top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Electron Density : Concepts, Computation and DFT Applications
Electron Density : Concepts, Computation and DFT Applications
Autore Chattaraj Pratim Kumar
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (611 pages)
Disciplina 539.72112
Altri autori (Persone) ChakrabortyDebdutta
Soggetto topico Density functionals
Electron distribution
ISBN 9781394217656
139421765X
9781394217632
1394217633
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Preface -- Chapter 1 Levy-Perdew-Sahni Equation and the Kohn-Sham Inversion Problem -- 1.1 Introduction -- 1.2 One Equation & -- xrArr -- Several Methods -- Universal Nature of Different Density‐Based Kohn-Sham Inversion Algorithms -- 1.2.1 Generating Functional S[ρ] of Density‐Based Kohn-Sham Inversion -- 1.2.2 Condition on Generating Functional S[ρ] -- 1.2.3 Examples of Different Generating Functionals -- 1.2.4 Application to Spherical Systems -- 1.2.5 Using Random Numbers to do Density‐to‐Potential Inversion -- 1.3 General Penalty Method for Density‐to‐Potential Inversion -- 1.4 Understanding Connection Between Density and Wavefunction‐Based Inversion Methods Using LPS Equation -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 Electron Density, Density Functional Theory, and Chemical Concepts -- 2.1 Introduction -- 2.2 Viewing Chemical Concepts Through a DFT Window -- 2.3 Electron Fluid, Quantum Fluid Dynamics, Electronic Entropy, and a Local Thermodynamic Picture -- 2.4 Miscellaneous Offshoots from Electron Density Experience -- 2.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Local and Nonlocal Descriptors of the Site and Bond Chemical Reactivity of Molecules -- 3.1 Introduction -- 3.2 Local and Nonlocal Reactivity Indexes -- 3.3 Site and Bond Reactivities -- 3.4 Concluding Remarks -- Acknowledgment -- References -- Chapter 4 Relativistic Treatment of Many‐Electron Systems Through DFT in CCG -- 4.1 Introduction -- 4.2 Theoretical Framework -- 4.2.1 Dirac Equation -- 4.2.2 Relativistic Density Functional Theory: Dirac-Kohn-Sham Method -- 4.2.3 Decoupling of Dirac Hamiltonian: DKH Methodology -- 4.2.4 DFT in Cartesian Grid -- 4.2.4.1 Basic Methodology -- 4.2.4.2 Hartree Potential in CCG.
4.2.4.3 Hartree Fock Exchange Through FCT in CCG -- 4.2.4.4 Orbital‐Dependent Hybrid Functionals via RS‐FCT -- 4.3 Computational Details -- 4.4 Results and Discussion -- 4.4.1 One‐Electron Atoms -- 4.4.2 Many‐Electron Systems -- 4.4.2.1 Grid Optimization -- 4.4.2.2 Ground‐State Energy of Atoms and Molecules -- 4.4.3 Application to Highly Charged Ions: He‐ and Li‐Isoelectronic Series -- 4.5 Future and Outlook -- Acknowledgement -- References -- Chapter 5 Relativistic Reduced Density Matrices: Properties and Applications -- 5.1 Introduction -- 5.2 Relativistic One‐Body Reduced Density Matrix -- 5.3 Properties of Relativistic 1‐RDM -- 5.3.1 Natural Spinors: An Efficient Framework for Low‐cost Calculations -- 5.3.1.1 Correlation Energy -- 5.3.1.2 Bond Length and Harmonic Vibrational Frequency -- 5.3.2 Natural Spinors as an Interpretive Tool -- 5.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Many‐Body Multi‐Configurational Calculation Using Coulomb Green's Function -- 6.1 Introduction -- 6.2 Theoretical Development -- 6.2.1 Presence of Magnetic Field -- 6.2.1.1 3D Electron Gas Model -- 6.2.1.2 2D Electron Gas Model -- 6.2.1.3 3D Exciton Model -- 6.2.1.4 2D Exciton Model -- 6.2.2 Absence of Magnetic Field -- 6.2.2.1 3D He‐Isoelectronic Ions -- 6.2.2.2 2D He‐Isoelectronic Ions -- 6.2.2.3 Energy Calculation Through Perturbation -- 6.2.2.4 Current Density of 2‐e System -- 6.3 Results and Discussion -- 6.3.1 3D Interacting Electron Gas -- 6.3.2 2D Interacting Electron Gas -- 6.3.3 3D Exciton Complexes -- 6.3.4 2D Exciton Complexes -- 6.3.5 3D He‐Isoelectronic Species -- 6.3.5.1 Analysis of E0(2) of He‐Isoelectronic Ions -- 6.3.5.2 Analysis of E0(3) of He‐Isoelectronic Ions -- 6.3.6 2D He‐Isoelectronic Species -- 6.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 7 Excited State Electronic Structure - Effect of Environment.
7.1 Introduction -- 7.2 Methodology -- 7.2.1 Quantum Mechanical Methods -- 7.2.1.1 Time‐Dependent Density Functional Theory -- 7.2.1.2 Active Space‐Based Methods -- 7.2.1.3 Configuration Interaction‐Based Approaches -- 7.2.1.4 Equation of Motion Coupled Cluster -- 7.2.2 Molecular Mechanical Methods -- 7.2.2.1 ONIOM -- 7.2.2.2 Mechanical Embedding -- 7.2.2.3 Electronic Embedding -- 7.2.2.4 Polarizable Embedding -- 7.3 Representative Examples -- 7.3.1 Photo‐Isomerization of Rhodopsin -- 7.3.2 DNA‐Base Excited States in Solution -- 7.3.3 Green Fluorescent Proteins -- 7.4 Conclusion -- Acknowledgement -- References -- Chapter 8 Electron Density in the Multiscale Treatment of Biomolecules -- 8.1 Introduction -- 8.2 Theoretical Background -- 8.2.1 Hybrid Quantum Mechanics-Molecular Mechanics Approach -- 8.3 Polarizable Density Embedding -- 8.4 Multi‐Scale QM/MM with Extremely Localized Molecular Orbitals -- 8.5 Multiple Active Zones in QM/MM Modelling -- 8.6 Reactivity Descriptors with QM/MM Modeling -- 8.7 Treatment of Hydrogen Bonding with QM/MM -- 8.8 Quantum Refinement of Crystal Structure with QM/MM -- 8.9 Concluding Remarks -- Acknowledgments -- References -- Chapter 9 Subsystem Communications and Electron Correlation -- 9.1 Introduction -- 9.2 Discrete and Local Probability Networks in Molecular Bond Systems -- 9.3 Bond Descriptors of Molecular Communication Channels -- 9.4 Hartree-Fock Communications and Fermi Correlation -- 9.5 Communication Partitioning of Two‐Electron Probabilities -- 9.6 Communications in Interacting Subsystems -- 9.7 Illustrative Application to Reaction HSAB Principle -- 9.8 Conclusion -- References -- Chapter 10 Impacts of External Electric Fields on Aromaticity and Acidity for Benzoic Acid and Derivatives: Directionality, Additivity, and More -- 10.1 Introduction -- 10.2 Methodology -- 10.3 Computational Details.
10.4 Results and Discussion -- 10.5 Conclusions -- Acknowledgments -- References -- Chapter 11 A Divergence and Rotational Component in Chemical Potential During Reactions -- 11.1 Introduction -- 11.2 Chemical Descriptors -- 11.3 Charge and Energy Exchange -- 11.4 Fitness Landscape Diagrams -- 11.5 Chemical Reactions -- 11.6 Examining the Charge Exchange -- 11.6.1 Path pχη(ζ) and Charge Exchange -- 11.6.2 Systematic Changes Depending on the Starting Points on pχη(ζ) -- 11.6.3 Specific Solutions Using a pηω Path -- 11.7 Significance and Applications -- 11.8 Conclusions -- Acknowledgments -- References -- Chapter 12 Deep Learning of Electron Density for Predicting Energies: The Case of Boron Clusters -- 12.1 Introduction -- 12.2 Deep Learning of Electron Density -- 12.3 Neural Networks for Neutral Boron Clusters -- 12.4 Concluding Remarks -- Acknowledgements -- References -- Chapter 13 Density‐Based Description of Molecular Polarizability for Complex Systems -- 13.1 Introduction -- 13.2 Methodology and Computations -- 13.2.1 Information‐Theoretic Approach (ITA) Quantities -- 13.2.2 The GEBF Method -- 13.3 Results and Discussion -- 13.4 Conclusions and Perspectives -- Acknowledgment -- References -- Chapter 14 Conceptual Density Functional Theory‐Based Study of Pure and TMs‐Doped CdX (X & -- equals -- S, Se, Te -- TMs & -- equals -- Cu, Ag, and Au) Nano Cluster for Water Splitting and Spintronic Applications -- 14.1 Introduction -- 14.2 Methodology -- 14.3 Results and Discussion -- 14.3.1 Electronic Properties and CDFT‐Based Descriptors -- 14.4 Conclusion -- Acknowledgments -- Funding -- References -- Chapter 15 "Phylogenetic" Screening of External Potential Related Response Functions -- 15.1 Introduction -- 15.2 Alchemical Approach -- 15.3 The "Family Tree" -- 15.4 First‐order Sensitivities -- 15.5 Second‐Order Sensitivities.
15.5.1 Electric Dipole Polarizability -- 15.5.2 "Polarizability Potential" - Local Polarization -- 15.6 Alchemical Hardness -- 15.6.1 Local Alchemical Hardness -- 15.7 Alchemical Characteristic Radius -- 15.8 Linear Response Function -- 15.9 Conclusions -- References -- Chapter 16 On the Nature of Catastrophe Unfoldings Along the Diels-Alder Cycloaddition Pathway -- 16.1 Introduction -- 16.2 Molecular Symmetry and Elementary Catastrophe Unfoldings -- 16.2.1 The Case of Normal‐ and Inverse‐Electron‐Demand Diels-Alder Reactions -- 16.2.2 The C C Bond Breaking in a High Symmetry Environment -- 16.2.3 The Photochemical Ring Opening of 1,3‐Cyclohexadiene -- 16.3 Concluding Remarks -- Acknowledgments -- References -- Chapter 17 Designing Principles for Ultrashort H⋯H Nonbonded Contacts and Ultralong C C Bonds -- 17.1 Introduction -- 17.1.1 The Art of the Chemical Bond -- 17.1.2 Designing and Decoding Chemical Bond -- 17.2 Governing Factors for Ultrashort H⋯H Nonbonded Contacts -- 17.2.1 London Dispersion Interaction -- 17.2.2 Polarity and Charge Separation -- 17.2.3 Conformations and Orientations -- 17.2.4 Iron Maiden Effect -- 17.3 Elongation Strategies for C C Bonds -- 17.3.1 Steric Crowding Effect -- 17.3.2 Core-Shell Strategy and Scissor Effect -- 17.3.3 Negative Hyperconjugation Effect -- 17.4 Concluding Remarks -- Acknowledgments -- References -- Chapter 18 Accurate Determination of Materials Properties: Role of Electron Density -- 18.1 Introduction -- 18.2 Materials Properties: Structure and Electronic Properties -- 18.2.1 Classification of Materials -- 18.2.2 Electronic Properties of Materials -- 18.3 Molecules to Materials, Essential Role of Electron Density -- 18.3.1 The Density Functional Theory (DFT) -- 18.3.2 The Hohenberg-Kohn Theorems -- 18.3.3 The Hohenberg-Kohn Variational Theorems -- 18.3.4 The Kohn-Sham (KS) Method.
18.3.5 Local Density Approximation.
Record Nr. UNINA-9911019734203321
Chattaraj Pratim Kumar  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Energetic electron measurements from the Galileo Jupiter probe / / J.D. Mihalov [and others]
Energetic electron measurements from the Galileo Jupiter probe / / J.D. Mihalov [and others]
Autore Mihalov J. D.
Pubbl/distr/stampa Moffett Field, California : , : National Aeronautics and Space Administration, Ames Research Center, , December 1998
Descrizione fisica 1 online resource (4 pages) : illustrations
Collana NASA/TM
Soggetto topico Electron distribution
Electrons
Galileo probe
Electron energy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910705809103321
Mihalov J. D.  
Moffett Field, California : , : National Aeronautics and Space Administration, Ames Research Center, , December 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A matter of density : exploring the electron density concept in the chemical, biological, and materials sciences / / edited by N. Sukumar
A matter of density : exploring the electron density concept in the chemical, biological, and materials sciences / / edited by N. Sukumar
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2013
Descrizione fisica x, 318 p., [24] p. of plates : ill. (some col.)
Disciplina 539.7/2112
Soggetto topico Electron distribution
Soggetto genere / forma Electronic books.
ISBN 1-283-60878-2
1-118-43174-X
9786613921239
1-118-43171-5
1-118-43172-3
Classificazione SCI013050
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910208822103321
Hoboken, New Jersey : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
A matter of density : exploring the electron density concept in the chemical, biological, and materials sciences / / edited by N. Sukumar
A matter of density : exploring the electron density concept in the chemical, biological, and materials sciences / / edited by N. Sukumar
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley, , 2013
Descrizione fisica x, 318 p., [24] p. of plates : ill. (some col.)
Disciplina 539.7/2112
Soggetto topico Electron distribution
ISBN 1-283-60878-2
1-118-43174-X
9786613921239
1-118-43171-5
1-118-43172-3
Classificazione SCI013050
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830389503321
Hoboken, New Jersey : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
X-ray charge densities and chemical bonding [[electronic resource] /] / Philip Coppens
X-ray charge densities and chemical bonding [[electronic resource] /] / Philip Coppens
Autore Coppens Philip
Pubbl/distr/stampa [Chester, England], : International Union of Crystallography ; Oxford
Descrizione fisica 1 online resource (373 p.)
Disciplina 548/.3
Collana International Union of Crystallography texts on crystallography
Soggetto topico X-ray crystallography
Chemical bonds
Electron distribution
Soggetto genere / forma Electronic books.
ISBN 0-19-756087-3
1-280-52811-7
9786610528110
0-19-535694-2
1-4294-1461-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Chapter 1 Scattering of X-rays and Neutrons; Chapter 2 The Effect of Thermal Vibrations on the Intensities of the Diffracted Beams; Chapter 3 Chemical Bonding and the X-ray Scattering Formalism; Chapter 4 Least-Squares Methods and Their Use in Charge Density Analysis; Chapter 5 Fourier Methods and Maximum Entropy Enhancement; Chapter 6 Space Partitioning and Topological Analysis of the Total Charge Density; Chapter 7 The Electrostatic Moments of a Charge Distribution; Chapter 8 X-ray Diffraction and the Electrostatic Potential
Chapter 9 The Electron Density and the Lattice Energy of CrystalsChapter 10 Charge Density Studies of Transition Metal Compounds; Chapter 11 The Charge Density in Extended Solids; Chapter 12 Electron Density Studies of Molecular Crystals; Appendix A: Tensor Notation; Appendix B: Symmetry and Symmetry Restrictions; Appendix C: The 50% Probability Ellipsoid; Appendix D: Spherical Harmonic Functions; Appendix E: Products of Spherical Harmonic Functions; Appendix F: Energy-Optimized Single-ζ Slater Values for Subshells of Isolated Atoms; Appendix G: Fourier-Bessel Transforms
Appendix H: Evaluation of the Integrals A[sub(N)],[sub(l)[sub(1)]][sub(l)[sub(2)]][sub(k)](Z, R) Occurring in the Expression for the Peripheral Contribution to the Electrostatic PropertiesAppendix I: The Matrix M[sup(-1)] Relating d-Orbital Occupancies P[sub(ij)] to Multipole Populations P[sub(lmp)]; Appendix J: The Interaction Between Two Nonoverlapping Charge Distributions; Appendix K: Conversion Factors; Appendix L: Selected Exercises; References; Index
Record Nr. UNINA-9910450681603321
Coppens Philip  
[Chester, England], : International Union of Crystallography ; Oxford
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
X-ray charge densities and chemical bonding [[electronic resource] /] / Philip Coppens
X-ray charge densities and chemical bonding [[electronic resource] /] / Philip Coppens
Autore Coppens Philip
Pubbl/distr/stampa [Chester, England], : International Union of Crystallography ; Oxford
Descrizione fisica 1 online resource (373 p.)
Disciplina 548/.3
Collana International Union of Crystallography texts on crystallography
Soggetto topico X-ray crystallography
Chemical bonds
Electron distribution
ISBN 0-19-756087-3
1-280-52811-7
9786610528110
0-19-535694-2
1-4294-1461-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents; Chapter 1 Scattering of X-rays and Neutrons; Chapter 2 The Effect of Thermal Vibrations on the Intensities of the Diffracted Beams; Chapter 3 Chemical Bonding and the X-ray Scattering Formalism; Chapter 4 Least-Squares Methods and Their Use in Charge Density Analysis; Chapter 5 Fourier Methods and Maximum Entropy Enhancement; Chapter 6 Space Partitioning and Topological Analysis of the Total Charge Density; Chapter 7 The Electrostatic Moments of a Charge Distribution; Chapter 8 X-ray Diffraction and the Electrostatic Potential
Chapter 9 The Electron Density and the Lattice Energy of CrystalsChapter 10 Charge Density Studies of Transition Metal Compounds; Chapter 11 The Charge Density in Extended Solids; Chapter 12 Electron Density Studies of Molecular Crystals; Appendix A: Tensor Notation; Appendix B: Symmetry and Symmetry Restrictions; Appendix C: The 50% Probability Ellipsoid; Appendix D: Spherical Harmonic Functions; Appendix E: Products of Spherical Harmonic Functions; Appendix F: Energy-Optimized Single-ζ Slater Values for Subshells of Isolated Atoms; Appendix G: Fourier-Bessel Transforms
Appendix H: Evaluation of the Integrals A[sub(N)],[sub(l)[sub(1)]][sub(l)[sub(2)]][sub(k)](Z, R) Occurring in the Expression for the Peripheral Contribution to the Electrostatic PropertiesAppendix I: The Matrix M[sup(-1)] Relating d-Orbital Occupancies P[sub(ij)] to Multipole Populations P[sub(lmp)]; Appendix J: The Interaction Between Two Nonoverlapping Charge Distributions; Appendix K: Conversion Factors; Appendix L: Selected Exercises; References; Index
Record Nr. UNINA-9910777311903321
Coppens Philip  
[Chester, England], : International Union of Crystallography ; Oxford
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui