1999 International Conference on Computational Electromagnetics and its Applications proceedings : (ICCEA '99) / / edited by Gao Benqing, Lu Xiaode |
Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 1999 |
Descrizione fisica | 1 online resource (65 pages) |
Disciplina | 537.0151 |
Soggetto topico |
Electromagnetism - Mathematics
Electromagnetism - Mathematical models |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996218042503316 |
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 1999 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
6th International Conference on Computational Electromagnetics : 4-6 April 2006 |
Pubbl/distr/stampa | Frankfurt am Main, Germany : , : VDE, , 2011 |
Descrizione fisica | 1 online resource (230 pages) |
Disciplina | 537 |
Soggetto topico |
Electromagnetism - Mathematical models
Electromagnetism - Data processing |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996279893003316 |
Frankfurt am Main, Germany : , : VDE, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in time-domain computational electromagnetic methods / / edited by Qiang Ren, Su Yan, Atef Z. Elsherbeni |
Pubbl/distr/stampa | Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (723 pages) |
Disciplina | 537 |
Collana | IEEE Press series on electromagnetic wave theory |
Soggetto topico |
Electromagnetism - Mathematical models
Time-domain analysis Electromagnetism |
ISBN |
1-119-80840-5
1-119-80838-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Part I Time‐Domain Methods for Analyzing Nonlinear Phenomena -- Chapter 1 Integration of Nonlinear Circuit Elements into FDTD Method Formulation -- 1.1 Introduction -- 1.2 FDTD Updating Equations for Nonlinear Elements -- 1.2.1 Junction Diode -- 1.2.2 Bipolar Junction Transistors: Small‐Signal Model -- 1.2.3 Bipolar Junction Transistors: Ebers-Moll Model -- 1.2.4 Bipolar Junction Transistors: Gummel-Poon Model -- 1.2.5 Field‐Effect Transistors: Small‐Signal Modeling -- 1.2.6 Field‐Effect Transistors: Large‐Signal Modeling -- 1.3 FDTD-SPICE -- 1.4 Data‐Based Models -- 1.4.1 Linear Lumped Elements: S‐Parameter Approaches -- 1.4.2 Nonlinear Lumped Elements: X‐Parameters -- 1.5 Conclusions -- References -- Chapter 2 FDTD Method for Nonlinear Metasurface Analysis -- 2.1 Introduction to Nonlinear Metasurface -- 2.1.1 What is Nonlinear Metasurface? -- 2.1.2 Material Modeling -- 2.1.2.1 Classical Approach -- 2.1.2.2 Semi‐Classical (Semi‐Quantum) Approach -- 2.1.2.3 Full‐Quantum Approach -- 2.1.3 Computational Methods for NMS Analysis -- 2.2 Fundamentals of Classical Models -- 2.2.1 Carrier Transport Equations -- 2.2.2 Momentum Equations -- 2.2.3 Maxwell‐Hydrodynamic Model -- 2.2.4 Simplified Models at Low Frequencies -- 2.2.5 Review and Restrictions -- 2.3 FDTD Analysis -- 2.3.1 Time‐Domain Perturbation Method (TDPM) -- 2.3.2 Numerical Algorithm: FDTD‐TDPM -- 2.3.2.1 Computational Grids -- 2.3.2.2 Linear FDTD Solver -- 2.3.2.3 Extra Nonlinear Current Source -- 2.3.3 Stability Issues -- 2.3.4 Numerical Results and Validations -- 2.3.4.1 Linear Responses -- 2.3.4.2 Nonlinear Responses -- 2.4 Applications -- 2.4.1 Nonlinear Surface Susceptibility Extraction -- 2.4.2 All‐Optical Switch (AOS) -- 2.4.3 Harmonic‐Modulated NMS (HM‐NMS) -- 2.5 Summary.
References -- Chapter 3 The Finite‐Element Time‐Domain Method for Dispersive and Nonlinear Media -- 3.1 Background and Motivation -- 3.2 Dispersive and Nonlinear Media -- 3.2.1 Dispersive Material Models -- 3.2.2 Dispersive Media Modeling Techniques -- 3.2.3 Nonlinear Dielectric Models -- 3.3 Finite‐Element Time‐Domain Formulations -- 3.3.1 Vector Wave Equation Formulation -- 3.3.2 Mixed Formulation -- 3.3.3 Remarks on FETD Formulations -- 3.4 FETD for Dispersive and Nonlinear Media -- 3.4.1 Vector Wave Equation (VWE) Formulation -- 3.4.1.1 Linear Dispersive Media -- 3.4.1.2 Instantaneous Nonlinearity -- 3.4.1.3 Dispersive Nonlinearity -- 3.4.1.4 Numerical Studies -- 3.4.2 Mixed Formulation -- 3.4.2.1 Linear Dispersive Media -- 3.4.2.2 Instantaneous Nonlinearity -- 3.4.2.3 Dispersive Nonlinearity -- 3.4.2.4 Numerical Studies -- 3.4.3 Implementation Issues -- 3.4.3.1 Newton-Raphson Iteration -- 3.4.3.2 Evaluation of Elemental Matrices -- 3.4.3.3 Nonlinear Auxiliary Variable Updating -- 3.5 Stability Analysis -- 3.5.1 Numerical Stability -- 3.5.2 Linear Dispersive Media -- 3.5.3 Nonlinear Media -- 3.6 Conclusion -- References -- Part II Time‐Domain Methods for Multiphysics and Multiscale Modeling -- Chapter 4 Discontinuous Galerkin Time‐Domain Method in Electromagnetics: From Nanostructure Simulations to Multiphysics Implementations -- 4.1 Introduction to the Discontinuous Galerkin Time‐Domain Method -- 4.1.1 The DGTD Formulation for Maxwell's Equations -- 4.1.2 Boundary Conditions -- 4.1.2.1 Absorbing Boundary Conditions (ABCs) -- 4.1.2.2 Boundary Condition on Perfect Electrically Conducting (PEC) Surfaces -- 4.1.2.3 Boundary Condition on Perfect Magnetically Conducting (PMC) Surfaces -- 4.1.3 Hybridization with Time‐Domain Boundary Integral (TDBI) Method -- 4.1.4 Multi‐time Stepping Scheme of the DGTDBI -- 4.1.5 Numerical Examples for the DGTDBI. 4.1.6 The DGTD Scheme with Nodal Basis Functions -- 4.2 Application of the DGTD Method to Real Problems -- 4.2.1 Graphene‐Based Devices -- 4.2.1.1 A Resistive Boundary Condition to Represent Graphene Within the DGTD Method -- 4.2.1.2 A Resistive Boundary Condition and an Auxiliary Equation Method to Represent Magnetized Graphene Within the DGTD Method -- 4.2.2 Multiphysics Simulation of Optoelectronic Devices -- References -- Chapter 5 Adaptive Discontinuous Galerkin Time‐Domain Method for the Modeling and Simulation of Electromagnetic and Multiphysics Problems -- 5.1 Introduction -- 5.2 Nodal Discontinuous Galerkin Time‐Domain Method -- 5.2.1 High‐Order Spatial Discretization -- 5.2.1.1 Definition of Basis Functions: Modal Basis and Nodal Basis -- 5.2.1.2 Choice of Interpolating Nodes -- 5.2.1.3 Elemental Matrices in the DG Method -- 5.2.2 High‐Order Temporal Discretization -- 5.3 Modeling and Simulation of Electromagnetic-Plasma Interaction -- 5.3.1 Physical Models of EM-Plasma Interactions -- 5.3.2 Numerical Modeling of EM-Plasma Interactions -- 5.4 Dynamic Adaptation Algorithm -- 5.4.1 Dynamic h‐Adaptation -- 5.4.2 Dynamic p‐Adaptation -- 5.5 Multirate Time Integration Technique -- 5.6 Numerical Examples -- 5.6.1 Scattering from a Cone Sphere with a Slot -- 5.6.2 Wave Scattering from an Aircraft -- 5.6.3 Plasma Formation and EM Shielding -- 5.6.4 HPM Air Discharge and Formation of Plasma Filamentary Array -- 5.7 Conclusion -- References -- Chapter 6 DGTD Method for Periodic and Quasi‐Periodic Structures -- 6.1 Introduction -- 6.1.1 Background -- 6.1.2 Overview of the Sections -- 6.2 The Subdomain‐Level DGTD Method -- 6.2.1 Discretized System -- 6.2.2 Time Stepping Schemes -- 6.3 Memory‐Efficient DGTD Method for Periodic Structures -- 6.3.1 Discretized System -- 6.3.1.1 Discretized System of Periodic Structures. 6.3.1.2 Discretized System of Embedded Periodic Structures -- 6.3.2 Time Stepping Schemes -- 6.3.3 Numerical Results -- 6.3.3.1 PEC Cavity with Periodic Structures -- 6.3.3.2 Periodic Patch Antenna Arrays -- 6.4 Memory‐Efficient DGTD Method for Quasi‐Periodic Structures -- 6.4.1 Discretized System -- 6.4.1.1 Discretized System of Quasi‐Periodic Structures -- 6.4.1.2 Discretized System of Embedded Structures -- 6.4.2 Time Stepping Schemes -- 6.4.3 Numerical Results -- 6.4.3.1 PEC Cavity Filled with Quasi‐Periodic Structures -- 6.4.3.2 Patch Antenna Array with Quasi‐Periodic Structures -- 6.5 Conclusions -- References -- Part III Time‐Domain Integral Equation Methods for Scattering Analysis -- Chapter 7 Explicit Marching‐on‐in‐time Solvers for Second‐kind Time Domain Integral Equations -- 7.1 Introduction -- 7.2 TD‐MFIE and Its Discretization -- 7.2.1 Discretization Using RWG Basis Functions -- 7.2.2 Discretization Using the Nyström Method -- 7.3 TD‐MFVIE and Its Discretization Using FLC Basis Functions -- 7.4 Predictor-Corrector Scheme -- 7.5 Implicit MOT Scheme -- 7.6 Comparison of Implicit and Explicit Solutions -- 7.7 Computational Complexity Analysis -- 7.8 Remarks -- 7.9 Numerical Results -- 7.9.1 TD‐MFIE Discretized Using RWG Basis Functions -- 7.9.2 TD‐MFIE Discretized Using the Nyström Method -- 7.9.3 TD‐MFVIE Discretized Using FLC Basis Functions -- 7.10 Conclusion -- References -- Chapter 8 Convolution Quadrature Time Domain Integral Equation Methods for Electromagnetic Scattering -- 8.1 Introduction -- 8.2 Background and Notations -- 8.2.1 Time Domain Integral Equations -- 8.3 Solution Using Convolution Quadrature -- 8.3.1 Laplace Transform -- 8.3.2 Laplace Domain Integral Equations -- 8.3.3 Z‐Transform -- 8.3.4 Runge-Kutta Methods -- 8.3.5 Solution of a Differential Equation Using Runge-Kutta Methods. 8.3.6 Convolution Quadrature Using Runge-Kutta Methods -- 8.3.7 Discretization of Boundary Integral Equations -- 8.3.7.1 Space Discretization -- 8.3.7.2 Time Discretization -- 8.3.8 Computation of the Interaction Matrices -- 8.3.9 Marching‐on‐in‐Time (MOT) -- 8.3.10 Examples -- 8.3.10.1 Differentiated EFIE -- 8.3.10.2 MFIE -- 8.3.10.3 Differentiated MFIE -- 8.3.10.4 Differentiated CFIE -- 8.4 Implementation Details -- 8.4.1 Building a Time Domain Solver from a Frequency Domain Code: Baseline Implementation of the MOT -- 8.4.2 Choice of the Simulation Parameters -- 8.4.2.1 Choice of the RK Method -- 8.4.2.2 Choice of the Time Step and the Discretization Density -- 8.4.2.3 Choice of the Inverse Z‐Transform Parameters -- 8.5 Acceleration, Preconditioning, and Stabilizations -- 8.5.1 Computational Complexity and Fast Solver Acceleration -- 8.5.1.1 Complexity Analysis of a Naive Implementation -- 8.5.1.2 Acceleration with Fast Solvers -- 8.5.2 Ill‐Conditioning and Instabilities -- 8.5.2.1 Interior Resonances and CFIE -- 8.5.2.2 DC Instability -- 8.5.2.3 Large Time Step Breakdown -- 8.5.2.4 Treatment of the LF Breakdown and DC Instability -- 8.6 Details of the Numerical Examples Used in the Chapter -- 8.7 Conclusions -- References -- Chapter 9 Solving Electromagnetic Scattering Problems Using Impulse Responses -- 9.1 Introduction -- 9.2 Impulse Responses -- 9.3 Behavior at the Interior Resonance Frequencies -- 9.4 Impact on MOT Late Time Instability -- 9.5 Analytical Expressions for the Retarded‐Time Potentials -- 9.6 Numerical Verification of Stability Properties -- 9.7 Effect of Impulse Response Truncation -- 9.8 Domain Decomposition Method Based on Impulse Responses -- 9.8.1 TD‐GTM Model -- 9.8.2 TD‐GSIE -- 9.8.3 Numerical Results -- 9.9 Conclusions -- References -- Part IV Applications of Deep Learning in Time‐Domain Methods. Chapter 10 Time‐Domain Electromagnetic Forward and Inverse Modeling Using a Differentiable Programming Platform. |
Record Nr. | UNINA-9910830503903321 |
Piscataway, New Jersey ; ; Hoboken, New Jersey : , : IEEE Press : , : Wiley, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
CEM' 11 : 2011 Computational Electromagnetics International Workshop : August 10-13, 2011, İzmir, Turkey / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2011 |
Descrizione fisica | 1 online resource (338 pages) |
Disciplina | 537.0285 |
Soggetto topico |
Electromagnetism - Data processing
Electromagnetism - Mathematical models |
ISBN | 1-4577-1687-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996209779003316 |
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
CEM' 11 : 2011 Computational Electromagnetics International Workshop : August 10-13, 2011, İzmir, Turkey / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2011 |
Descrizione fisica | 1 online resource (338 pages) |
Disciplina | 537.0285 |
Soggetto topico |
Electromagnetism - Data processing
Electromagnetism - Mathematical models |
ISBN | 1-4577-1687-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910141088903321 |
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational methods for electromagnetic phenomena : electrostatics in solvation, scattering, and electron transport / / Wei Cai [[electronic resource]] |
Autore | Cai Wei <1962-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2013 |
Descrizione fisica | 1 online resource (xviii, 444 pages) : digital, PDF file(s) |
Disciplina | 537.01/51 |
Soggetto topico |
Electromagnetism - Mathematical models
Electrostatics Electron transport |
ISBN |
1-139-61054-6
1-107-23570-7 1-139-61240-9 1-139-60888-6 1-139-10815-8 1-139-61612-9 1-139-62542-X 1-283-87054-1 1-139-62170-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson-Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson-Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods -- discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schrödinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods. |
Record Nr. | UNINA-9910452917903321 |
Cai Wei <1962-> | ||
Cambridge : , : Cambridge University Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational methods for electromagnetic phenomena : electrostatics in solvation, scattering, and electron transport / / Wei Cai [[electronic resource]] |
Autore | Cai Wei <1962-> |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2013 |
Descrizione fisica | 1 online resource (xviii, 444 pages) : digital, PDF file(s) |
Disciplina | 537.01/51 |
Soggetto topico |
Electromagnetism - Mathematical models
Electrostatics Electron transport |
ISBN |
1-139-61054-6
1-107-23570-7 1-139-61240-9 1-139-60888-6 1-139-10815-8 1-139-61612-9 1-139-62542-X 1-283-87054-1 1-139-62170-X |
Classificazione | TEC009000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson-Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson-Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods -- discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schrödinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods. |
Record Nr. | UNINA-9910779437403321 |
Cai Wei <1962-> | ||
Cambridge : , : Cambridge University Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational methods for electromagnetic phenomena : electrostatics in solvation, scattering, and electron transport / / Wei Cai |
Autore | Cai Wei <1962-> |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2013 |
Descrizione fisica | 1 online resource (xviii, 444 pages) : digital, PDF file(s) |
Disciplina | 537.01/51 |
Soggetto topico |
Electromagnetism - Mathematical models
Electrostatics Electron transport |
ISBN |
1-139-61054-6
1-107-23570-7 1-139-61240-9 1-139-60888-6 1-139-10815-8 1-139-61612-9 1-139-62542-X 1-283-87054-1 1-139-62170-X |
Classificazione | TEC009000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Machine generated contents note: Part I. Electrostatics in Solvations: 1. Dielectric constant and fluctuation formulae for molecular dynamics; 2. Poisson-Boltzmann electrostatics and analytical approximations; 3. Numerical methods for Poisson-Boltzmann equations; 4. Fast algorithms for long-range interactions; Part II. Electromagnetic Scattering: 5. Maxwell equations, potentials, and physical/artificial boundary conditions; 6. Dyadic Green's functions in layered media; 7. High order methods for surface electromagnetic integral equations; 8. High order hierarchical Nedelec edge elements; 9. Time domain methods -- discontinuous Galerkin method and Yee scheme; 10. Computing scattering in periodic structures and surface plasmons; 11. Solving Schrödinger equations in waveguides and quantum dots; Part III. Electron Transport: 12. Quantum electron transport in semiconductors; 13. Non-equilibrium Green's function (NEGF) methods for transport; 14. Numerical methods for Wigner quantum transport; 15. Hydrodynamics electron transport and finite difference methods; 16. Transport models in plasma media and numerical methods. |
Record Nr. | UNINA-9910827131103321 |
Cai Wei <1962-> | ||
Cambridge : , : Cambridge University Press, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2007 |
Descrizione fisica | 1 online resource (394 p.) |
Disciplina | 620.015118 |
Altri autori (Persone) |
PlackoDominique
KunduT (Tribikram) |
Soggetto topico |
Distributed point source method (Numerical analysis)
Engineering mathematics Ultrasonic waves - Mathematical models Electromagnetic devices - Design and construction - Mathematics Electrostatics - Mathematics Electromagnetism - Mathematical models Magnetism - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-90115-2
9786610901159 0-470-14240-5 0-470-14239-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q 1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape 2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface 2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach 2.7 Electric Field in a Multilayered Medium |
Record Nr. | UNINA-9910143404303321 |
Hoboken, N.J., : Wiley-Interscience, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
DPSM for modeling engineering problems [[electronic resource] /] / edited by Dominique Placko and Tribikram Kundu |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley-Interscience, c2007 |
Descrizione fisica | 1 online resource (394 p.) |
Disciplina | 620.015118 |
Altri autori (Persone) |
PlackoDominique
KunduT (Tribikram) |
Soggetto topico |
Distributed point source method (Numerical analysis)
Engineering mathematics Ultrasonic waves - Mathematical models Electromagnetic devices - Design and construction - Mathematics Electrostatics - Mathematics Electromagnetism - Mathematical models Magnetism - Mathematical models |
ISBN |
1-280-90115-2
9786610901159 0-470-14240-5 0-470-14239-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
DPSM FOR MODELING ENGINEERING PROBLEMS; CONTENTS; Preface; Contributors; Chapter 1 - Basic Theory of Distributed Point Source Method (DPSM) and Its Application to Some Simple Problems; 1.1 Introduction and Historical Development of DPSM; 1.2 Basic Principles of DPSM Modeling; 1.2.1 The fundamental idea; 1.2.1.1 Basic equations; 1.2.1.2 Boundary conditions; 1.2.2 Example in the case of a magnetic open core sensor; 1.2.2.1 Governing equations and solution; 1.2.2.2 Solution of coupling equations; 1.2.2.3 Results and discussion; 1.3 Examples From Ultrasonic Transducer Modeling
1.3.1 Justification of modeling a finite plane source by a distribution of point sources1.3.2 Planar piston transducer in a fluid; 1.3.2.1 Conventional surface integral technique; 1.3.2.2 Alternative DPSM for computing the ultrasonic field; 1.3.2.3 Restrictions on r(s) for point source distribution; 1.3.3 Focused transducer in a homogeneous fluid; 1.3.4 Ultrasonic field in a nonhomogeneous fluid in the presence of an interface; 1.3.4.1 Pressure field computation in fluid 1 at point P; 1.3.4.2 Pressure field computation in fluid 2 at point Q 1.3.5 DPSM technique for ultrasonic field modeling in nonhomogeneous fluid1.3.5.1 Field computation in fluid 1; 1.3.5.2 Field in fluid 2; 1.3.6 Ultrasonic field in the presence of a scatterer; 1.3.7 Numerical results; 1.3.7.1 Ultrasonic field in a homogeneous fluid; 1.3.7.2 Ultrasonic field in a nonhomogeneous fluid - DPSM technique; 1.3.7.3 Ultrasonic field in a nonhomogeneous fluid - surface integral method; 1.3.7.4 Ultrasonic field in the presence of a finite-size scatterer; References; Chapter 2-Advanced Theory of DPSM-Modeling Multilayered Medium and Inclusions of Arbitrary Shape 2.1 Introduction2.2 Theory of Multilayered Medium Modeling; 2.2.1 Transducer faces not coinciding with any interface; 2.2.1.1 Source strength determination from boundary and interface conditions; 2.2.2 Transducer faces coinciding with the interface - case 1: transducer faces modeled separately; 2.2.2.1 Source strength determination from interface and boundary conditions; 2.2.2.2 Counting number of equations and number of unknowns; 2.2.3 Transducer faces coinciding with the interface - case 2: transducer faces are part of the interface 2.2.3.1 Source strength determination from interface and boundary conditions2.2.4 Special case involving one interface and one transducer only; 2.3 Theory for Multilayered Medium Considering the Interaction Effect on the Transducer Surface; 2.3.1 Source strength determination from interface conditions; 2.3.2 Counting number of equations and number of unknowns; 2.4 Interference between Two Transducers: Step-by-Step Analysis of Multiple Reflection; 2.5 Scattering by an Inclusion of Arbitrary Shape; 2.6 Scattering by an Inclusion of Arbitrary Shape - An Alternative Approach 2.7 Electric Field in a Multilayered Medium |
Record Nr. | UNINA-9910829906203321 |
Hoboken, N.J., : Wiley-Interscience, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|