Energy principles and variational methods in applied mechanics / / J.N. Reddy, (Texas A&M University, USA)
| Energy principles and variational methods in applied mechanics / / J.N. Reddy, (Texas A&M University, USA) |
| Autore | Reṭṭi J. N. |
| Edizione | [Third edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2017 |
| Descrizione fisica | 1 online resource (973 pages) : illustrations |
| Disciplina | 620.1/01/51564 |
| Soggetto topico |
Mecànica aplicada - Models matemàtics
Càlcul de variacions Elements finits, Mètode dels Energia Mechanics, Applied - Mathematics Calculus of variations Finite element method Force and energy |
| ISBN |
9781119087397
1-119-08739-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910794809203321 |
Reṭṭi J. N.
|
||
| Hoboken, New Jersey : , : Wiley, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Energy principles and variational methods in applied mechanics / / J.N. Reddy, (Texas A&M University, USA)
| Energy principles and variational methods in applied mechanics / / J.N. Reddy, (Texas A&M University, USA) |
| Autore | Reṭṭi J. N. |
| Edizione | [Third edition.] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2017 |
| Descrizione fisica | 1 online resource (973 pages) : illustrations |
| Disciplina | 620.1/01/51564 |
| Soggetto topico |
Mecànica aplicada - Models matemàtics
Càlcul de variacions Elements finits, Mètode dels Energia Mechanics, Applied - Mathematics Calculus of variations Finite element method Force and energy |
| ISBN |
9781119087397
1-119-08739-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910809974303321 |
Reṭṭi J. N.
|
||
| Hoboken, New Jersey : , : Wiley, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The finite element method : linear static and dynamic finite element analysis / / Thomas J.R. Hughes
| The finite element method : linear static and dynamic finite element analysis / / Thomas J.R. Hughes |
| Autore | Hughes Thomas J. R. |
| Pubbl/distr/stampa | Mineola, New York, : Dover Publications, 2000 |
| Descrizione fisica | 1 online resource (1246 pages) |
| Disciplina | 620/.001/51535 |
| Collana | Dover Civil and Mechanical Engineering |
| Soggetto topico |
Problemes de valor límit
Finite element method Boundary value problems Elements finits, Mètode dels |
| ISBN |
9780486135021
0486135020 9781621985884 1621985881 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page; Dedication; Copyright Page; Contents; Preface; A Brief Glossary of Notations; Part One Linear Static Analysis; 1 Fundamental Concepts; A Simple One-Dimensional Boundary-Value Problem; 1.1 Introductory Remarks and Preliminaries; 1.2 Strong, or Classical, Form of the Problem; 1.3 Weak, or Variational, Form of the Problem; 1.4 Eqivalence of Strong and Weak Forms; Natural Boundary Conditions; 1.5 Galerkin's Approximation Method; 1.6 Matrix Equations; Stiffness Matrix K; 1.7 Examples: 1 and 2 Degrees of Freedom; 1.8 Piecewise Linear Finite Element Space; 1.9 Properties of K
1.10 Mathematical Analysis1.11 Interlude: Gauss Elimination; Hand-calculation Version; 1.12 The Element Point of View; 1.13 Element Stiffness Matrix and Force Vector; 1.14 Assembly of Global Stiffness Matrix and Force Vector; LM Array; 1.15 Explicit Computation of Element Stiffness Matrix and Force Vector; 1.16 Exercise: Bemoulli-Euler Beam Theory and Hermite Cubics; Appendix 1.I An Elementary Discussion of Continuity, Differentiability, and Smoothness; References; 2 Formulation of Two- And Three-Dimensional Boundary-Value Problems; 2.1 Introductory Remarks; 2.2 Preliminaries 2.3 Classical Linear Heat Conduction: Strong and Weak Forms Equivalence; 2.4 Heat Conduction: Galerkin Formulation; Symmetry and Positive-definiteness of K; 2.5 Heat Conduction: Element Stiffness Matrix and Force Vector; 2.6 Heat Conduction: Data Processing Arrays ID, IEN, and LM; 2.7 Classical Linear Elastostatics: Strong and Weak Forms; Equivalence; 2.8 Elastostatics: Galerkin Formulation, Symmetry, and Positive-definiteness of K; 2.9 Elastostatics: Element Stiffness Matrix and Force Vector; 2.10 Elastostatics: Data Processing Arrays ID, IEN, and LM 2.11 Summary of Important Equations for Problems Considered in Chapters 1 and 22.12 Axisymmetric Formulations and Additional Exercises; References; 3 Isoparametric Elements and Elementary Programming Concepts; 3.1 Preliminary Concepts; 3.2 Bilinear Quadrilateral Element; 3.3 Isoparametric Elements; 3.4 Linear Triangular Element; An Example of "Degeneration"; 3.5 Trilinear Hexahedral Element; 3.6 Higher-order Elements; Lagrange Polynomials; 3.7 Elements with Variable Numbers of Nodes; 3.8 Numerical Integration; Gaussian Quadrature 3.9 Derivatives of Shape Functions and Shape Function Subroutines3.10 Element Stiffness Formulation; 3.11 Additional Exercises; Appendix 3.I Triangular and Tetrahedral Elements; Appendix 3.II Methodology for Developing Special Shape Functions with Application to Singularities; References; 4 Mixed and Penalty Methods, Reduced and Selective Integration, and Sundry Variational Crimes; 4.1 "Best Approximation" and Error Estimates: Why the standard FEM usually works and why sometimes it does not; 4.2 Incompressible Elasticity and Stokes Flow; 4.2.1 Prelude to Mixed and Penalty Methods 4.3 A Mixed Formulation of Compressible Elasticity Capable of Representing the Incompressible Limit |
| Record Nr. | UNINA-9911007194203321 |
Hughes Thomas J. R.
|
||
| Mineola, New York, : Dover Publications, 2000 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||