top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Annual energy outlook / / Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy [[electronic resource]]
Annual energy outlook / / Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy [[electronic resource]]
Pubbl/distr/stampa Washington, D.C. : , : Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy : , 1983-
Descrizione fisica 1 online resource
Disciplina 333.79/0973
Soggetto topico Power resources - United States - Forecasting
Power resources - Forecasting
Energy consumption - United States - Forecasting
Energy consumption - Forecasting
Forecasting
Sectoral analysis
Supply and demand
Compiled data
Prices
ENERGY FORECASTS
ENERGY STATISTICS
UNITED STATES
Soggetto genere / forma Internet resource
Periodicals.
Statistics.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910137199703321
Washington, D.C. : , : Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy : , 1983-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Annual energy outlook / / Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy
Annual energy outlook / / Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy
Pubbl/distr/stampa Washington, D.C. : , : Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy : , 1983-
Descrizione fisica 1 online resource
Disciplina 333.79/0973
Soggetto topico Power resources - United States - Forecasting
Power resources - Forecasting
Energy consumption - United States - Forecasting
Energy consumption - Forecasting
Forecasting
Sectoral analysis
Supply and demand
Compiled data
Prices
ENERGY FORECASTS
ENERGY STATISTICS
UNITED STATES
Soggetto genere / forma Periodicals.
Statistics.
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910895709103321
Washington, D.C. : , : Energy Information Administration, Office of Energy Markets and End Use, U.S. Department of Energy : , 1983-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Asia's growing hunger for energy : U.S. policy and supply opportunities : hearing before the Subcommittee on Asia and the Pacific of the Committee on Foreign Affairs, House of Representatives, One Hundred Fourteenth Congress, second session, September 8, 2016
Asia's growing hunger for energy : U.S. policy and supply opportunities : hearing before the Subcommittee on Asia and the Pacific of the Committee on Foreign Affairs, House of Representatives, One Hundred Fourteenth Congress, second session, September 8, 2016
Pubbl/distr/stampa Washington : , : U.S. Government Publishing Office, , 2016
Descrizione fisica 1 online resource (iii, 51 pages) : facsimiles
Soggetto topico Energy consumption - Forecasting
Energy consumption - Asia
Energy security - Asia
Clean energy - Asia
Energy security - Pacific Area
Energy consumption - Pacific Area
Energy policy - United States
Clean energy - Pacific Area
Clean energy industries - United States - Marketing
Soggetto genere / forma Legislative hearings.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Asia's growing hunger for energy
Record Nr. UNINA-9910707855003321
Washington : , : U.S. Government Publishing Office, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biocombustibili e biocarburanti : soluzioni, tecnologie, agevolazioni / a cura di Alessandro Bordin
Biocombustibili e biocarburanti : soluzioni, tecnologie, agevolazioni / a cura di Alessandro Bordin
Pubbl/distr/stampa [s. l.] : IPSOA : Indicitalia, 2007
Descrizione fisica x, 360 p. : ill. ; 24 cm
Disciplina 333.79
Altri autori (Persone) Bordin, Alessandro
Collana Sviluppo sostenibile ; 1
Soggetto topico Power resources - Italy
Energy consumption - Italy
Energy policy - Italy
Energy consumption - Forecasting
Refractory materials
ISBN 9788821726132
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ita
Record Nr. UNISALENTO-991003002459707536
[s. l.] : IPSOA : Indicitalia, 2007
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Clean energy [[electronic resource] /] / Ronald M. Dell, David A.J. Rand
Clean energy [[electronic resource] /] / Ronald M. Dell, David A.J. Rand
Autore Dell Ronald
Pubbl/distr/stampa Cambridge, : Royal Society of Chemistry, c2004
Descrizione fisica 1 online resource (360 p.)
Disciplina 333.79
Altri autori (Persone) RandD. A. J <1942-> (David Anthony James)
Collana RSC clean technology monographs
Soggetto topico Energy policy
Renewable energy sources
Energy consumption - Forecasting
Power resources - Environmental aspects
Pollution prevention
Soggetto genere / forma Electronic books.
ISBN 1-84755-055-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Energy production and use -- Clean fuels -- Electricity generation -- Renewable energy, thermal -- Renewable energy, electrical -- Why store electricity? -- Physical techniques for storing energy -- Hydrogen energy -- Battery storage -- Electric propulsion -- Towards 2020.
Record Nr. UNINA-9910454077903321
Dell Ronald  
Cambridge, : Royal Society of Chemistry, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Clean energy [[electronic resource] /] / Ronald M. Dell, David A.J. Rand
Clean energy [[electronic resource] /] / Ronald M. Dell, David A.J. Rand
Autore Dell Ronald
Pubbl/distr/stampa Cambridge, : Royal Society of Chemistry, c2004
Descrizione fisica 1 online resource (360 p.)
Disciplina 333.79
Altri autori (Persone) RandD. A. J <1942-> (David Anthony James)
Collana RSC clean technology monographs
Soggetto topico Energy policy
Renewable energy sources
Energy consumption - Forecasting
Power resources - Environmental aspects
Pollution prevention
ISBN 1-84755-055-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Energy production and use -- Clean fuels -- Electricity generation -- Renewable energy, thermal -- Renewable energy, electrical -- Why store electricity? -- Physical techniques for storing energy -- Hydrogen energy -- Battery storage -- Electric propulsion -- Towards 2020.
Record Nr. UNINA-9910782761603321
Dell Ronald  
Cambridge, : Royal Society of Chemistry, c2004
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution Through Analytics
Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution Through Analytics
Autore Arasteh Hamidreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (320 pages)
Disciplina 333.7932
Altri autori (Persone) SianoPierluigi
MoslemiNiki
GuerreroJosep M
Soggetto topico Electric power systems - Management
Energy consumption - Forecasting
ISBN 1-394-29030-6
1-394-29028-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Fundamentals of Power System Data and Analytics -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Concept, Opportunities, and Challenges of Present and Future Power Systems -- 1.2.2 Transformation in the Power Industry -- 1.2.3 Drivers and Barriers -- 1.3 Data‐rich Power Systems -- 1.3.1 Data Sources and Types -- 1.3.2 Data Structure -- 1.4 Data Analytics in Power Systems -- 1.4.1 What Is Data Analytics? -- 1.4.2 Analytics Techniques -- 1.5 Data Analytics‐Based Decision‐Making in Future Power Systems -- 1.5.1 Decision Framework -- 1.5.1.1 Uncertainty Issues -- 1.5.1.2 Behavioral Analytics -- 1.5.1.3 Policy Mechanisms -- 1.5.2 Computational Aspects -- 1.6 Conclusion -- 1.7 Future Trends and Challenges -- References -- Chapter 2 Advanced Predictive Modeling for Energy Consumption and Demand -- 2.1 The Role of Load Forecasting in Power System Planning -- 2.2 Need for Short‐Term Demand Forecasting -- 2.3 Components of Power Demand and Factors Affecting Demand Growth -- 2.3.1 Electricity Demand from the Consumer Type Perspective -- 2.3.2 Electricity Demand from the Supply Perspective -- 2.4 Electricity Demand in Networks with High Renewable Energy Sources -- 2.5 Machine Learning and Its Applications in Demand Forecast -- 2.5.1 Application of Clustering in Load Forecasting -- 2.6 The Impact of Macro‐decisions on Long‐term Load Forecasting -- 2.6.1 Natural Gas as a Primary Energy Carrier for Heating Demand -- 2.7 Conclusion -- References -- Chapter 3 Demand Response and Customer‐Centric Energy Management -- 3.1 Introduction -- 3.2 Background -- 3.3 Future Power Systems Aspects, Trends, and Challenges -- 3.4 Transforming to Customer‐Centric Era -- 3.4.1 Differences Between Customer‐Centric DR Solution and Other Ways in the Future Power System.
3.4.2 Drivers and Enablers -- 3.5 Customer‐Centric Power System Structure -- 3.5.1 Physical Layer -- 3.5.1.1 Physical Resources -- 3.5.1.2 Physical Constraints of the System -- 3.5.2 Cyber‐Social Layers -- 3.5.2.1 Centralized Approach (Traditional) -- 3.5.2.2 Decentralized Approach (Future) -- 3.6 Conclusion and Future Trends -- References -- Chapter 4 Applications of Data Mining in Industrial Tariff Design and Energy Management: Concepts and Practical Insights -- 4.1 Introduction -- 4.1.1 Data Mining: Concepts, Procedures, and Tools -- 4.1.2 Energy Management and the Role of Data Mining -- 4.1.3 Aims and Scope -- 4.2 Investigating Industrial Load Data: Analysis Through Various Indexes -- 4.3 Classification of Industries -- 4.4 Discussion and Conclusions -- References -- Chapter 5 Data‐Driven Tariff Design for Equitable Energy Distribution -- 5.1 Introduction -- 5.1.1 Literature Review and Contributions -- 5.1.2 Chapter Organization -- 5.2 Proposed Approach and Formulations -- 5.3 Describing the Case Study -- 5.4 Simulation Results -- 5.5 Conclusions and Future Works -- References -- Chapter 6 Applying Artificial Intelligence to Improve the Penetration of Renewable Energy in Power Systems -- 6.1 Introduction -- 6.2 Machine Learning Techniques -- 6.2.1 Artificial Neural Network and Deep Neural Network -- 6.2.2 Convolutional Neural Network -- 6.2.3 Recurrent Neural Network -- 6.2.4 Long Short‐Term Memory -- 6.3 General View of ML/DL Methods for RES Integration -- 6.3.1 Data Preprocessing -- 6.3.1.1 Normalization -- 6.3.1.2 Wrong/Missing Values and Outliers -- 6.3.1.3 Data Resolution -- 6.3.1.4 Inactive Time Data -- 6.3.1.5 Data Augmentation -- 6.3.1.6 Correlation -- 6.3.1.7 Data Clustering -- 6.3.2 Deterministic/Probabilistic Forecasting Methods -- 6.3.2.1 Deterministic Methods -- 6.3.2.2 Probabilistic Forecasting Methods -- 6.3.3 Evaluation Measures.
6.4 ML/DL Application for Integration of RES -- 6.4.1 Renewable Resources Data Prediction/Planning -- 6.4.2 RES Power Generation Prediction/Operation -- 6.4.3 Electric Load and Demand Forecasting -- 6.4.4 Stability Analysis -- 6.4.4.1 Security Assessment -- 6.4.4.2 Stability Assessment -- 6.5 Integrated Machine Learning and Optimization Approach -- 6.6 Conclusion -- References -- Chapter 7 Machine Learning‐Based Solutions for Renewable Energy Integration -- 7.1 Introduction -- 7.2 Machine Learning Importance in RESs Sector -- 7.2.1 AI‐Based Algorithms in RESs -- 7.2.2 ML Algorithms Application in RESs -- 7.3 Role of ML in Optimizing Renewable Energy Generation -- 7.3.1 Different Programming Models in RES Optimization -- 7.3.2 Optimization Objectives in RESs -- 7.3.3 ML Applications in Optimizing Renewable Energy Generation -- 7.4 Ensuring Grid Stability Through ML‐Based Forecasting -- 7.4.1 Grid Stability Forecasting -- 7.4.2 Grid Stability Through ML‐Based Forecasting -- 7.5 Challenges and Future Direction in ML‐Based Approaches to RESs -- 7.5.1 Challenges in ML‐Based Approaches to RESs -- 7.5.2 Future Directions in ML‐Based Approaches to RESs -- 7.6 Conclusion -- References -- Chapter 8 Application of Artificial Neural Networks in Solar Photovoltaic Power Forecasting -- 8.1 RES Share in World Energy Transition -- 8.2 Applications of PV Panels in Energy Systems -- 8.3 Disadvantages of PV Panels -- 8.4 Importance of PV Power Forecasting -- 8.5 Proposed Algorithm for PV Power Prediction -- 8.6 Numerical Results and Discussions -- 8.7 Concluding Remarks -- References -- Chapter 9 Power System Resilience Evaluation Data Challenges and Solutions -- 9.1 Introduction -- 9.2 A Review of Power System Resilience Metrics -- 9.3 The General Framework for the Resilience Assessment of the Power System -- 9.4 Data Required for Power System Resilience Studies.
9.4.1 Data of Natural Origin -- 9.4.2 Basic Data of the Power System -- 9.4.3 Data on Failure and Restoration Rates -- 9.5 Data Analysis and Correction -- 9.6 Disaster Forecasting in Power System Resilience Studies -- 9.7 Modeling the Impact of Disaster on Power System Performance -- 9.8 Static Model in Machine Learning -- 9.9 Spatiotemporal Random Process -- 9.9.1 Dynamic Model for Chain Failures -- 9.9.2 Nonstationary Failure‐Recovery‐Impact Processes -- 9.10 Lessons Learned and Concluding Remarks -- 9.11 Future Work -- References -- Chapter 10 Nonintrusive Load Monitoring in Smart Grids Using Deep Learning Approach -- 10.1 Introduction -- 10.2 Deep Learning Neural Networks -- 10.2.1 RNN -- 10.2.2 LSTM -- 10.2.3 CNN -- 10.2.4 Convolutional Layer -- 10.2.5 Pooling Layer -- 10.2.6 Fully Connected Layer -- 10.3 The Proposed Method -- 10.3.1 Pre‐Processing and Preparing Data -- 10.3.2 Proposed Method Architecture -- 10.3.3 Proposed Method's Parameters -- 10.3.4 Performance Evaluation -- 10.4 Results and Discussion -- 10.5 Challenges and Future Trends -- 10.6 Conclusion -- References -- Chapter 11 Power System Cyber‐Physical Security and Resiliency Based on Data‐Driven Methods -- 11.1 Introduction -- 11.2 Fundamental Concepts -- 11.2.1 Cyber‐Physical Power System (CPPS) -- 11.2.2 Security and Resiliency -- 11.3 Role of Data Analytics -- 11.3.1 Basic Methods -- 11.3.1.1 Supervised Learning (SL) -- 11.3.1.2 Unsupervised Learning (UL) -- 11.3.2 Advanced Techniques -- 11.3.2.1 Dimensionality Reduction (DR) -- 11.3.2.2 Feature Engineering -- 11.3.2.3 Reinforcement Learning -- 11.3.2.4 Integrated Models -- 11.4 Interdependency Modeling -- 11.4.1 Direct Modeling -- 11.4.2 Testbeds -- 11.4.3 Game‐Theoretic -- 11.4.4 Machine Learning -- 11.5 Cyber‐Physical Threats -- 11.5.1 Physical Attacks -- 11.5.2 Cyberattacks -- 11.5.2.1 Confidentiality.
11.5.2.2 Availability -- 11.5.2.3 Integrity -- 11.5.3 Coordinated Attacks -- 11.6 Defense Framework -- 11.6.1 Preventive Measures -- 11.6.1.1 Supply Chain Security -- 11.6.1.2 Access Control -- 11.6.1.3 Personnel Training -- 11.6.1.4 Resource Allocation -- 11.6.1.5 Infrastructure Hardening -- 11.6.1.6 Moving Target Defense -- 11.6.2 Mitigation Actions -- 11.6.2.1 Attack Detection -- 11.6.2.2 Data Recovery -- 11.6.2.3 Reconfiguration and Restoration -- 11.6.2.4 Forensic Analysis -- 11.7 Conclusion -- References -- Chapter 12 Application of Artificial Intelligence in Undervoltage Load Shedding in Digitalized Power Systems -- 12.1 Introduction -- 12.2 Load‐Shedding Strategies -- 12.2.1 Conventional LS -- 12.2.2 Adaptive LS -- 12.2.3 AI‐Based LS -- 12.3 Principles of UVLS -- 12.3.1 Amount of Load Shed -- 12.3.2 Location for LS -- 12.3.3 Application of VSI for UVLS -- 12.4 AI‐Based Methods -- 12.5 Case Study -- 12.5.1 Database Generation -- 12.5.2 Offline Training -- 12.5.3 Online Application -- 12.6 Future Challenges and Transfer Learning -- 12.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9911042410503321
Arasteh Hamidreza  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
End use load profiles for the U.S. building stock / / Elaina Present
End use load profiles for the U.S. building stock / / Elaina Present
Autore Present Elaina
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , 2019
Descrizione fisica 1 online resource (47 pages) : color illustrations
Collana NREL/PR
Soggetto topico Energy consumption - Forecasting
Buildings - Energy conservation - United States
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti End use load profiles for the United States building stock
Record Nr. UNINA-9910713886203321
Present Elaina  
Golden, CO : , : National Renewable Energy Laboratory, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
End-use load profiles for the U.S. building stock / / Elaina Present, Eric Wilson, Andrew Parker, Natalie Mims Frick
End-use load profiles for the U.S. building stock / / Elaina Present, Eric Wilson, Andrew Parker, Natalie Mims Frick
Autore Present Elaina
Pubbl/distr/stampa Golden, CO : , : National Renewable Energy Laboratory, , 2020
Descrizione fisica 1 online resource (1 page) : color illustrations
Collana NREL/PO
Soggetto topico Energy consumption - Forecasting
Buildings - Energy conservation - United States
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910713949503321
Present Elaina  
Golden, CO : , : National Renewable Energy Laboratory, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
End-use load profiles for the U.S. building stock : market needs, use cases, and data gaps / / Natalie Mims Frick [and 8 others]
End-use load profiles for the U.S. building stock : market needs, use cases, and data gaps / / Natalie Mims Frick [and 8 others]
Pubbl/distr/stampa [Washington, D.C.] : , : United States Department of Energy, Office of Energy Efficiency and Renewable Energy, , 2019
Descrizione fisica 1 online resource (xv, 50 pages) : color illustrations
Collana NREL/TP
Soggetto topico Energy consumption - Forecasting
Buildings - Energy conservation - United States
Buildings - Energy conservation
Soggetto genere / forma Technical reports.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti End-use load profiles for the U.S. building stock
Record Nr. UNINA-9910713835303321
[Washington, D.C.] : , : United States Department of Energy, Office of Energy Efficiency and Renewable Energy, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui

Data di pubblicazione

Altro...