supported Complex Systems Curricula and Lessons Learned.
Record Nr. UNINA-9910574063703321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui