Advanced engineering mathematics with MATLAB / / Dean G. Duffy |
Autore | Duffy Dean G. |
Edizione | [Fourth edition.] |
Pubbl/distr/stampa | Boca Raton : , : CRC Press, , [2017] |
Descrizione fisica | 1 online resource (1,005 pages) : illustrations |
Disciplina | 620.0028553 |
Collana | Advances in applied mathematics |
Soggetto topico | Engineering mathematics - Data processing |
ISBN |
1-4987-3966-0
1-315-36928-1 1-4987-3967-9 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Classic engineering mathematics -- Transform methods -- Stochastic processes. |
Record Nr. | UNINA-9910155108203321 |
Duffy Dean G.
![]() |
||
Boca Raton : , : CRC Press, , [2017] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced engineering mathematics with MATLAB / Dean G. Duffy |
Autore | Duffy, Dean G. |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Boca Raton, Fla. : Chapman & Hall/CRC, c2003 |
Descrizione fisica | 818 p. : ill. ; 24 cm |
Disciplina | 510 |
Soggetto topico | Engineering mathematics - Data processing |
ISBN | 1584883499 |
Classificazione |
AMS 00A69
LC TA345.D84 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991001807379707536 |
Duffy, Dean G.
![]() |
||
Boca Raton, Fla. : Chapman & Hall/CRC, c2003 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Advanced mathematics and mechanics applications using MATLAB / Howard B. Wilson, Louis H. Turcotte, David Halpern |
Autore | Wilson, H. B. |
Edizione | [3rd ed] |
Pubbl/distr/stampa | Boca Raton [etc] : Chapman & Hall/CRC, c2003 |
Descrizione fisica | xiii, 678 p. : ill. ; 25 cm |
Disciplina | 620.00151 |
Altri autori (Persone) |
Turcotte, Louis H.
Halpern, David |
Soggetto topico |
Engineering mathematics - Data processing
Mechanics, Applied - Data processing |
ISBN | 158488262X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000949299707536 |
Wilson, H. B.
![]() |
||
Boca Raton [etc] : Chapman & Hall/CRC, c2003 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Classification, parameter estimation, and state estimation [[electronic resource] ] : an engineering approach using MATLAB / / F. van der Heijden ... [et al.] |
Autore | Duin Robert |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, Eng. ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (441 p.) |
Disciplina |
620.0015118
681/.2 |
Altri autori (Persone) | HeijdenFerdinand van der |
Soggetto topico |
Engineering mathematics - Data processing
Measurement - Data processing Estimation theory - Data processing |
ISBN |
1-280-26895-6
9786610268955 0-470-09015-4 1-60119-496-X 0-470-09014-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Classification, Parameter Estimation and State Estimation; Contents; Preface; Foreword; 1 Introduction; 1.1 The scope of the book; 1.1.1 Classification; 1.1.2 Parameter estimation; 1.1.3 State estimation; 1.1.4 Relations between the subjects; 1.2 Engineering; 1.3 The organization of the book; 1.4 References; 2 Detection and Classification; 2.1 Bayesian classification; 2.1.1 Uniform cost function and minimum error rate; 2.1.2 Normal distributed measurements; linear and quadratic classifiers; 2.2 Rejection; 2.2.1 Minimum error rate classification with reject option
2.3 Detection: the two-class case2.4 Selected bibliography; 2.5 Exercises; 3 Parameter Estimation; 3.1 Bayesian estimation; 3.1.1 MMSE estimation; 3.1.2 MAP estimation; 3.1.3 The Gaussian case with linear sensors; 3.1.4 Maximum likelihood estimation; 3.1.5 Unbiased linear MMSE estimation; 3.2 Performance of estimators; 3.2.1 Bias and covariance; 3.2.2 The error covariance of the unbiased linear MMSE estimator; 3.3 Data fitting; 3.3.1 Least squares fitting; 3.3.2 Fitting using a robust error norm; 3.3.3 Regression; 3.4 Overview of the family of estimators; 3.5 Selected bibliography 3.6 Exercises4 State Estimation; 4.1 A general framework for online estimation; 4.1.1 Models; 4.1.2 Optimal online estimation; 4.2 Continuous state variables; 4.2.1 Optimal online estimation in linear-Gaussian systems; 4.2.2 Suboptimal solutions for nonlinear systems; 4.2.3 Other filters for nonlinear systems; 4.3 Discrete state variables; 4.3.1 Hidden Markov models; 4.3.2 Online state estimation; 4.3.3 Offline state estimation; 4.4 Mixed states and the particle filter; 4.4.1 Importance sampling; 4.4.2 Resampling by selection; 4.4.3 The condensation algorithm; 4.5 Selected bibliography 4.6 Exercises5 Supervised Learning; 5.1 Training sets; 5.2 Parametric learning; 5.2.1 Gaussian distribution, mean unknown; 5.2.2 Gaussian distribution, covariance matrix unknown; 5.2.3 Gaussian distribution, mean and covariance matrix both unknown; 5.2.4 Estimation of the prior probabilities; 5.2.5 Binary measurements; 5.3 Nonparametric learning; 5.3.1 Parzen estimation and histogramming; 5.3.2 Nearest neighbour classification; 5.3.3 Linear discriminant functions; 5.3.4 The support vector classifier; 5.3.5 The feed-forward neural network; 5.4 Empirical evaluation; 5.5 References 5.6 Exercises6 Feature Extraction and Selection; 6.1 Criteria for selection and extraction; 6.1.1 Inter/intra class distance; 6.1.2 Chernoff-Bhattacharyya distance; 6.1.3 Other criteria; 6.2 Feature selection; 6.2.1 Branch-and-bound; 6.2.2 Suboptimal search; 6.2.3 Implementation issues; 6.3 Linear feature extraction; 6.3.1 Feature extraction based on the Bhattacharyya distance with Gaussian distributions; 6.3.2 Feature extraction based on inter/intra class distance; 6.4 References; 6.5 Exercises; 7 Unsupervised Learning; 7.1 Feature reduction; 7.1.1 Principal component analysis 7.1.2 Multi-dimensional scaling |
Record Nr. | UNINA-9910143693003321 |
Duin Robert
![]() |
||
Chichester, West Sussex, Eng. ; ; Hoboken, NJ, : Wiley, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classification, parameter estimation, and state estimation [[electronic resource] ] : an engineering approach using MATLAB / / F. van der Heijden ... [et al.] |
Autore | Duin Robert |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, Eng. ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (441 p.) |
Disciplina |
620.0015118
681/.2 |
Altri autori (Persone) | HeijdenFerdinand van der |
Soggetto topico |
Engineering mathematics - Data processing
Measurement - Data processing Estimation theory - Data processing |
ISBN |
1-280-26895-6
9786610268955 0-470-09015-4 1-60119-496-X 0-470-09014-6 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Classification, Parameter Estimation and State Estimation; Contents; Preface; Foreword; 1 Introduction; 1.1 The scope of the book; 1.1.1 Classification; 1.1.2 Parameter estimation; 1.1.3 State estimation; 1.1.4 Relations between the subjects; 1.2 Engineering; 1.3 The organization of the book; 1.4 References; 2 Detection and Classification; 2.1 Bayesian classification; 2.1.1 Uniform cost function and minimum error rate; 2.1.2 Normal distributed measurements; linear and quadratic classifiers; 2.2 Rejection; 2.2.1 Minimum error rate classification with reject option
2.3 Detection: the two-class case2.4 Selected bibliography; 2.5 Exercises; 3 Parameter Estimation; 3.1 Bayesian estimation; 3.1.1 MMSE estimation; 3.1.2 MAP estimation; 3.1.3 The Gaussian case with linear sensors; 3.1.4 Maximum likelihood estimation; 3.1.5 Unbiased linear MMSE estimation; 3.2 Performance of estimators; 3.2.1 Bias and covariance; 3.2.2 The error covariance of the unbiased linear MMSE estimator; 3.3 Data fitting; 3.3.1 Least squares fitting; 3.3.2 Fitting using a robust error norm; 3.3.3 Regression; 3.4 Overview of the family of estimators; 3.5 Selected bibliography 3.6 Exercises4 State Estimation; 4.1 A general framework for online estimation; 4.1.1 Models; 4.1.2 Optimal online estimation; 4.2 Continuous state variables; 4.2.1 Optimal online estimation in linear-Gaussian systems; 4.2.2 Suboptimal solutions for nonlinear systems; 4.2.3 Other filters for nonlinear systems; 4.3 Discrete state variables; 4.3.1 Hidden Markov models; 4.3.2 Online state estimation; 4.3.3 Offline state estimation; 4.4 Mixed states and the particle filter; 4.4.1 Importance sampling; 4.4.2 Resampling by selection; 4.4.3 The condensation algorithm; 4.5 Selected bibliography 4.6 Exercises5 Supervised Learning; 5.1 Training sets; 5.2 Parametric learning; 5.2.1 Gaussian distribution, mean unknown; 5.2.2 Gaussian distribution, covariance matrix unknown; 5.2.3 Gaussian distribution, mean and covariance matrix both unknown; 5.2.4 Estimation of the prior probabilities; 5.2.5 Binary measurements; 5.3 Nonparametric learning; 5.3.1 Parzen estimation and histogramming; 5.3.2 Nearest neighbour classification; 5.3.3 Linear discriminant functions; 5.3.4 The support vector classifier; 5.3.5 The feed-forward neural network; 5.4 Empirical evaluation; 5.5 References 5.6 Exercises6 Feature Extraction and Selection; 6.1 Criteria for selection and extraction; 6.1.1 Inter/intra class distance; 6.1.2 Chernoff-Bhattacharyya distance; 6.1.3 Other criteria; 6.2 Feature selection; 6.2.1 Branch-and-bound; 6.2.2 Suboptimal search; 6.2.3 Implementation issues; 6.3 Linear feature extraction; 6.3.1 Feature extraction based on the Bhattacharyya distance with Gaussian distributions; 6.3.2 Feature extraction based on inter/intra class distance; 6.4 References; 6.5 Exercises; 7 Unsupervised Learning; 7.1 Feature reduction; 7.1.1 Principal component analysis 7.1.2 Multi-dimensional scaling |
Record Nr. | UNINA-9910830828303321 |
Duin Robert
![]() |
||
Chichester, West Sussex, Eng. ; ; Hoboken, NJ, : Wiley, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classification, parameter estimation, and state estimation : an engineering approach using MATLAB / / Bangjun Lei [and six others] |
Autore | Heijden Ferdinand van der |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2017 |
Descrizione fisica | 1 online resource (431 pages) : illustrations |
Disciplina | 681/.2 |
Soggetto topico |
Engineering mathematics - Data processing
Measurement - Data processing Estimation theory - Data processing |
ISBN |
1-119-15245-3
1-119-15244-5 1-119-15248-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910270899103321 |
Heijden Ferdinand van der
![]() |
||
Hoboken, New Jersey : , : Wiley, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classification, parameter estimation, and state estimation : an engineering approach using MATLAB / / Bangjun Lei [and six others] |
Autore | Heijden Ferdinand van der |
Edizione | [Second edition.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2017 |
Descrizione fisica | 1 online resource (431 pages) : illustrations |
Disciplina | 681/.2 |
Soggetto topico |
Engineering mathematics - Data processing
Measurement - Data processing Estimation theory - Data processing |
ISBN |
1-119-15245-3
1-119-15244-5 1-119-15248-8 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910811584503321 |
Heijden Ferdinand van der
![]() |
||
Hoboken, New Jersey : , : Wiley, , 2017 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Classification, parameter estimation, and state estimation : an engineering approach using MATLAB / / F. van der Heijden ... [et al.] |
Edizione | [1st edition] |
Pubbl/distr/stampa | Chichester, West Sussex, Eng. ; ; Hoboken, NJ, : Wiley, c2004 |
Descrizione fisica | 1 online resource (441 p.) |
Disciplina | 681/.2 |
Altri autori (Persone) | HeijdenFerdinand van der |
Soggetto topico |
Engineering mathematics - Data processing
Measurement - Data processing Estimation theory - Data processing |
ISBN |
9786610268955
9781280268953 1280268956 9780470090152 0470090154 9781601194961 160119496X 9780470090145 0470090146 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Classification, Parameter Estimation and State Estimation; Contents; Preface; Foreword; 1 Introduction; 1.1 The scope of the book; 1.1.1 Classification; 1.1.2 Parameter estimation; 1.1.3 State estimation; 1.1.4 Relations between the subjects; 1.2 Engineering; 1.3 The organization of the book; 1.4 References; 2 Detection and Classification; 2.1 Bayesian classification; 2.1.1 Uniform cost function and minimum error rate; 2.1.2 Normal distributed measurements; linear and quadratic classifiers; 2.2 Rejection; 2.2.1 Minimum error rate classification with reject option
2.3 Detection: the two-class case2.4 Selected bibliography; 2.5 Exercises; 3 Parameter Estimation; 3.1 Bayesian estimation; 3.1.1 MMSE estimation; 3.1.2 MAP estimation; 3.1.3 The Gaussian case with linear sensors; 3.1.4 Maximum likelihood estimation; 3.1.5 Unbiased linear MMSE estimation; 3.2 Performance of estimators; 3.2.1 Bias and covariance; 3.2.2 The error covariance of the unbiased linear MMSE estimator; 3.3 Data fitting; 3.3.1 Least squares fitting; 3.3.2 Fitting using a robust error norm; 3.3.3 Regression; 3.4 Overview of the family of estimators; 3.5 Selected bibliography 3.6 Exercises4 State Estimation; 4.1 A general framework for online estimation; 4.1.1 Models; 4.1.2 Optimal online estimation; 4.2 Continuous state variables; 4.2.1 Optimal online estimation in linear-Gaussian systems; 4.2.2 Suboptimal solutions for nonlinear systems; 4.2.3 Other filters for nonlinear systems; 4.3 Discrete state variables; 4.3.1 Hidden Markov models; 4.3.2 Online state estimation; 4.3.3 Offline state estimation; 4.4 Mixed states and the particle filter; 4.4.1 Importance sampling; 4.4.2 Resampling by selection; 4.4.3 The condensation algorithm; 4.5 Selected bibliography 4.6 Exercises5 Supervised Learning; 5.1 Training sets; 5.2 Parametric learning; 5.2.1 Gaussian distribution, mean unknown; 5.2.2 Gaussian distribution, covariance matrix unknown; 5.2.3 Gaussian distribution, mean and covariance matrix both unknown; 5.2.4 Estimation of the prior probabilities; 5.2.5 Binary measurements; 5.3 Nonparametric learning; 5.3.1 Parzen estimation and histogramming; 5.3.2 Nearest neighbour classification; 5.3.3 Linear discriminant functions; 5.3.4 The support vector classifier; 5.3.5 The feed-forward neural network; 5.4 Empirical evaluation; 5.5 References 5.6 Exercises6 Feature Extraction and Selection; 6.1 Criteria for selection and extraction; 6.1.1 Inter/intra class distance; 6.1.2 Chernoff-Bhattacharyya distance; 6.1.3 Other criteria; 6.2 Feature selection; 6.2.1 Branch-and-bound; 6.2.2 Suboptimal search; 6.2.3 Implementation issues; 6.3 Linear feature extraction; 6.3.1 Feature extraction based on the Bhattacharyya distance with Gaussian distributions; 6.3.2 Feature extraction based on inter/intra class distance; 6.4 References; 6.5 Exercises; 7 Unsupervised Learning; 7.1 Feature reduction; 7.1.1 Principal component analysis 7.1.2 Multi-dimensional scaling |
Record Nr. | UNINA-9910877862403321 |
Chichester, West Sussex, Eng. ; ; Hoboken, NJ, : Wiley, c2004 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Electronically scanned arrays [[electronic resource] ] : MATLAB modeling and simulation / / edited by Arik D. Brown |
Autore | Brown Arik D (Arik Darnell) |
Edizione | [1st edition] |
Pubbl/distr/stampa | Boca Raton, Fla., : CRC Press, 2012 |
Descrizione fisica | 1 online resource (229 p.) |
Disciplina | 681.2 |
Altri autori (Persone) | BrownArik D |
Soggetto topico |
Antenna arrays - Mathematical models
Beamforming - Mathematical models Antenna radiation patterns - Mathematical models Adaptive filters Engineering mathematics - Data processing |
ISBN |
1-315-21713-9
1-4398-6164-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Cover; Contents; Preface; Acknowledgments; Contributors; Chapter 3: Subarrray Beamforming; Chapter 4: Pattern Optimization; Chapter 5: Spaceborne Application of Electronically Scanned Arrays; Appendix A: Array Factor (AF) Derivation; Appendix B: Instantaneous Bandwidth (IBW) Derivation; Appendix C: Triangular Grating Lobes Derivation; Back Cover |
Record Nr. | UNINA-9910779173903321 |
Brown Arik D (Arik Darnell)
![]() |
||
Boca Raton, Fla., : CRC Press, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Electronically scanned arrays [[electronic resource] ] : MATLAB modeling and simulation / / edited by Arik D. Brown |
Edizione | [1st edition] |
Pubbl/distr/stampa | Boca Raton, Fla., : CRC Press, 2012 |
Descrizione fisica | 1 online resource (229 p.) |
Disciplina | 681.2 |
Altri autori (Persone) | BrownArik D |
Soggetto topico |
Antenna arrays - Mathematical models
Beamforming - Mathematical models Antenna radiation patterns - Mathematical models Adaptive filters Engineering mathematics - Data processing |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4398-6164-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Front Cover; Contents; Preface; Acknowledgments; Contributors; Chapter 3: Subarrray Beamforming; Chapter 4: Pattern Optimization; Chapter 5: Spaceborne Application of Electronically Scanned Arrays; Appendix A: Array Factor (AF) Derivation; Appendix B: Instantaneous Bandwidth (IBW) Derivation; Appendix C: Triangular Grating Lobes Derivation; Back Cover |
Record Nr. | UNINA-9910451976203321 |
Boca Raton, Fla., : CRC Press, 2012 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|