top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Design / Jasbir S. Arora
Design / Jasbir S. Arora
Autore Arora, Jasbir S.
Pubbl/distr/stampa New York [etc] : McGraw-Hill, c2001
Descrizione fisica xxx, 625 p. : ill. ; 25 cm
Disciplina 620.0042
Soggetto topico Engineering design - Mathematical models
ISBN 0072558091
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001159889707536
Arora, Jasbir S.  
New York [etc] : McGraw-Hill, c2001
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Design engineer's reference guide : mathematics, mechanics, and thermodynamics / / Keith L. Richards
Design engineer's reference guide : mathematics, mechanics, and thermodynamics / / Keith L. Richards
Autore Richards Keith L.
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (350 p.)
Disciplina 620.0042015118
Soggetto topico Engineering design - Mathematical models
Industrial design
ISBN 0-429-16844-6
1-5231-0769-3
1-4665-9286-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Author; Acknowledgement; Chapter 1: Mathematics; Chapter 2: Introduction to Numerical Methods; Chapter 3: Properties of Sections and Figures; Chapter 4: Statics; Chapter 5: Dynamics; Chapter 6: Mechanical Vibrations; Chapter 7: Introduction to Control Systems Modelling; Chapter 8: Heat and Temperature; Chapter 9: Thermodynamic Basics; Chapter 10: Fluid Mechanics; Chapter 11: Introduction to Linkages; Back Cover
Record Nr. UNINA-9910789401303321
Richards Keith L.  
Boca Raton, FL : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design engineer's reference guide : mathematics, mechanics, and thermodynamics / / Keith L. Richards
Design engineer's reference guide : mathematics, mechanics, and thermodynamics / / Keith L. Richards
Autore Richards Keith L.
Pubbl/distr/stampa Boca Raton, FL : , : CRC Press, , [2014]
Descrizione fisica 1 online resource (350 p.)
Disciplina 620.0042015118
Soggetto topico Engineering design - Mathematical models
Industrial design
ISBN 0-429-16844-6
1-5231-0769-3
1-4665-9286-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; Author; Acknowledgement; Chapter 1: Mathematics; Chapter 2: Introduction to Numerical Methods; Chapter 3: Properties of Sections and Figures; Chapter 4: Statics; Chapter 5: Dynamics; Chapter 6: Mechanical Vibrations; Chapter 7: Introduction to Control Systems Modelling; Chapter 8: Heat and Temperature; Chapter 9: Thermodynamic Basics; Chapter 10: Fluid Mechanics; Chapter 11: Introduction to Linkages; Back Cover
Record Nr. UNINA-9910815561803321
Richards Keith L.  
Boca Raton, FL : , : CRC Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Design Optimization under Uncertainty / / Weifei Hu
Design Optimization under Uncertainty / / Weifei Hu
Autore Hu Weifei
Edizione [First edition.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Descrizione fisica 1 online resource (282 pages)
Disciplina 620.0042
Soggetto topico Engineering design - Mathematical models
Probabilities
Reliability
ISBN 3-031-49208-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Basic Concepts of Probability Theory -- Uncertainty Modeling -- Reliability Analysis Methods for Time-Independent Problems -- Surrogate Modeling for Reliability Analysis -- Model verification and validation (V&V) -- Time-variant reliability analysis methods -- Reliability-based design optimization (RBDO) -- Robust design optimization (RDO) -- Other methods of design optimization under uncertainty -- Engineering applications.
Record Nr. UNINA-9910799482103321
Hu Weifei  
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Engineering design via surrogate modelling : a practical guide / / Alexander I.J. Forrester, András Sóbester, and Andy J. Keane, University of Southampton, UK
Engineering design via surrogate modelling : a practical guide / / Alexander I.J. Forrester, András Sóbester, and Andy J. Keane, University of Southampton, UK
Autore Forrester Alexander I. J.
Pubbl/distr/stampa Chichester, West Sussex, England : , : Wiley, , 2008
Descrizione fisica 1 online resource (xviii, 210 pages) : illustrations (some colour)
Disciplina 620.0044
620/.0042015118
Soggetto topico Engineering design - Mathematical models
Engineering design - Statistical methods
ISBN 0-470-77080-5
1-281-84101-3
9786611841010
1-61583-477-X
0-470-77079-1
9780470770801
9780470770795
0470770791
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Engineering Design via Surrogate Modelling; Contents; Preface; About the Authors; Foreword; Prologue; Part I Fundamentals; 1 Sampling Plans; 1.1 The 'Curse of Dimensionality' and How to Avoid It; 1.2 Physical versus Computational Experiments; 1.3 Designing Preliminary Experiments (Screening); 1.3.1 Estimating the Distribution of Elementary Effects; 1.4 Designing a Sampling Plan; 1.4.1 Stratification; 1.4.2 Latin Squares and Random Latin Hypercubes; 1.4.3 Space-filling Latin Hypercubes; 1.4.4 Space-filling Subsets; 1.5 A Note on Harmonic Responses; 1.6 Some Pointers for Further Reading
References2 Constructing a Surrogate; 2.1 The Modelling Process; 2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach; 2.1.2 Stage Two: Parameter Estimation and Training; 2.1.3 Stage Three: Model Testing; 2.2 Polynomial Models; 2.2.1 Example One: Aerofoil Drag; 2.2.2 Example Two: a Multimodal Testcase; 2.2.3 What About the k-variable Case?; 2.3 Radial Basis Function Models; 2.3.1 Fitting Noise-Free Data; 2.3.2 Radial Basis Function Models of Noisy Data; 2.4 Kriging; 2.4.1 Building the Kriging Model; 2.4.2 Kriging Prediction; 2.5 Support Vector Regression
2.5.1 The Support Vector Predictor2.5.2 The Kernel Trick; 2.5.3 Finding the Support Vectors; 2.5.4 Finding ; 2.5.5 Choosing C and ; 2.5.6 Computing : -SVR; 2.6 The Big(ger) Picture; References; 3 Exploring and Exploiting a Surrogate; 3.1 Searching the Surrogate; 3.2 Infill Criteria; 3.2.1 Prediction Based Exploitation; 3.2.2 Error Based Exploration; 3.2.3 Balanced Exploitation and Exploration; 3.2.4 Conditional Likelihood Approaches; 3.2.5 Other Methods; 3.3 Managing a Surrogate Based Optimization Process; 3.3.1 Which Surrogate for What Use?
3.3.2 How Many Sample Plan and Infill Points?3.3.3 Convergence Criteria; 3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking; References; Part II Advanced Concepts; 4 Visualization; 4.1 Matrices of Contour Plots; 4.2 Nested Dimensions; Reference; 5 Constraints; 5.1 Satisfaction of Constraints by Construction; 5.2 Penalty Functions; 5.3 Example Constrained Problem; 5.3.1 Using a Kriging Model of the Constraint Function; 5.3.2 Using a Kriging Model of the Objective Function; 5.4 Expected Improvement Based Approaches
5.4.1 Expected Improvement With Simple Penalty Function5.4.2 Constrained Expected Improvement; 5.5 Missing Data; 5.5.1 Imputing Data for Infeasible Designs; 5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement; 5.7 Summary; References; 6 Infill Criteria with Noisy Data; 6.1 Regressing Kriging; 6.2 Searching the Regression Model; 6.2.1 Re-Interpolation; 6.2.2 Re-Interpolation With Conditional Likelihood Approaches; 6.3 A Note on Matrix Ill-Conditioning; 6.4 Summary; References; 7 Exploiting Gradient Information; 7.1 Obtaining Gradients; 7.1.1 Finite Differencing
7.1.2 Complex Step Approximation
Record Nr. UNINA-9910144099003321
Forrester Alexander I. J.  
Chichester, West Sussex, England : , : Wiley, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Engineering design via surrogate modelling : a practical guide / / Alexander I.J. Forrester, András Sóbester, and Andy J. Keane, University of Southampton, UK
Engineering design via surrogate modelling : a practical guide / / Alexander I.J. Forrester, András Sóbester, and Andy J. Keane, University of Southampton, UK
Autore Forrester Alexander I. J.
Pubbl/distr/stampa Chichester, West Sussex, England : , : Wiley, , 2008
Descrizione fisica 1 online resource (xviii, 210 pages) : illustrations (some colour)
Disciplina 620.0044
620/.0042015118
Soggetto topico Engineering design - Mathematical models
Engineering design - Statistical methods
ISBN 0-470-77080-5
1-281-84101-3
9786611841010
1-61583-477-X
0-470-77079-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Engineering Design via Surrogate Modelling; Contents; Preface; About the Authors; Foreword; Prologue; Part I Fundamentals; 1 Sampling Plans; 1.1 The 'Curse of Dimensionality' and How to Avoid It; 1.2 Physical versus Computational Experiments; 1.3 Designing Preliminary Experiments (Screening); 1.3.1 Estimating the Distribution of Elementary Effects; 1.4 Designing a Sampling Plan; 1.4.1 Stratification; 1.4.2 Latin Squares and Random Latin Hypercubes; 1.4.3 Space-filling Latin Hypercubes; 1.4.4 Space-filling Subsets; 1.5 A Note on Harmonic Responses; 1.6 Some Pointers for Further Reading
References2 Constructing a Surrogate; 2.1 The Modelling Process; 2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach; 2.1.2 Stage Two: Parameter Estimation and Training; 2.1.3 Stage Three: Model Testing; 2.2 Polynomial Models; 2.2.1 Example One: Aerofoil Drag; 2.2.2 Example Two: a Multimodal Testcase; 2.2.3 What About the k-variable Case?; 2.3 Radial Basis Function Models; 2.3.1 Fitting Noise-Free Data; 2.3.2 Radial Basis Function Models of Noisy Data; 2.4 Kriging; 2.4.1 Building the Kriging Model; 2.4.2 Kriging Prediction; 2.5 Support Vector Regression
2.5.1 The Support Vector Predictor2.5.2 The Kernel Trick; 2.5.3 Finding the Support Vectors; 2.5.4 Finding ; 2.5.5 Choosing C and ; 2.5.6 Computing : -SVR; 2.6 The Big(ger) Picture; References; 3 Exploring and Exploiting a Surrogate; 3.1 Searching the Surrogate; 3.2 Infill Criteria; 3.2.1 Prediction Based Exploitation; 3.2.2 Error Based Exploration; 3.2.3 Balanced Exploitation and Exploration; 3.2.4 Conditional Likelihood Approaches; 3.2.5 Other Methods; 3.3 Managing a Surrogate Based Optimization Process; 3.3.1 Which Surrogate for What Use?
3.3.2 How Many Sample Plan and Infill Points?3.3.3 Convergence Criteria; 3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking; References; Part II Advanced Concepts; 4 Visualization; 4.1 Matrices of Contour Plots; 4.2 Nested Dimensions; Reference; 5 Constraints; 5.1 Satisfaction of Constraints by Construction; 5.2 Penalty Functions; 5.3 Example Constrained Problem; 5.3.1 Using a Kriging Model of the Constraint Function; 5.3.2 Using a Kriging Model of the Objective Function; 5.4 Expected Improvement Based Approaches
5.4.1 Expected Improvement With Simple Penalty Function5.4.2 Constrained Expected Improvement; 5.5 Missing Data; 5.5.1 Imputing Data for Infeasible Designs; 5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement; 5.7 Summary; References; 6 Infill Criteria with Noisy Data; 6.1 Regressing Kriging; 6.2 Searching the Regression Model; 6.2.1 Re-Interpolation; 6.2.2 Re-Interpolation With Conditional Likelihood Approaches; 6.3 A Note on Matrix Ill-Conditioning; 6.4 Summary; References; 7 Exploiting Gradient Information; 7.1 Obtaining Gradients; 7.1.1 Finite Differencing
7.1.2 Complex Step Approximation
Record Nr. UNINA-9910830969203321
Forrester Alexander I. J.  
Chichester, West Sussex, England : , : Wiley, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Engineering design via surrogate modelling : a practical guide / / Alexander I.J. Forrester, Andras Sobester, and Andy J. Keane
Engineering design via surrogate modelling : a practical guide / / Alexander I.J. Forrester, Andras Sobester, and Andy J. Keane
Autore Forrester Alexander I. J
Pubbl/distr/stampa Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley, 2008
Descrizione fisica 1 online resource (xviii, 210 pages) : illustrations (some colour)
Disciplina 620/.0042015118
Altri autori (Persone) SobesterAndras
KeaneA. J
Soggetto topico Engineering design - Mathematical models
Engineering design - Statistical methods
ISBN 0-470-77080-5
1-281-84101-3
9786611841010
1-61583-477-X
0-470-77079-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Engineering Design via Surrogate Modelling; Contents; Preface; About the Authors; Foreword; Prologue; Part I Fundamentals; 1 Sampling Plans; 1.1 The 'Curse of Dimensionality' and How to Avoid It; 1.2 Physical versus Computational Experiments; 1.3 Designing Preliminary Experiments (Screening); 1.3.1 Estimating the Distribution of Elementary Effects; 1.4 Designing a Sampling Plan; 1.4.1 Stratification; 1.4.2 Latin Squares and Random Latin Hypercubes; 1.4.3 Space-filling Latin Hypercubes; 1.4.4 Space-filling Subsets; 1.5 A Note on Harmonic Responses; 1.6 Some Pointers for Further Reading
References2 Constructing a Surrogate; 2.1 The Modelling Process; 2.1.1 Stage One: Preparing the Data and Choosing a Modelling Approach; 2.1.2 Stage Two: Parameter Estimation and Training; 2.1.3 Stage Three: Model Testing; 2.2 Polynomial Models; 2.2.1 Example One: Aerofoil Drag; 2.2.2 Example Two: a Multimodal Testcase; 2.2.3 What About the k-variable Case?; 2.3 Radial Basis Function Models; 2.3.1 Fitting Noise-Free Data; 2.3.2 Radial Basis Function Models of Noisy Data; 2.4 Kriging; 2.4.1 Building the Kriging Model; 2.4.2 Kriging Prediction; 2.5 Support Vector Regression
2.5.1 The Support Vector Predictor2.5.2 The Kernel Trick; 2.5.3 Finding the Support Vectors; 2.5.4 Finding ; 2.5.5 Choosing C and ; 2.5.6 Computing : -SVR; 2.6 The Big(ger) Picture; References; 3 Exploring and Exploiting a Surrogate; 3.1 Searching the Surrogate; 3.2 Infill Criteria; 3.2.1 Prediction Based Exploitation; 3.2.2 Error Based Exploration; 3.2.3 Balanced Exploitation and Exploration; 3.2.4 Conditional Likelihood Approaches; 3.2.5 Other Methods; 3.3 Managing a Surrogate Based Optimization Process; 3.3.1 Which Surrogate for What Use?
3.3.2 How Many Sample Plan and Infill Points?3.3.3 Convergence Criteria; 3.4 Search of the Vibration Isolator Geometry Feasibility Using Kriging Goal Seeking; References; Part II Advanced Concepts; 4 Visualization; 4.1 Matrices of Contour Plots; 4.2 Nested Dimensions; Reference; 5 Constraints; 5.1 Satisfaction of Constraints by Construction; 5.2 Penalty Functions; 5.3 Example Constrained Problem; 5.3.1 Using a Kriging Model of the Constraint Function; 5.3.2 Using a Kriging Model of the Objective Function; 5.4 Expected Improvement Based Approaches
5.4.1 Expected Improvement With Simple Penalty Function5.4.2 Constrained Expected Improvement; 5.5 Missing Data; 5.5.1 Imputing Data for Infeasible Designs; 5.6 Design of a Helical Compression Spring Using Constrained Expected Improvement; 5.7 Summary; References; 6 Infill Criteria with Noisy Data; 6.1 Regressing Kriging; 6.2 Searching the Regression Model; 6.2.1 Re-Interpolation; 6.2.2 Re-Interpolation With Conditional Likelihood Approaches; 6.3 A Note on Matrix Ill-Conditioning; 6.4 Summary; References; 7 Exploiting Gradient Information; 7.1 Obtaining Gradients; 7.1.1 Finite Differencing
7.1.2 Complex Step Approximation
Record Nr. UNINA-9910877511403321
Forrester Alexander I. J  
Chichester, West Sussex, England ; ; Hoboken, NJ, : J. Wiley, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to optimum design / / Jasbir Singh Arora
Introduction to optimum design / / Jasbir Singh Arora
Autore Arora Jasbir S.
Edizione [Fourth edition.]
Pubbl/distr/stampa London : , : Academic Press, , [2017]
Descrizione fisica 1 online resource (xxi, 945 pages) : illustrations
Disciplina 620.0042015118
Collana Gale eBooks
Soggetto topico Engineering design - Mathematical models
ISBN 0-12-800918-7
0-12-800806-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto I. The basic concepts -- Introduction to design optimization -- Optimum design problem formulation -- Graphical solution method and basic optimization concepts -- Optimum design concepts : optimality conditions -- More on optimum design concepts : optimaility conditions -- II. Numerical methods for continuous variable optimization -- 6. Optimum design : numerical solution process and Excel solver -- Optimum design with MATLAB -- Linear programming methods for optimum design -- More on linear programming methods and optimum design -- Numerical methods for unconstrained optimum design -- More on numerical methods for unconstrained optimum design -- Numerical methods for constrained optimum design -- More on numerical methods for constrained optimum design -- Practical applications of optimization -- III. Advanced and modern topics on optimum design --- Discrete variable optimum design concepts and methods -- Global optimization concepts and methods -- Nature-spired search methods -- Multi-objective optimum design concepts and methods -- 19. Additional topics on optimum design.
Record Nr. UNINA-9910583337703321
Arora Jasbir S.  
London : , : Academic Press, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to optimum design [[electronic resource] /] / Jasbir S. Arora
Introduction to optimum design [[electronic resource] /] / Jasbir S. Arora
Autore Arora Jasbir S
Edizione [2nd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier/Academic Press, 2004
Descrizione fisica 1 online resource (751 p.)
Disciplina 620/.0042/015118
Soggetto topico Engineering design - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-96116-3
9786610961160
0-08-047025-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Front matter; Half Title Page; Title Page; Copyright; Author Detail; Dedication Page; Preface; Contents; 1. Introduction to Design; 1.1 The Design Process; 1.2 Engineering Design versus Engineering Analysis; 1.3 Conventional versus Optimum Design Process; 1.4 Optimum Design versus Optimal Control; 1.5 Basic Terminology and Notation; 2. Optimum Design Problem Formulation; 2.1 The Problem Formulation Process; 2.2 Design of a Can; 2.3 Insulated Spherical Tank Design; 2.4 Saw Mill Operation; 2.5 Design of a Two-Bar Bracket; 2.6 Design of a Cabinet; 2.7 Minimum Weight Tubular Column Design
2.8 Minimum Cost Cylindrical Tank Design 2.9 Design of Coil Springs; 2.10 Minimum Weight Design of a Symmetric Three-Bar Truss; 2.11 A General Mathematical Model for Optimum Design; Exercises for Chapter 2; 3. Graphical Optimization; 3.1 Graphical Solution Process; 3.2 Use of Mathematica for Graphical Optimization; 3.3 Use of MATLAB for Graphical Optimization; 3.4 Design Problem with Multiple Solutions; 3.5 Problem with Unbounded Solution; 3.6 Infeasible Problem; 3.7 Graphical Solution for Minimum Weight Tubular Column; 3.8 Graphical Solution for a Beam Design Problem; Exercises for Chapter 3
4. Optimum Design Concepts 4.1 Definitions of Global and Local Minima; 4.2 Review of Some Basic Calculus Concepts; 4.3 Unconstrained Optimum Design Problems; 4.4 Constrained Optimum Design Problems; 4.5 Postoptimality Analysis: Physical Meaning of Lagrange Multipliers; 4.6 Global Optimality; 4.7 Engineering Design Examples; Exercises for Chapter 4; 5. More on Optimum Design Concepts; 5.1 Alternate Form of KKT Necessary Conditions; 5.2 Irregular Points; 5.3 Second-Order Conditions for Constrained Optimization; 5.4 Sufficiency Check for Rectangular Beam Design Problem; Exercises for Chapter 5
6. Linear Programming Methods for Optimum Design 6.1 Definition of a Standard Linear Programming Problem; 6.2 Basic Concepts Related to Linear Programming Problems; 6.3 Basic Ideas and Steps of the Simplex Method; 6.4 Two-Phase Simplex Method-Artificial Variables; 6.5 Postoptimality Analysis; 6.6 Solution of LP Problems Using Excel Solver; Exercises for Chapter 6; 7. More on Linear Programming Methods for Optimum Design; 7.1 Derivation of the Simplex Method; 7.2 Alternate Simplex Method; 7.3 Duality in Linear Programming; Exercises for Chapter 7
8. Numerical Methods for Unconstrained Optimum Design 8.1 General Concepts Related to Numerical Algorithms; 8.2 Basic Ideas and Algorithms for Step Size Determination; 8.3 Search Direction Determination: Steepest Descent Method; 8.4 Search Direction Determination: Conjugate Gradient Method; Exercises for Chapter 8; 9. More on Numerical Methods for Unconstrained Optimum Design; 9.1 More on Step Size Determination; 9.2 More on Steepest Descent Method; 9.3 Scaling of Design Variables; 9.4 Search Direction Determination: Newton's Method; 9.5 Search Direction Determination: Quasi-Newton Methods
9.6 Engineering Applications of Unconstrained Methods
Record Nr. UNINA-9910458751803321
Arora Jasbir S  
Amsterdam ; ; Boston, : Elsevier/Academic Press, 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Introduction to optimum design [[electronic resource] /] / Jasbir S. Arora
Introduction to optimum design [[electronic resource] /] / Jasbir S. Arora
Autore Arora Jasbir S
Edizione [2nd ed.]
Pubbl/distr/stampa Amsterdam ; ; Boston, : Elsevier/Academic Press, 2004
Descrizione fisica 1 online resource (751 p.)
Disciplina 620/.0042/015118
Soggetto topico Engineering design - Mathematical models
ISBN 1-280-96116-3
9786610961160
0-08-047025-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Front matter; Half Title Page; Title Page; Copyright; Author Detail; Dedication Page; Preface; Contents; 1. Introduction to Design; 1.1 The Design Process; 1.2 Engineering Design versus Engineering Analysis; 1.3 Conventional versus Optimum Design Process; 1.4 Optimum Design versus Optimal Control; 1.5 Basic Terminology and Notation; 2. Optimum Design Problem Formulation; 2.1 The Problem Formulation Process; 2.2 Design of a Can; 2.3 Insulated Spherical Tank Design; 2.4 Saw Mill Operation; 2.5 Design of a Two-Bar Bracket; 2.6 Design of a Cabinet; 2.7 Minimum Weight Tubular Column Design
2.8 Minimum Cost Cylindrical Tank Design 2.9 Design of Coil Springs; 2.10 Minimum Weight Design of a Symmetric Three-Bar Truss; 2.11 A General Mathematical Model for Optimum Design; Exercises for Chapter 2; 3. Graphical Optimization; 3.1 Graphical Solution Process; 3.2 Use of Mathematica for Graphical Optimization; 3.3 Use of MATLAB for Graphical Optimization; 3.4 Design Problem with Multiple Solutions; 3.5 Problem with Unbounded Solution; 3.6 Infeasible Problem; 3.7 Graphical Solution for Minimum Weight Tubular Column; 3.8 Graphical Solution for a Beam Design Problem; Exercises for Chapter 3
4. Optimum Design Concepts 4.1 Definitions of Global and Local Minima; 4.2 Review of Some Basic Calculus Concepts; 4.3 Unconstrained Optimum Design Problems; 4.4 Constrained Optimum Design Problems; 4.5 Postoptimality Analysis: Physical Meaning of Lagrange Multipliers; 4.6 Global Optimality; 4.7 Engineering Design Examples; Exercises for Chapter 4; 5. More on Optimum Design Concepts; 5.1 Alternate Form of KKT Necessary Conditions; 5.2 Irregular Points; 5.3 Second-Order Conditions for Constrained Optimization; 5.4 Sufficiency Check for Rectangular Beam Design Problem; Exercises for Chapter 5
6. Linear Programming Methods for Optimum Design 6.1 Definition of a Standard Linear Programming Problem; 6.2 Basic Concepts Related to Linear Programming Problems; 6.3 Basic Ideas and Steps of the Simplex Method; 6.4 Two-Phase Simplex Method-Artificial Variables; 6.5 Postoptimality Analysis; 6.6 Solution of LP Problems Using Excel Solver; Exercises for Chapter 6; 7. More on Linear Programming Methods for Optimum Design; 7.1 Derivation of the Simplex Method; 7.2 Alternate Simplex Method; 7.3 Duality in Linear Programming; Exercises for Chapter 7
8. Numerical Methods for Unconstrained Optimum Design 8.1 General Concepts Related to Numerical Algorithms; 8.2 Basic Ideas and Algorithms for Step Size Determination; 8.3 Search Direction Determination: Steepest Descent Method; 8.4 Search Direction Determination: Conjugate Gradient Method; Exercises for Chapter 8; 9. More on Numerical Methods for Unconstrained Optimum Design; 9.1 More on Step Size Determination; 9.2 More on Steepest Descent Method; 9.3 Scaling of Design Variables; 9.4 Search Direction Determination: Newton's Method; 9.5 Search Direction Determination: Quasi-Newton Methods
9.6 Engineering Applications of Unconstrained Methods
Record Nr. UNINA-9910784546003321
Arora Jasbir S  
Amsterdam ; ; Boston, : Elsevier/Academic Press, 2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui