top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Fractional kinetics in solids [[electronic resource] ] : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia
Fractional kinetics in solids [[electronic resource] ] : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia
Autore Uchaĭkin V. V (Vladimir Vasilʹevich)
Pubbl/distr/stampa Singapore, : World Scientific, 2013
Descrizione fisica 1 online resource (274 p.)
Disciplina 530.4/16
530.416
531.3
Altri autori (Persone) SibatovRenat
Soggetto topico Solid state physics - Mathematics
Electric discharges - Mathematical models
Fractional calculus
Semiconductors - Electric properties
Electron transport - Mathematical models
Chemical kinetics - Mathematics
Soggetto genere / forma Electronic books.
ISBN 1-283-89998-1
981-4355-43-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Statistical grounds; 1.1 Levy stable statistics; 1.1.1 Generalized limit theorems; 1.1.2 Two subclasses of stable distributions; 1.1.3 Fractional stable distributions; 1.1.4 Self-similar processes: Brownian motion and Levy motion; 1.1.5 Space-fractional equations; 1.2 Random flight models; 1.2.1 Continuous time random flights; 1.2.2 Counting process for number of jumps; 1.2.3 The Poisson process; 1.2.4 The Fractional Poisson process; 1.2.5 Simulation of waiting times; 1.3 Some properties of the fractional Poisson process; 1.3.1 The nth arrival time distribution
1.3.2 The fractional Poisson distribution1.3.3 Limit fractional Poisson distributions; 1.3.4 Fractional Furry process; 1.3.5 Time-fractional equation; 1.4 Random flights on a one-dimensional Levy-Lorentz gas; 1.4.1 One-dimensional Levy-Lorentz gas; 1.4.2 The flight process on the fractal gas; 1.4.3 Propagators; 1.4.4 Fractional equation for flights on fractal; 1.5 Subdiffusion; 1.5.1 Integral equations of diffusion in a medium with traps; Necessary and sufficient condition for subdiffusion; 1.5.2 Differential equations of subdiffusion; 1.5.3 Subdiffusion distribution density
1.5.4 Analysis of subdiffusion distributions1.5.5 Discussion; 2. Fractional kinetics of dispersive transport; 2.1 Macroscopic phenomenology; 2.1.1 A role of phenomenology in studying complex systems; 2.1.2 Universality of transient current curves; 2.1.3 From self-similarity to fractional derivatives; 2.1.4 From transient current to waiting time distribution; 2.2 Microscopic backgrounds of dispersive transport; 2.2.1 From the Scher-Montroll model to fractional derivatives; 2.2.2 Physical basis of the power-law waiting time distribution; 2.2.3 Multiple trapping regime
2.2.4 Hopping conductivity2.2.5 Bassler's model of Gaussian disorder; 2.3 Fractional formalism of multiple trapping; 2.3.1 Prime statements; 2.3.2 Multiple trapping regime and Arkhipov-Rudenko approach; 2.3.3 Fractional equations for delocalized carriers; 2.3.4 Fractional equation for the total concentration; 2.3.5 Two-state dynamics; 2.3.6 Delocalized carrier concentration; 2.3.7 Percolation and fractional kinetics; 2.3.8 The case of Gaussian disorder; 2.4 Some applications; 2.4.1 Dispersive diffusion; 2.4.2 Photoluminescence decay; 2.4.3 Including recombination; 2.4.4 Including generation
2.4.5 Bipolar dispersive transport2.4.6 The family of fractional dispersive transport equations; 3. Transient processes in disordered semiconductor structures; 3.1 Time-of-flight method; 3.1.1 Transient current in disordered semiconductors; 3.1.2 Transient current for truncated waiting time distributions; 3.1.3 Distributed dispersion parameter; 3.1.4 Transient current curves in case of Gaussian disorder; 3.1.5 Percolation in porous semiconductors; 3.1.6 Non-stationary radiation-induced conductivity; 3.2 Non-homogeneous distribution of traps
3.2.1 Non-uniform spatial distribution of localized states
Record Nr. UNINA-9910463661503321
Uchaĭkin V. V (Vladimir Vasilʹevich)  
Singapore, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractional kinetics in solids [[electronic resource] ] : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia
Fractional kinetics in solids [[electronic resource] ] : anomalous charge transport in semiconductors, dielectrics, and nanosystems / / Vladimir Uchaikin, Ulyanovsk State University, Russia, Renat Sibatov, Ulyanovsk State University, Russia
Autore Uchaĭkin V. V (Vladimir Vasilʹevich)
Pubbl/distr/stampa Singapore, : World Scientific, 2013
Descrizione fisica 1 online resource (274 p.)
Disciplina 530.4/16
530.416
531.3
Altri autori (Persone) SibatovRenat
Soggetto topico Solid state physics - Mathematics
Electric discharges - Mathematical models
Fractional calculus
Semiconductors - Electric properties
Electron transport - Mathematical models
Chemical kinetics - Mathematics
ISBN 1-283-89998-1
981-4355-43-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Preface; 1. Statistical grounds; 1.1 Levy stable statistics; 1.1.1 Generalized limit theorems; 1.1.2 Two subclasses of stable distributions; 1.1.3 Fractional stable distributions; 1.1.4 Self-similar processes: Brownian motion and Levy motion; 1.1.5 Space-fractional equations; 1.2 Random flight models; 1.2.1 Continuous time random flights; 1.2.2 Counting process for number of jumps; 1.2.3 The Poisson process; 1.2.4 The Fractional Poisson process; 1.2.5 Simulation of waiting times; 1.3 Some properties of the fractional Poisson process; 1.3.1 The nth arrival time distribution
1.3.2 The fractional Poisson distribution1.3.3 Limit fractional Poisson distributions; 1.3.4 Fractional Furry process; 1.3.5 Time-fractional equation; 1.4 Random flights on a one-dimensional Levy-Lorentz gas; 1.4.1 One-dimensional Levy-Lorentz gas; 1.4.2 The flight process on the fractal gas; 1.4.3 Propagators; 1.4.4 Fractional equation for flights on fractal; 1.5 Subdiffusion; 1.5.1 Integral equations of diffusion in a medium with traps; Necessary and sufficient condition for subdiffusion; 1.5.2 Differential equations of subdiffusion; 1.5.3 Subdiffusion distribution density
1.5.4 Analysis of subdiffusion distributions1.5.5 Discussion; 2. Fractional kinetics of dispersive transport; 2.1 Macroscopic phenomenology; 2.1.1 A role of phenomenology in studying complex systems; 2.1.2 Universality of transient current curves; 2.1.3 From self-similarity to fractional derivatives; 2.1.4 From transient current to waiting time distribution; 2.2 Microscopic backgrounds of dispersive transport; 2.2.1 From the Scher-Montroll model to fractional derivatives; 2.2.2 Physical basis of the power-law waiting time distribution; 2.2.3 Multiple trapping regime
2.2.4 Hopping conductivity2.2.5 Bassler's model of Gaussian disorder; 2.3 Fractional formalism of multiple trapping; 2.3.1 Prime statements; 2.3.2 Multiple trapping regime and Arkhipov-Rudenko approach; 2.3.3 Fractional equations for delocalized carriers; 2.3.4 Fractional equation for the total concentration; 2.3.5 Two-state dynamics; 2.3.6 Delocalized carrier concentration; 2.3.7 Percolation and fractional kinetics; 2.3.8 The case of Gaussian disorder; 2.4 Some applications; 2.4.1 Dispersive diffusion; 2.4.2 Photoluminescence decay; 2.4.3 Including recombination; 2.4.4 Including generation
2.4.5 Bipolar dispersive transport2.4.6 The family of fractional dispersive transport equations; 3. Transient processes in disordered semiconductor structures; 3.1 Time-of-flight method; 3.1.1 Transient current in disordered semiconductors; 3.1.2 Transient current for truncated waiting time distributions; 3.1.3 Distributed dispersion parameter; 3.1.4 Transient current curves in case of Gaussian disorder; 3.1.5 Percolation in porous semiconductors; 3.1.6 Non-stationary radiation-induced conductivity; 3.2 Non-homogeneous distribution of traps
3.2.1 Non-uniform spatial distribution of localized states
Record Nr. UNINA-9910788622503321
Uchaĭkin V. V (Vladimir Vasilʹevich)  
Singapore, : World Scientific, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers in electronics : advanced modeling of nanoscale electron devices / / editors, Benjamin Iniguez, Universitat Rovira I Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway
Frontiers in electronics : advanced modeling of nanoscale electron devices / / editors, Benjamin Iniguez, Universitat Rovira I Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway
Pubbl/distr/stampa New Jersey : , : World Scientific, , [2014]
Descrizione fisica 1 online resource (vii, 195 pages) : illustrations (some color)
Disciplina 620.5
Collana Selected topics in electronics and systems
Soggetto topico Nanoelectronics
Nanostructured materials
Electron transport - Mathematical models
ISBN 981-4583-19-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX)
4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori - Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model
3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques
2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs
3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs
4.2.3. Strong inversion charge, drain current and capacitances
Record Nr. UNINA-9910789103203321
New Jersey : , : World Scientific, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Frontiers in electronics : advanced modeling of nanoscale electron devices / / editors, Benjamin Iniguez, Universitat Rovira I Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway
Frontiers in electronics : advanced modeling of nanoscale electron devices / / editors, Benjamin Iniguez, Universitat Rovira I Virgili, Spain, Tor A. Fjeldly, Norwegian University of Science and Technology (NTNU), Norway
Pubbl/distr/stampa New Jersey : , : World Scientific, , [2014]
Descrizione fisica 1 online resource (vii, 195 pages) : illustrations (some color)
Disciplina 620.5
Collana Selected topics in electronics and systems
Soggetto topico Nanoelectronics
Nanostructured materials
Electron transport - Mathematical models
ISBN 981-4583-19-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PREFACE; CONTENTS; Monte-Carlo Simulation of Ultra-Thin Film Silicon-on-Insulator MOSFETs; 1. Introduction; 2. Ensemble Monte Carlo simulators; 2.1. Quantum correction methods; 2.1.1. The effective potential method; 2.1.2. The density gradient method; 2.1.3. The effective conduction band edge (ECBE) method; 2.1.4. The multivalley effective conduction band edge approach (MV-ECBE); 2.2. Multisubband-Ensemble Monte Carlo method; 2.3. Multisubband-Ensemble Monte Carlo validation; 3. Optimization of ultrathin fully-depleted SOI transistors with ultrathin buried oxide (BOX)
4. Orientation effects in ultra-short channel DGSOI devices4.1. DGSOI drain current dependence on crystallographic orientation; Acknowledgments; References; Analytical Models and Electrical Characterisation of Advanced MOSFETs in the Quasi Ballistic Regime; 1. Introduction; 2. The Natori - Lundstrom models of Quasi Ballistic Transport; 2.1. The Natori model of ballistic transport; 2.2. Injection velocity and subband engineering; 2.3. Lundstrom models of backscattering; 3. Beyond the Natori-Lundstrom model
3.1. Theoretical foundations of the Natori Lundstrom model: the quasi ballistic drift-diffusion theory3.2. Comparison with Monte Carlo simulations: results and discussion; 4. Electrical Characterization of MOSFETs in the Quasi Ballistic Regime; 4.1. Introduction & State of the art; 4.2. Principle of backscattering coefficient extraction in the linear regime; 4.3. Results and discussion; 5. Conclusions; Acknowledgments; References; Physics Based Analytical Modeling of Nanoscale Multigate MOSFETs; 1. Introduction; 2. Modeling of DG MOSFETs Based on Conformal Mapping Techniques
2.1. Conformal Mapping2.2. Inter-Electrode and Subthreshold Electrostatics in DG MOSFETs; 2.2.1. Corner correction; 2.2.2. Effect of subthreshold minority carriers near source and drain; 2.2.3. Verification of subthreshold electrostatics; 2.2.4. Subthreshold drain current; 2.2.5. Subthreshold capacitances; 2.3. Self-Consistent Electrostatics at and above Transition in DG MOSFETs; 2.3.1. Transition voltage; 2.3.2. Above-transition electrostatics; 2.3.3. Drain current; 2.3.4. Above-threshold capacitances; 3. Modeling of Circular Gate MOSFETs
3.1. Subthreshold Electrostatics of GAA MOSFETs Based on 2D Solutions3.2. Subthreshold Modeling of CirG MOSFETs; 3.3. Above-Threshold Modeling of CirG MOSFETs; 4. Unified Analytical Modeling of MugFETs; 4.1. Isomorphic Modeling of CirG and SqG MOSFETs in Subthreshold; 4.1.1. A simple long-channel model; 4.1.2. Short-channel modeling of CirG and SqG devices in subthreshold; 4.1.3. Rectangular gate and trigate MOSFETs; 4.2. Modeling of GAA MOSFETs in Strong Inversion; 4.2.1. Strong inversion electrostatics in DG MOSFETs; 4.2.2. Strong inversion electrostatics in SqG MOSFETs
4.2.3. Strong inversion charge, drain current and capacitances
Record Nr. UNINA-9910807350103321
New Jersey : , : World Scientific, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Autore Nedjalkov Mihail
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (xvi, 214 pages) : illustrations
Disciplina 574.192
Collana Modeling and simulation in science, engineering & technology
Soggetto topico Electron transport - Mathematical models
Microelectronics - Mathematical models
Nanoelectronics - Mathematical models
Charge carrier processes
Transport d'electrons
Microelectrònica
Nanoelectrònica
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-67917-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space -- 3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis -- Part II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications -- 7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms.
7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity -- 8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing -- 10.1 Biasing of Initial and Boundary Conditions -- 10.1.1 Initial Condition -- 10.1.2 Boundary Conditions -- 10.2 Biasing of the Natural Evolution -- 10.2.1 Free Flight -- 10.2.2 Phonon Scattering -- 10.3 Self-Consistent Event Biasing -- Part III Stochastic Algorithms for Quantum Transport -- 11 Wigner Function Modeling -- 12 Evolution in a Quantum Wire -- 12.1 Formulation of the Problem -- 12.2 Generalized Wigner Equation -- 12.3 Equation of Motion of the Diagonal Elements -- 12.4 Closure at First-Off-Diagonal Level -- 12.5 Closure at Second-Off-Diagonal Level -- 12.5.1 Approximation of the fFOD+ Equation -- 12.5.1.1 Contribution from fSOD++, -- 12.5.1.2 Contribution from fSOD+,- -- 12.5.1.3 Correction from fSOD+-, -- 12.5.1.4 Correction from fSOD+,+.
Record Nr. UNINA-9910484446203321
Nedjalkov Mihail  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Stochastic approaches to electron transport in micro- and nanostructures / / Mihail Nedjalkov, Ivan Dimov, Siegfried Selberherr
Autore Nedjalkov Mihail
Pubbl/distr/stampa Cham, Switzerland : , : Birkhäuser, , [2021]
Descrizione fisica 1 online resource (xvi, 214 pages) : illustrations
Disciplina 574.192
Collana Modeling and simulation in science, engineering & technology
Soggetto topico Electron transport - Mathematical models
Microelectronics - Mathematical models
Nanoelectronics - Mathematical models
Charge carrier processes
Transport d'electrons
Microelectrònica
Nanoelectrònica
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-67917-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction to the Parts -- Contents -- Part I Aspects of Electron Transport Modeling -- 1 Concepts of Device Modeling -- 1.1 About Microelectronics -- 1.2 The Role of Modeling -- 1.3 Modeling of Semiconductor Devices -- 1.3.1 Basic Modules -- 1.3.2 Transport Models -- 1.3.3 Device Modeling: Aspects -- 2 The Semiconductor Model: Fundamentals -- 2.1 Crystal Lattice Electrons -- 2.1.1 Band Structure -- 2.1.2 Carrier Dynamics -- 2.1.3 Charge Transport -- 2.2 Lattice Imperfections -- 2.2.1 Phonons -- 2.2.2 Phonon Scattering -- 3 Transport Theories in Phase Space -- 3.1 Classical Transport: Boltzmann Equation -- 3.1.1 Phenomenological Derivation -- 3.1.2 Parametrization -- 3.1.3 Classical Distribution Function -- 3.2 Quantum Transport: Wigner Equation -- 3.2.1 Operator Mechanics -- 3.2.2 Quantum Mechanics in Phase Space -- 3.2.3 Derivation of the Wigner Equation -- 3.2.4 Properties of the Wigner Equation -- 3.2.5 Classical Limit of the Wigner Equation -- 4 Monte Carlo Computing -- 4.1 The Monte Carlo Method for Solving Integrals -- 4.2 The Monte Carlo Method for Solving Integral Equations -- 4.3 Monte Carlo Integration and Variance Analysis -- Part II Stochastic Algorithms for Boltzmann Transport -- 5 Homogeneous Transport: Empirical Approach -- 5.1 Single-Particle Algorithm -- 5.1.1 Single-Particle Trajectory -- 5.1.2 Mean Values -- 5.1.3 Concept of Self-Scattering -- 5.1.4 Boundary Conditions -- 5.2 Ensemble Algorithm -- 5.3 Algorithms for Statistical Enhancement -- 6 Homogeneous Transport: Stochastic Approach -- 6.1 Trajectory Integral Algorithm -- 6.2 Backward Algorithm -- 6.3 Iteration Approach -- 6.3.1 Derivation of the Backward Algorithm -- 6.3.2 Derivation of Empirical Algorithms -- 6.3.3 Featured Applications -- 7 Small Signal Analysis -- 7.1 Empirical Approach -- 7.1.1 Stationary Algorithms.
7.1.2 Time Dependent Algorithms -- 7.2 Iteration Approach: Stochastic Model -- 7.3 Iteration Approach: Generalizing the Empirical Algorithms -- 7.3.1 Derivation of Finite Difference Algorithms -- 7.3.2 Derivation of Collinear Perturbation Algorithms -- 8 Inhomogeneous Stationary Transport -- 8.1 Stationary Conditions -- 8.2 Iteration Approach: Forward Stochastic Model -- 8.2.1 Adjoint Equation -- 8.2.2 Boundary Conditions -- 8.3 Iteration Approach: Single-Particle Algorithm and Ergodicity -- 8.3.1 Averaging on Before-Scattering States -- 8.3.2 Averaging in Time: Ergodicity -- 8.3.3 The Choice of Boundary -- 8.4 Iteration Approach: Trajectory Splitting Algorithm -- 8.5 Iteration Approach: Modified Backward Algorithm -- 8.6 A Comparison of Forward and Backward Approaches -- 9 General Transport: Self-Consistent Mixed Problem -- 9.1 Formulation of the Problem -- 9.2 The Adjoint Equation -- 9.3 Initial and Boundary Conditions -- 9.3.1 Initial Condition -- 9.3.2 Boundary Conditions -- 9.3.3 Carrier Number Fluctuations -- 9.4 Stochastic Device Modeling: Features -- 10 Event Biasing -- 10.1 Biasing of Initial and Boundary Conditions -- 10.1.1 Initial Condition -- 10.1.2 Boundary Conditions -- 10.2 Biasing of the Natural Evolution -- 10.2.1 Free Flight -- 10.2.2 Phonon Scattering -- 10.3 Self-Consistent Event Biasing -- Part III Stochastic Algorithms for Quantum Transport -- 11 Wigner Function Modeling -- 12 Evolution in a Quantum Wire -- 12.1 Formulation of the Problem -- 12.2 Generalized Wigner Equation -- 12.3 Equation of Motion of the Diagonal Elements -- 12.4 Closure at First-Off-Diagonal Level -- 12.5 Closure at Second-Off-Diagonal Level -- 12.5.1 Approximation of the fFOD+ Equation -- 12.5.1.1 Contribution from fSOD++, -- 12.5.1.2 Contribution from fSOD+,- -- 12.5.1.3 Correction from fSOD+-, -- 12.5.1.4 Correction from fSOD+,+.
Record Nr. UNISA-996466553703316
Nedjalkov Mihail  
Cham, Switzerland : , : Birkhäuser, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Transport equations for semiconductors / / A. Jungel
Transport equations for semiconductors / / A. Jungel
Autore Jungel Ansgar <1966->
Edizione [1st ed. 2009.]
Pubbl/distr/stampa Berlin, : Springer, c2009
Descrizione fisica 1 online resource (XVII, 315 p. 27 illus.)
Disciplina 537.622
Collana Lecture notes in physics
Soggetto topico Semiconductors - Mathematical models
Electron transport - Mathematical models
ISBN 3-540-89526-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Basic Semiconductor Physics -- Microscopic Semi-Classical Models -- Derivation of Macroscopic Equations -- Collisionless Models -- Scattering Models -- Macroscopic Semi-Classical Models -- Drift-Diffusion Equations -- Energy-Transport Equations -- Spherical Harmonics Expansion Equations -- Diffusive Higher-Order Moment Equations -- Hydrodynamic Equations -- Microscopic Quantum Models -- The Schr#x00F6;dinger Equation -- The Wigner Equation -- Macroscopic Quantum Models -- Quantum Drift-Diffusion Equations -- Quantum Diffusive Higher-Order Moment Equations -- Quantum Hydrodynamic Equations.
Record Nr. UNINA-9910146416803321
Jungel Ansgar <1966->  
Berlin, : Springer, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui