top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
Application of nanoparticles in tissue engineering / / edited by Sarah Afaq, Arshi Malik, Mohammed Tarique
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (134 pages)
Disciplina 730
Soggetto topico Nanoparticles
Nanopartícules
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 981-16-6198-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1: Nanoparticles for Tissue Engineering: Type, Properties, and Characterization -- 1.1 Introduction -- 1.2 History of Nanoparticles -- 1.3 Types of Nanoparticles -- 1.3.1 Organic Nanoparticles -- 1.3.1.1 Liposomes -- 1.3.1.2 Polymeric Nanoparticles -- 1.3.2 Dendrimers -- 1.3.3 Inorganic Nanoparticles -- 1.3.3.1 Silica Nanoparticles -- 1.3.3.2 Metallic Nanoparticles -- Gold Nanoparticle -- 1.3.4 Magnetic Nanoparticle -- 1.3.4.1 Bio-ceramics and Bioactive Glass Nanoparticles -- 1.3.4.2 Carbon Nanotubes -- 1.4 Physiochemical Properties of Nanoparticles -- 1.4.1 Electronic and Optical Properties -- 1.4.2 Mechanical Properties -- 1.4.3 Magnetic Properties -- 1.4.4 Thermal Properties -- 1.5 Characterization of Nanoparticles -- 1.5.1 Particle Size -- 1.5.2 Surface Charge -- 1.5.3 Hydrophobicity -- 1.5.4 Drug Release -- 1.6 Application of Nanoparticles -- 1.6.1 Biological Property Enhancement -- 1.6.2 Mechanical Property Enhancement -- 1.6.3 3D Tissue Construction -- 1.6.4 Antibacterial Applications -- 1.6.5 Cells Stimulation for Mechano-transduction -- 1.6.6 Gene Delivery -- 1.7 Challenges and Future Perspective -- 1.8 Conclusion -- References -- 2: Nanoparticles and Bioceramics Used in Hard Tissue Engineering -- 2.1 Introduction -- 2.2 Nanoparticles Used in Hard Tissue Engineering -- 2.2.1 Organic Nanoparticles -- 2.2.1.1 Liposomes -- 2.2.1.2 Polymeric Nanoparticles -- 2.2.2 Inorganic Nanoparticles -- 2.2.2.1 Silica NPs -- 2.2.2.2 Metallic NPs -- 2.2.2.3 Bioactive Glass -- 2.2.2.4 Carbon Nanotubes -- 2.2.2.5 Quantum Dots -- 2.3 Bioceramics Used in Tissue Engineering -- 2.3.1 Classification Based on Origin -- 2.3.2 Classification Based on Tissue Response -- 2.3.3 Classification Based on Composition -- 2.3.3.1 Zirconium-Based Bioceramics -- 2.3.3.2 Alumina-Based Bioceramics -- 2.3.3.3 Carbon-Based Bioceramics.
2.4 Properties of Nanoparticles and Bioceramic Materials -- 2.5 Current Challenges and Future Perspective -- 2.6 Conclusion -- References -- 3: Application of Nanoparticles in Soft Tissue Engineering -- 3.1 Introduction -- 3.2 Nanofibers for Soft Tissue Engineering -- 3.2.1 Nature-Derived Nanofibers -- 3.2.2 Synthetic Nanofibers -- 3.3 Inorganic Nanoparticles -- 3.3.1 Silver Nanoparticles -- 3.3.2 Gold Nanoparticles -- 3.3.3 Iron Nanoparticles -- 3.3.4 Aluminum Nanoparticles -- 3.3.5 Zinc Nanomaterial -- 3.3.6 Magnesium Nanoparticles -- 3.3.7 Titanium -- 3.4 Nanomaterial Applications in Specific Areas of Tissue Engineering -- 3.4.1 Application of Nanomaterials for Soft Tissue Engineering in Dentistry -- 3.4.2 Applications of Nanomaterials for Soft Tissue Engineering in Stem Cells -- 3.4.3 Application of Nanomaterials for Soft Tissue Engineering in Osteology -- 3.4.4 Application of Nanomaterials for Soft Tissue Engineering in Cardiac Muscles -- 3.4.5 Application of Nanomaterials for Soft Tissue Engineering in Neurology -- 3.5 Future Directions in Soft Tissue Engineering -- 3.6 Conclusion -- References -- 4: 3D and 4D Nanoprinting for Tissue Regeneration -- 4.1 Introduction -- 4.2 Bioprinting Techniques Using Biopolymers and Biomaterials -- 4.3 Advances in 3D and 4D Nanoprinting Methods -- 4.3.1 Traditional Methods of 3D Scaffold Synthesis -- 4.3.1.1 Gas Foaming -- 4.3.1.2 Freeze-Drying -- 4.3.1.3 Particle Leaching -- 4.3.1.4 Fiber Bonding -- 4.3.1.5 Phase Separation -- 4.3.2 Advanced Nanoprinting Methods for Scaffold Synthesis -- 4.3.2.1 Rapid Prototyping -- 4.3.2.2 Two-Photon Absorption -- 4.3.2.3 Controlled Electrospinning -- 4.3.2.4 Charged Aerosol Jet -- 4.4 Advances in Nanoprinting of Cells, Tissues, and Organs -- 4.4.1 Skin -- 4.4.2 Bone and Cartilage -- 4.4.3 Retina -- 4.4.4 Neural.
4.5 Major Challenges Influencing the Bio-nanoprinting for Tissue Engineering -- 4.5.1 Factors Influencing Bio-nanoprinting for Tissue Engineering -- 4.6 Future Perspectives -- References -- 5: Strategies to Improve Delivery of Bioactive Agents -- 5.1 Introduction -- 5.2 Strategies for Improving Delivery of Bioactive Agents -- 5.3 Improvements in Nanoparticles for Enhanced Permeability and Retention (EPR) Effects for Delivery of Bioactive Agents -- 5.3.1 Nanoparticle Improvements for Permeating Cell-Cell Barriers -- 5.3.2 Nanoparticle Improvements to Overcome Blood-Brain Barrier (BBB) -- 5.3.3 Nanoparticle Improvements to Overcome Macrophage-Mediated Immune Clearance -- 5.4 Strategic Improvement of Drug Delivery Systems -- 5.4.1 Liposome-Based Drug Delivery -- 5.4.2 Virosome-Based Drug Delivery -- 5.4.3 Solid Lipid Nanoparticles Based Drug Delivery -- 5.4.4 Dendrimer-Based Drug Delivery -- 5.4.5 Nano-emulsion-Based Drug Delivery -- 5.4.6 Mesoporous Silica Nanoparticles (MSNP) Based Drug Delivery -- 5.5 Conclusion -- References -- 6: Nanotechnology and Its Applications in Molecular Detection -- 6.1 Nanotechnology and Molecular Detection: Importance of Nanotechnology in Molecular Detection -- 6.2 Applications -- 6.2.1 Nanotechnology on a Chip -- 6.2.1.1 Microfluidic Chips for Nanolitre Volumes: Nanochip -- 6.2.1.2 Optical Readout of Nanoparticle Labels -- 6.2.1.3 Nanoarrays -- 6.2.1.4 Protein Nanoarrays -- 6.2.2 Nanoparticle Technology -- 6.2.2.1 Gold Particles -- Introduction -- Synthesis of AuNps -- Properties of AuNPs -- Applications of AuNPs -- 6.2.2.2 Nanoparticle Probes -- 6.2.2.3 Nanobarcodes -- 6.2.2.4 Magnetic Nanoparticles: Ferrofluid -- 6.2.2.5 Quantum Dot Technology -- 6.2.3 Other Nanoparticles -- 6.2.3.1 Nanowires -- 6.2.3.2 Cantilever Arrays -- 6.2.3.3 DNA Nanomachines for Molecular Detection -- 6.2.3.4 Nanopore Technology.
6.2.3.5 Nanosensors -- 6.2.3.6 Resonance Light Scattering (RLS) Technology -- 6.3 Conclusion -- References -- 7: Challenges and Future Prospect of Nanoparticles in Tissue Engineering -- 7.1 Nanobiomaterials and Tissue Engineering -- 7.2 Challenges with Nanoparticles for Biomaterials in Tissue Engineering -- 7.3 Bone Tissue Engineering -- 7.4 Orthopedic Implants -- 7.5 Challenges in Surface Modification of Orthopedic Implants Using Nanobiomaterials and Tissue Engineering -- 7.6 Nanobiomaterials for Orthopedic and Dental Implants -- 7.7 Nano-bioceramic Coating Methods for Tissue Engineering Applications -- 7.8 Future Aspects of Tissue Engineering -- References.
Record Nr. UNINA-9910595035303321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bioinspired Biomaterials : Advances in Tissue Engineering and Regenerative Medicine / / edited by Heung Jae Chun, Rui L. Reis, Antonella Motta, Gilson Khang
Bioinspired Biomaterials : Advances in Tissue Engineering and Regenerative Medicine / / edited by Heung Jae Chun, Rui L. Reis, Antonella Motta, Gilson Khang
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Descrizione fisica 1 online resource (230 pages)
Disciplina 610.284
Collana Advances in Experimental Medicine and Biology
Soggetto topico Biomedical engineering
Regenerative medicine
Tissue engineering
Pharmaceutical technology
Neurosciences
Biochemical engineering
Biomedical Engineering/Biotechnology
Regenerative Medicine/Tissue Engineering
Pharmaceutical Sciences/Technology
Biochemical Engineering
Materials biomèdics
Enginyeria de teixits
Medicina regenerativa
Soggetto genere / forma Llibres electrònics
ISBN 981-15-3258-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I. Novel Bioinspired Biomaterials for Regenerative Medicine -- Chapter 1. Natural Sources and Applications of Demineralized Bone Matrix in the Field of Bone and Cartilage Tissue Engineering -- Chapter 2. Application of Gellan Gum-based Scaffold for Regenerative Medicine -- Chapter 3. Natural Fibrous Protein for Advanced Tissue Engineering Applications: Focusing on Silk Fibroin and Keratin -- Part II. Bioinspired 3D Bioprinting Hydrogel for Regenerative Medicine -- Chapter 4. Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting -- Chapter 5. 3D-Bioprinting of Tissue Models with Customized Bioinks -- Chapter 6. Visible Light-curable Hydrogel Systems for Tissue Engineering and Drug Delivery -- Part III. Regulation of Stem Cell Fate by Bioinspired Biomaterials -- Chapter 7. Scaffolds for Cartilage Regeneration: To Use or Not to Use -- Chapter 8. Bio-application of Inorganic Nanomaterials in Tissue Engineering -- Chapter 9. Directional Cell Migration Guide for Improved Tissue Regeneration -- Part IV. Cutting-Edge Enabling Technology for Regenerative Medicine -- Chapter 10. Extracellular Vesicles: The Next Frontier in Regenerative Medicine and Drug Delivery -- Chapter 11. Application of Tissue Engineering and Regenerative Medicine in Maternal-fetal Medicine -- Chapter 12. Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration -- Chapter 13. Protein-based Drug Delivery in Brain Tumor Therapy -- Chapter 14. Human Hair: Scaffold Materials for Regenerative Medicine.
Record Nr. UNINA-9910409687403321
Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomaterials in tissue engineering and regenerative medicine : from basic concepts to state of the art approaches / / edited by Birru Bhaskar [and three others]
Biomaterials in tissue engineering and regenerative medicine : from basic concepts to state of the art approaches / / edited by Birru Bhaskar [and three others]
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (587 pages)
Disciplina 610.284
Soggetto topico Biomedical materials
Regenerative medicine
Tissue engineering
Materials biomèdics
Medicina regenerativa
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 981-16-0002-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- About the Editors -- List of Abbreviations -- Part I: Fundamentals of Biomaterials -- 1: Biomaterials, Tissue Engineering, and Regenerative Medicine: A Brief Outline -- 1.1 Introduction -- 1.1.1 Biomaterials -- 1.1.2 Tissue Engineering -- 1.1.3 Regenerative Medicine -- References -- 2: Metallic Biomaterials in Tissue Engineering: Retrospect and Prospects -- 2.1 Introduction -- 2.1.1 Traditional Metallic Biomaterials -- 2.1.2 Advanced and Revolutionizing Metallic Biomaterials -- 2.1.3 Metallic Biomaterials and Biocompatibility -- 2.2 Properties of Metallic Biomaterials -- 2.2.1 Phase Transformation and Elastic Moduli -- 2.2.2 Porosity -- 2.2.3 Corrosion Resistance -- 2.2.4 Anti-Bacterial Properties -- 2.2.5 Bioactivation of Metallic Biomaterials -- 2.2.6 Biodegradation -- 2.2.7 MRI Compatibility -- 2.2.8 Radiopacity -- 2.3 Permanent Metallic Biomaterials -- 2.3.1 Stainless Steel -- 2.3.2 Co-Based Biomaterials -- 2.3.3 Ti-Based Biomaterials -- 2.3.4 Tantalum and Its Alloys -- 2.3.5 Zirconium Alloys -- 2.4 Biodegradable Metallic Biomaterials -- 2.4.1 Mg-Based Biomaterials -- 2.4.2 Zinc-Based Biomaterials -- 2.4.3 Iron-Based Biomaterials -- 2.5 Advanced Metallic Biomaterials -- 2.5.1 Bulk Metallic Glasses -- 2.5.2 Shape Memory Alloys -- 2.6 Tissue Engineering Applications of Metallic Biomaterials -- 2.6.1 Bone Tissue Engineering -- 2.6.2 Cartilage Tissue Engineering -- 2.6.3 Cardiovascular Tissue Engineering -- 2.6.4 Dental Tissue Engineering -- 2.7 Future Prospects of Metallic Biomaterials in Tissue Engineering -- References -- 3: Bioceramics in Tissue Engineering: Retrospect and Prospects -- 3.1 Introduction -- 3.2 Background Perspective -- 3.3 Bioactivity of Calcium Phosphate -- 3.3.1 Calcium Phosphates: Variants and Effects -- 3.3.2 CaPO4 Bioceramics in Tissue Engineering -- 3.3.3 Clinical Vignettes -- 3.4 Summary and Outlook.
References -- 4: Polymeric Biomaterials in Tissue Engineering: Retrospect and Prospects -- 4.1 Introduction -- 4.2 Extracellular Matrix-the Framework Enabling Tissue Growth -- 4.3 Polymeric Materials as Ideal Scaffold -- 4.4 Natural and Synthetic Polymers as Scaffolds -- 4.5 Natural Biodegradable Polymers -- 4.5.1 Collagen -- 4.5.2 Gelatin -- 4.5.3 Chitosan -- 4.5.4 Alginate -- 4.5.5 Fibrin -- 4.5.6 Hyaluronic Acid -- 4.5.7 Silk -- 4.6 Synthetic Biodegradable Polymers -- 4.6.1 Poly Lactic Acid (PLA) -- 4.6.2 Poly (glycolic acid) (PGA) -- 4.6.3 Poly (lactic-co-glycolic acid) (PLGA) -- 4.6.4 Poly(caprolactone) (PCL) -- 4.6.5 Poly Vinyl Alcohol (PVA) -- 4.6.6 Poly-β-hydroxybutyrate -- 4.6.7 Polyethylene Glycol-Based Polymers -- 4.7 Polymer Scaffold Fabrication Techniques -- 4.7.1 Conventional (Traditional) Manufacturing Techniques -- 4.7.2 Nano Fabrication-Based Techniques -- 4.7.3 Additive Manufacturing-Based Techniques -- 4.8 Conclusion and Perspectives -- References -- 5: Composite Biomaterials in Tissue Engineering: Retrospective and Prospects -- 5.1 Introduction -- 5.2 Bio-Composite Components: Classes and Desirable Properties -- 5.3 Strategies of Bio-Composite Development -- 5.3.1 Conventional Blending and Mixing Technique -- 5.3.2 Advanced Bio-Fabrication Methods -- 5.3.2.1 Co-electrospinning -- 5.3.2.2 Bioprinting -- 5.3.2.3 Reinforcement Methods -- 5.3.3 Nano-Particle Reinforced Bio-Composites -- 5.3.4 Surface Modifications -- 5.3.5 Surface Effects and Characterization -- 5.4 Retrospectives of Composite Biomaterials in Tissue Engineering -- 5.4.1 Composite Biomaterials for Hard Tissue Regeneration -- 5.4.1.1 Bone Tissue Regeneration -- 5.4.1.2 Dentistry -- 5.4.2 Composite Biomaterials in Soft Tissue Engineering -- 5.4.2.1 Vascular Grafting -- 5.4.2.2 Cardiac Tissue Engineering -- 5.4.2.3 Contact Lens and Cornea.
5.4.2.4 Neural Tissue Engineering -- 5.5 Bottlenecks of Composite Biomaterial Applications -- 5.6 Prospects of Composite Biomaterials -- 5.7 Conclusion -- References -- Part II: Trends in Biomaterials -- 6: Trends in Bio-Derived Biomaterials in Tissue Engineering -- 6.1 Introduction -- 6.2 Concept of Bio-Derived Biomaterials and their Applications in Tissue Engineering -- 6.3 Decellularized Extracellular Matrix (DECM) as Biomaterials -- 6.3.1 ECM and Decellularization -- 6.3.2 Methods of Decellularization -- 6.3.3 Regenerative Properties of DECM -- 6.3.4 Decellularized Material Systems: Applications in Tissue Engineering -- 6.4 Naturally Derived Biomaterials -- 6.4.1 Proteins Based Bio-Derived Biomaterials -- 6.4.1.1 Collagen -- 6.4.1.2 Gelatin -- 6.4.1.3 Fibrin -- 6.4.1.4 Silk -- 6.4.1.5 Keratin -- 6.4.2 Polysaccharides Based Bio-Derived Biomaterials -- 6.4.2.1 Glycosaminoglycans -- 6.4.2.2 Alginates -- 6.4.2.3 Agarose -- 6.4.2.4 Carrageenan -- 6.4.2.5 Chitosan -- 6.4.3 Other Bio-Derived Biomaterials -- 6.5 Microbial Derived Biopolymers -- 6.5.1 Types of Bacterial Polymers -- 6.5.2 Biosynthesis and Purification of Bacterial-Derived Polymers -- 6.5.2.1 Polyamides -- 6.5.2.2 Polyesters -- 6.5.2.3 Polysaccharides -- 6.5.3 Microbial Derived Biopolymers for Tissue Engineering -- 6.5.3.1 Poly-γ-Glutamic Acid (γ-PGA) -- 6.5.3.2 Polyhydroxyalkanoates (PHAs) -- 6.5.3.3 Polysaccharides -- 6.6 Conclusion and Future Directions -- References -- 7: Trends in Functional Biomaterials in Tissue Engineering and Regenerative Medicine -- 7.1 Functionalized Biomaterials -- 7.2 Surface Functionalization Methods -- 7.2.1 Surface Roughening and Patterning -- 7.2.2 Surface Films and Coatings -- 7.2.2.1 Physical Methods -- 7.2.2.1.1 Physical Adsorption of Active Biomolecules -- 7.2.2.1.2 Langmuir-Blodgett Method -- 7.2.2.1.3 Physical Vapor Deposition -- Evaporation.
Deposition by Sputtering -- Plasma immersion ion implantation and deposition (PIIIandD) -- 7.2.2.1.4 Electrophoretic Deposition -- 7.2.2.1.5 Spraying Techniques -- 7.2.2.2 Chemical Methods -- 7.2.2.2.1 Adsorption Via Covalent Bonding -- 7.2.2.2.2 Alkali Acid Hydrolysis -- 7.2.2.2.3 Chemical Vapor Deposition -- Plasma-Enhanced Chemical Vapor Deposition -- Plasma Polymerization -- Atomic Layer Deposition -- 7.2.2.2.4 Sol-Gel Technique -- 7.2.2.2.5 Layer-by-Layer (LbL) Deposition -- 7.2.2.3 Radiation Methods -- 7.2.3 Surface Modification by Addition of Signaling Biomolecules -- 7.3 Functionalized Scaffolds Towards Organ Development -- 7.3.1 Cardiac Tissue -- 7.3.2 Liver -- 7.3.3 Lung -- 7.3.4 Bone -- 7.3.5 Dental Implants -- 7.4 Conclusion and Future Perspectives -- References -- 8: Trends in Bioactive Biomaterials in Tissue Engineering and Regenerative Medicine -- 8.1 Tissue Engineering -- 8.2 Bioactive Scaffolds -- 8.3 Incorporation of Bioactive Components -- 8.3.1 Bioactivity by Incorporation of Adhesion Sites -- 8.3.2 Nanopatterning -- 8.3.3 Bioactivity by Incorporation of Growth Factors -- 8.3.4 Bioactivity by Physiochemical Interactions -- 8.3.5 Bioactivity by Material Transformation -- 8.4 Bioactive Inorganic Biomaterials for Tissue Engineering -- 8.5 Injectable Biomaterials -- 8.6 Bioactive Scaffolds: Tissue Engineering Applications -- 8.6.1 Neural Tissue Engineering -- 8.6.2 Vascular Tissue Engineering -- 8.6.3 Cardiac Tissue Engineering -- 8.7 Biomaterial Based Stem Cell Therapy in Regenerative Medicine -- 8.8 Scaffolds for Biomolecule Delivery -- 8.8.1 Properties -- 8.9 Biomolecule Delivery Systems -- 8.9.1 Hydrogel-Based Systems -- 8.9.2 Nanoparticle Based Systems -- 8.9.3 Liposomes -- 8.9.4 Micelles -- 8.9.5 Microparticles -- 8.9.6 Dendrimers and Elastomers -- 8.9.7 Microchips -- 8.10 Scaffold Based Biomolecule Delivery.
8.10.1 Delivery of Therapeutic Drugs -- 8.10.2 Delivery of Therapeutic Cells -- 8.10.3 Scaffold Based Peptide Delivery -- 8.10.4 Scaffolds for Gene Delivery -- 8.11 Biomolecule Loaded Scaffolds in Tissue Engineering: Applications -- 8.11.1 Bone Tissue Engineering -- 8.11.2 Skin Tissue Engineering -- 8.11.3 Cartilage Tissue Engineering -- 8.12 Future Perspectives -- References -- 9: Trends in Stimuli Responsive Biomaterials in Tissue Engineering -- 9.1 Introduction -- 9.2 Stimuli Responsive Biomaterials in Tissue Engineering -- 9.2.1 Electroactive Biomaterials -- 9.2.1.1 Conducting Polymers -- 9.2.1.1.1 Conducting Polymers in Tissue Engineering -- 9.2.1.2 Piezoelectric Material -- 9.2.1.2.1 Piezoelectric Materials in Tissue Engineering -- 9.2.1.3 Electrets -- 9.2.1.3.1 Electrets in Tissue Engineering -- 9.2.1.4 Photovoltaics -- 9.2.1.4.1 Photovoltaic Materials in Tissue Engineering -- 9.2.1.5 Carbon Based Nanomaterials -- 9.2.1.5.1 Carbon Based Nanomaterials in Tissue Engineering -- 9.2.2 Magnetoresponsive Biomaterials -- 9.2.3 Thermoresponsive Biomaterials -- 9.2.4 Photoresponsive Biomaterials -- 9.2.5 Chemical Stimuli Responsive Biomaterials -- 9.2.6 Biological Stimuli Responsive Biomaterials -- 9.3 Conclusions and Future Outlook -- References -- Part III: Applications of Biomaterials -- 10: Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications -- 10.1 Introduction -- 10.2 Biomaterials for Bone Tissue Engineering -- 10.2.1 Polymers and Hydrogels -- 10.2.2 Hybrid Scaffolds in Bone Tissue Engineering -- 10.3 Applications of Tissue Engineering in Dentistry -- 10.3.1 Tooth Regeneration -- 10.3.2 Bone Regeneration in Dental Application -- 10.3.3 Enamel Regeneration -- 10.3.4 Dentin and Dental Pulp Regeneration -- 10.4 Biomaterials Used in Dentistry -- 10.5 Dental Stem Cells in Hard and Soft Tissue Engineering in Dentistry.
10.6 Advanced Tissue Engineering Strategies.
Record Nr. UNINA-9910483456503321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical engineering and its applications in healthcare / / Sudip Paul, editor
Biomedical engineering and its applications in healthcare / / Sudip Paul, editor
Pubbl/distr/stampa Singapore : , : Springer, , [2019]
Descrizione fisica 1 online resource (xiii, 738 pages) : illustrations
Disciplina 610.28
Soggetto topico Biomedical engineering
Radiology
Regenerative medicine
Tissue engineering
Rehabilitation
Medical ethics
Biomedical Engineering/Biotechnology
Imaging / Radiology
Regenerative Medicine/Tissue Engineering
Theory of Medicine/Bioethics
Enginyeria biomèdica
Radiologia
Medicina regenerativa
Enginyeria de teixits
Ètica mèdica
Soggetto genere / forma Llibres electrònics
ISBN 981-13-3705-5
9789811337055
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Basic Overview of Human Physiology -- Chapter 2. Basics of Bioelectronics. Collection methods -- Chapter 3. Overview of Medical Physics -- Chapter 4. Biosensors and Transducers -- Chapter 5. Biomaterials and its medical applications -- Chapter 6. Bioinstrumentation and its design aspects -- Chapter 7. Techniques related to disease diagnosis and therapeutics -- Chapter 8. Biosignals and its significance -- Chapter 9. Medical imaging and image processing -- Chapter 10. Pathophysiology of diseases causing physical disability -- Chapter 11. Rehabilitation engineering -- Chapter 12. Robotics and its applications -- Chapter 13. Calibration, repair and safety aspects -- Chapter 14. Medical ethics and policies -- Chapter 15. Modern diagnostics tools.
Record Nr. UNINA-9910373918503321
Singapore : , : Springer, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomimetic biomaterials for tissue regeneration and drug delivery / / edited by Mamoni Dash
Biomimetic biomaterials for tissue regeneration and drug delivery / / edited by Mamoni Dash
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (164 pages) : illustrations
Disciplina 950.05
Soggetto topico Drug delivery systems
Regeneration
Drug Delivery Systems
Biomimètica
Materials biomèdics
Medicina regenerativa
Enginyeria de teixits
Administració de medicaments
Biònica
Soggetto genere / forma Llibres electrònics
ISBN 981-16-4566-3
981-16-4565-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743214303321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bone tissue engineering : bench to bedside using 3D printing / / edited by Fernando P. S. Guastaldi, Bhushan Mahadik
Bone tissue engineering : bench to bedside using 3D printing / / edited by Fernando P. S. Guastaldi, Bhushan Mahadik
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (318 pages)
Disciplina 571.538
Soggetto topico Bone regeneration
Ossos
Enginyeria de teixits
Regeneració (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-92014-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910552740603321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cell Culture Engineering and Technology : In appreciation to Professor Mohamed Al-Rubeai / / edited by Ralf Pörtner
Cell Culture Engineering and Technology : In appreciation to Professor Mohamed Al-Rubeai / / edited by Ralf Pörtner
Autore Pörtner Ralf
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Descrizione fisica 1 online resource (552 pages)
Disciplina 574.0724
571.638
Collana Cell Engineering
Soggetto topico Medicine - Research
Biology - Research
Cytology
Biology - Technique
Regenerative medicine
Biomedical engineering
Biomedical Research
Cell Biology
Biological Techniques
Regenerative Medicine and Tissue Engineering
Biomedical Engineering and Bioengineering
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 9783030798710
9783030798703
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Biopharmaceuticals Produced from Cultivated Mammalian Cells -- Remote Control of Mammalian Therapeutic Designer Cells -- Next generation cell engineering using microRNAs -- An Omic’s data-driven approach towards engineering mammalian cell factories and bioprocesses for biopharmaceutical production -- Redesigning spent media from cell culture bioprocess to feed new bacterial fermentations -- Monoclonal antibody glycoengineering for biopharmaceutical quality assurance -- Next-generation cell engineering platform for improving recombinant protein production in mammalian cells -- Manufacturing human pluripotent stem cells and differentiated progenitors -- Biomanufacturing of Mesenchymal Stromal Cell for Therapeutic Applications -- Process Design for hMSC Products in Stirred Tank Bioreactors -- Bio-production of Adeno-associated virus for gene therapy -- Scale-up (and scale-down) of CHO cell culture, with a focus on how to adjust the various culture parameters/setpoints across different systems from lab-scale to manufacturing-scale -- Intensified and Continuous mAb Production with Single-Use Systems -- Mathematical modelling of cell culture processes -- Model-assisted design concepts for mammalian cell culture processes -- Bioprocess monitoring and control -- Industrial Monitoring of Cell Culture.
Record Nr. UNINA-9910547298303321
Pörtner Ralf  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cell-inspired materials and engineering / / Ediotrs: Dan Ohtan Wang and Daniel Packwood
Cell-inspired materials and engineering / / Ediotrs: Dan Ohtan Wang and Daniel Packwood
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (254 pages)
Disciplina 610.28
Collana Fundamental Biomedical Technologies
Soggetto topico Biomedical materials
Tissue engineering
Regenerative medicine
Enginyeria de teixits
Materials biomèdics
Medicina regenerativa
Soggetto genere / forma Llibres electrònics
ISBN 3-030-55924-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483852303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decellularized materials : preparations and biomedical applications / / Xiaoming Li, Huiqi Xie, editors
Decellularized materials : preparations and biomedical applications / / Xiaoming Li, Huiqi Xie, editors
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (517 pages)
Disciplina 610.28
Soggetto topico Tissue engineering
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 981-336-962-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgements -- Contents -- About the Editors -- Chapter 1: Overview of Decellularized Materials for Tissue Repair and Organ Replacement -- 1.1 Background of Decellularized Materials -- 1.2 Preparation of Decellularized Materials -- 1.3 Composition and Structure of Decellularized Materials -- 1.3.1 Composition of Decellularized Materials -- 1.3.1.1 Collagen -- 1.3.1.2 Elastin -- 1.3.1.3 Proteoglycan and Glycosaminoglycan -- 1.3.1.4 Fibronectin and Laminin -- 1.3.1.5 Growth Factor -- 1.3.1.6 Matrix-Bound Nanovesicles -- 1.3.2 Structure of Decellularized Materials -- 1.4 Degradation of Decellularized Materials -- 1.5 Mechanisms of Decellularized Materials on Promoting Tissue Repair/Organ Replacement -- 1.5.1 Initiating Relatively Low Host Tissue Response to Provide Regeneration Microenvironment -- 1.5.2 Containing Bioactive Factors to Recruit Endogenous Stems/Progenitor Cells and Promote Matrix Production and Angiogenesis -- 1.6 Decellularized Tissues and Their Applications -- 1.7 Decellularized Organs and Their Recellularization -- 1.8 The Structure and Main Content of this Book -- References -- Chapter 2: The Decellularization of Tissues -- 2.1 Description of Decellularization Protocols -- 2.1.1 Physical Methods -- 2.1.1.1 Freeze-Thaw -- 2.1.1.2 Ultrasound -- 2.1.1.3 Pressure Gradient -- 2.1.1.4 Supercritical Fluid Extraction -- 2.1.1.5 Electroporation -- 2.1.1.6 Immersion and Agitation -- 2.1.2 Chemical Methods -- 2.1.2.1 Alkaline and Acid Treatments -- 2.1.2.2 Non-ionic Detergents -- 2.1.2.3 Ionic Detergents -- 2.1.2.4 Zwitterionic Detergents -- 2.1.2.5 Tri(n-butyl)phosphate -- 2.1.2.6 Hypotonic and Hypertonic Treatments -- 2.1.2.7 Polyethylene Glycol -- 2.1.2.8 Alcohols and Acetone -- 2.1.3 Biological Methods -- 2.1.3.1 Nuclease -- 2.1.3.2 Trypsin -- 2.1.3.3 Dispase -- 2.1.3.4 Lipase -- 2.1.3.5 α-Galactosidase.
2.1.3.6 Chelating Agents -- 2.1.4 New Methods -- 2.1.4.1 Apoptosis -- 2.1.4.2 Serum -- 2.1.5 Combinatorial Methods -- 2.2 Evaluation of Decellularization -- 2.2.1 Establishing Metrics for Effective Decellularization -- 2.2.2 Evaluation Methods -- 2.2.2.1 Histological Analysis -- 2.2.2.2 Immunohistochemistry -- 2.2.2.3 DNA Assay -- 2.2.2.4 SDS-PAGE -- 2.2.2.5 Mechanical Testing -- 2.2.3 Effect of Ineffective Decellularization -- 2.3 Subsequent Cleaning and Sterilization -- 2.3.1 Subsequent Cleaning of Decellularized Tissues -- 2.3.2 Regulatory Requirements for Sterilization -- 2.3.3 Sterilization of Decellularized Tissues -- 2.3.3.1 γ-Irradiation -- 2.3.3.2 Ethylene Oxide Exposure -- 2.3.3.3 Supercritical Carbon Dioxide -- 2.4 Conclusions and Future Considerations -- References -- Chapter 3: Different Forms of Decellularized Tissues and Their Characteristics, Applications in Tissue Repair as Well as Perfo... -- 3.1 Scaffolds in Sheet and Tubular -- 3.2 Extracellular Matrix Powders -- 3.2.1 Preparation Methods and Characteristics -- 3.2.2 Optimization and Applications -- 3.2.3 Usage Concentration -- 3.2.4 Particle Morphology -- 3.2.5 Sterilization Methods -- 3.2.6 Solubilization Properties -- 3.2.7 Crosslinking Methods -- 3.2.8 The Applications of ECM Powder in Tissue Engineering -- 3.2.8.1 ECM Powder as Carrier -- 3.2.8.2 Cell Culture Carrier -- 3.2.8.3 Drug Delivery Vehicle -- 3.2.8.4 Powder Substrate -- 3.2.8.5 ECM Modification -- 3.2.8.6 3D Bioprinting Ink -- 3.2.8.7 Clinical Application of Powder-Based ECM -- 3.3 Extracellular Matrix Hydrogels -- 3.3.1 Preparation Methods -- 3.3.2 Characteristics -- 3.3.2.1 Microstructure -- 3.3.2.2 Rheological Properties -- 3.3.3 Applications and Efforts in Performance Optimization -- 3.4 Extracellular Matrix Coating -- 3.4.1 Preparation Methods and Characteristics.
3.4.2 Applications and Efforts in Performance Optimization -- 3.5 3D Printing Tissue ECM Scaffolds -- 3.5.1 Preparation Methods and Characteristics -- 3.5.2 Applications and Efforts in Performance Optimization -- 3.6 Conclusions -- References -- Chapter 4: Applications of Decellularized Materials for Tissue Repair -- 4.1 Introduction -- 4.2 Decellularized Materials for Musculoskeletal Tissue Engineering -- 4.2.1 Bone Tissue Engineering -- 4.2.1.1 Structure and Characteristics of Bone -- 4.2.1.2 Requirements for Bone Tissue Engineering Materials -- 4.2.2 Cartilage Tissue Engineering -- 4.2.2.1 Structure and Characteristics of Cartilage -- 4.2.2.2 Requirements for Cartilage Tissue Engineering Materials -- 4.2.2.3 Applications of Decellularized Materials in Cartilage -- 4.2.3 Ligament and Tendon Tissue Engineering -- 4.2.3.1 Structure and Characteristics of Tendon and Ligament -- 4.2.3.2 Requirements for Tendon and Ligament Tissue Engineering Materials -- 4.2.3.3 Applications of Decellularized Materials in Tendon and Ligament -- 4.3 Decellularized Materials for Skin Tissue Engineering -- 4.3.1 Structure and Characteristics of Skin -- 4.3.2 Requirements for Skin Tissue Engineering Materials -- 4.3.3 Applications of Decellularized Materials in Skin -- 4.4 Decellularized Materials for Bladder Tissue Engineering -- 4.4.1 Structure and Characteristics of Bladder -- 4.4.2 Requirements for Bladder Tissue Engineering Materials -- 4.4.3 Applications of Decellularized Materials in Bladder -- 4.5 Decellularized Materials for Abdominal Wall Tissue Engineering -- 4.5.1 Structure and Characteristics of Abdominal Wall -- 4.5.2 Requirements for Abdominal Wall Tissue Engineering Materials -- 4.5.3 Applications of Decellularized Materials in Abdominal Wall -- 4.6 Decellularized Materials for Cardiovascular Tissue Engineering.
4.6.1 Structure and Characteristics of Cardiovascular -- 4.6.2 Requirements for Cardiovascular Tissue Engineering Materials -- 4.6.3 Applications of Decellularized Materials in Cardiovascular -- 4.7 Others -- 4.7.1 Trachea Tissue Engineering -- 4.7.1.1 Structure and Characteristics of Trachea Tissue -- 4.7.1.2 Requirements of Trachea Tissue Engineering -- 4.7.1.3 Applications of Decellularized Materials for Trachea Tissue Engineering -- 4.7.2 Gastrointestinal Tissue Engineering -- 4.7.2.1 Structure and Characteristics of Gastrointestinal -- 4.7.2.2 Requirements for Gastrointestinal Tissue Engineering Materials -- 4.7.2.3 Applications of Decellularized Materials in Gastrointestinal -- 4.7.3 Esophagus Tissue Engineering -- 4.7.3.1 Structure and Characteristics of Esophagus -- 4.7.3.2 Requirements for Esophagus Tissue Engineering Materials -- 4.7.3.3 Applications of Decellularized Materials in Esophagus -- 4.7.4 Nerve Tissue Engineering -- 4.7.4.1 Structure and Characteristics of Nerve -- 4.7.4.2 Requirements for Nerve Tissue Engineering Materials -- 4.7.4.3 Applications of Decellularized Materials in Nerve -- References -- Chapter 5: The Decellularization of Whole Organs -- 5.1 Decellularization Method -- 5.1.1 Physical Method -- 5.1.2 Chemical Method -- 5.1.3 Enzyme Decellularization -- 5.1.4 Decellularized Perfusion -- 5.2 General Effective Standards for the Decellularization of Organs -- 5.2.1 Cell Composition -- 5.2.2 ECM Structure -- 5.2.3 ECM Composition -- 5.2.4 Immunological Analysis -- 5.2.5 Mechanical Strength -- 5.2.6 Detergent Residue -- 5.3 The Decellularization of Different Whole Organs -- 5.3.1 Heart -- 5.3.2 Lung -- 5.3.3 Liver -- 5.3.4 Kidney -- 5.3.5 Pancreas -- 5.3.6 Intestine -- 5.3.7 Uterus -- References -- Chapter 6: Recellularization of Decellularized Whole Organ Scaffolds: Elements, Progresses, and Challenges -- 6.1 Introduction.
6.2 Cell Sources for Whole Organ Engineering -- 6.2.1 General Considerations -- 6.2.1.1 Differentiated Versus Stem Cells -- 6.2.1.2 Autologous Versus Allogenic Cells -- 6.2.1.3 Other Considerations -- 6.2.2 Cell Lines -- 6.2.3 Endothelial Progenitor Cells and Endothelial Cells -- 6.2.3.1 Endothelial Progenitor Cells (EPCs) -- 6.2.3.2 Endothelial Cells (ECs) -- 6.2.4 Organ-Derived Cells for Whole Organ Engineering -- 6.2.4.1 Differentiated Cells Isolated from the Organ of Interest -- 6.2.4.2 Organ-Derived Stem/Progenitor Cells -- 6.2.5 Stem Cells for Whole Organ Engineering -- 6.2.5.1 ESCs for Whole Organ Engineering -- 6.2.5.2 iPSCs for Whole Organ Engineering -- 6.2.5.3 Adult Stem Cells for Whole Organ Engineering -- Perinatal Stem Cells -- Mesenchymal stem cells (MSCs) -- 6.3 Decellularization of Whole Organ Scaffolds -- 6.3.1 Decellularization Methods -- 6.3.1.1 Set up a Perfusion System -- 6.3.1.2 Factors Used in Whole Organ Decellularization -- Physical Factors -- Chemical Factors -- Enzymatic Factors -- 6.3.1.3 Sterilization of the Whole Organ Scaffolds -- 6.3.2 Evaluation of Decellularization -- 6.3.2.1 Integrity of Vascular Structures -- 6.3.2.2 Detergent Residual -- 6.3.2.3 Cellular Components -- 6.3.2.4 ECM Components -- 6.3.2.5 Mechanics of the Decellularized Scaffolds -- 6.3.3 Decellularized Whole Organ Scaffolds -- 6.3.3.1 Decellularized Heart Scaffolds -- 6.3.3.2 Decellularized Liver Scaffolds -- 6.3.3.3 Decellularized Lung Scaffolds -- 6.3.3.4 Decellularized Kidney Scaffolds -- 6.3.3.5 Decellularized Pancreas Scaffolds -- 6.4 Recellularization Methods for Whole Organ Engineering -- 6.4.1 Recellularization Methods -- 6.4.1.1 Cell Delivery -- Cell Number -- Delivery Routes -- Cell Concentration -- 6.4.1.2 Perfusion Culture -- 6.4.1.3 Endpoints -- 6.4.2 Bioreactor -- 6.4.2.1 The Basic Framework of a Bioreactor.
6.4.2.2 Organ-Specific Bioreactors.
Record Nr. UNINA-9910484442703321
Gateway East, Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organ tissue engineering / / Daniel Eberli, Sang Jin Lee, Andreas Traweger, editors
Organ tissue engineering / / Daniel Eberli, Sang Jin Lee, Andreas Traweger, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (604 pages)
Disciplina 610.28
Collana Reference Series in Biomedical Engineering
Soggetto topico Tissue engineering
Enginyeria de teixits
Soggetto genere / forma Llibres electrònics
ISBN 3-030-44211-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910484192103321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui