Advanced computational electromagnetic methods and applications / / Wenhua Yu [and three others], editors |
Pubbl/distr/stampa | Boston ; ; London : , : Artech House, , [2015] |
Descrizione fisica | 1 online resource (597 p.) |
Disciplina | 537.0285 |
Collana | Artech House antennas and electromagnetics analysis library Advanced computational electromagnetic methods and applications |
Soggetto topico |
Electromagnetism - Data processing
Electromagnetism - Computer simulation |
Soggetto genere / forma | Electronic books. |
ISBN |
1-5231-1693-5
1-60807-897-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; Advanced Computational Electromagnetic Methods and Applications; Contents; Preface; Chapter 1 Novelties of Spectral Domain Analysis in Antenna Characterizations: Concept, Formulation, and Applications; Chapter 2 High-Order FDTD Methods; Chapter 3 GPU Acceleration of FDTD Method for Simulation of Microwave Circuits; Chapter 4 Recent FDTD Advances for Electromagnetic Wave Propagation in the Ionosphere; Chapter 5 Phi Coprocessor Acceleration Techniques in Computational Electromagnetic Methods
Chapter 6 Domain Decomposition Methods for Finite Element Analysis of Large-Scale Electromagnetic Problems Chapter 7 High-Accuracy Computations for Electromagnetic Integral Equations; Chapter 8 Fast Electromagnetic Solver Based on Randomized Pseudo-Skeleton Approximation; Chapter 9 Computational Electromagnetics for the Evaluation of EMC Issues in Multicomponen tEnergy Systems; Chapter 10 Manipulation of Electromagnetic Waves Based on New Unique Metamaterials: Theory and Applications; Chapter 11 Time-Domain Integral Equation Method for Transient Problems Chapter 12 Statistical Methods and Computational Electromagnetics Applied to Human Exposure Assessment About the Authors; Index; 1.1 INTRODUCTION; 1.2 ANTENNA RADIATION ANALYSIS IN THE SPECTRAL DOMAIN; 1.3 OBTAINING THE PLANE WAVE SPECTRUM FROM FAR-FIELD PATTERNS AND RADIATED POWER; 1.4 PLANE WAVE SPECTRUM COMPUTATION VIA FAST FOURIER TRANSFORM; 1.5 COORDINATE TRANSFORMATIONS FOR GENERALIZED SIMULATION AND MEASUREMENT SYSTEMS; 1.6 THEORETICAL VALIDATION OF NEAR-FIELD PREDICTION; 1.7 SOME PRACTICAL EXAMPLES; REFERENCES; 2.1 FOURTH ORDER DIFFERENCES IN FDTD DISCRETE SPACE 2.2 SEAMLESS HYBRID S24/FDTD SIMULATIONS2.3 ABSORBING BOUNDARY CONDITIONS; 2.4 POINT CURRENT AND FIELD SOURCES; 2.5 PLANE WAVE SOURCES; 2.6 PEC MODELING; 2.7 ADVANCED FORMS OF HIGH-ORDER FDTD ALGORITHMS; REFERENCES; 3.1 INTRODUCTION; 3.2 FDTD CODE FOR MICROWAVE CIRCUIT SIMULATION; 3.3 FDTD CODE USING CUDA; 3.4 NUMERICAL RESULTS; REFERENCES; 4.1 INTRODUCTION; 4.2 CURRENT STATE OF THE ART; 4.3 FDTD EARTH-IONOSPHERE MODEL OVERVIEW; 4.4 NEW MAGNETIZED IONOSPHERIC PLASMA ALGORITHM; 4.5 STOCHASTIC FDTD (S-FDTD); 4.6 INPUT TO FDTD/S-FDTD EARTH-PLAMSA IONOSPHERE MODELS; 4.7 CONCLUSIONS; REFERENCES 5.1 INTRODUCTION5.2 ENVIRONMENT REQUIREMENTS AND SETTINGS; 5.3 CODE DEVELOPMENT; 5.4 NUMERICAL RESULTS; REFERENCES; 6.1 FETI METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS; 6.2 FETI-DP METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS; 6.3 LM-BASED NONCONFORMAL FETI-DP METHOD; 6.4 CE-BASED NONCONFORMAL FETI-DP METHOD; 6.5 FETI-DP METHOD ENHANCED BY THE SECOND-ORDER TRANSMISSION CONDITION; 6.6 HYBRID NONCONFORMAL FETI/CONFORMAL FETI-DP METHOD; 6.7 NUMERICAL EXAMPLES; 6.8 SUMMARY; REFERENCES; 7.1 NORMALIZED RESIDUAL ERROR; 7.2 HIGH-ORDER TREATMENT OF SMOOTH TARGETS; 7.3 THE DIPOLE ANTENNA 7.4 HIGH-ORDER TREATMENT OF WEDGE SINGULARITIES |
Record Nr. | UNINA-9910467580503321 |
Boston ; ; London : , : Artech House, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced computational electromagnetic methods and applications / / Wenhua Yu [and three others], editors |
Pubbl/distr/stampa | Boston ; ; London : , : Artech House, , [2015] |
Descrizione fisica | 1 online resource (597 p.) |
Disciplina | 537.0285 |
Collana | Artech House antennas and electromagnetics analysis library Advanced computational electromagnetic methods and applications |
Soggetto topico |
Electromagnetism - Data processing
Electromagnetism - Computer simulation |
ISBN |
1-5231-1693-5
1-60807-897-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; Advanced Computational Electromagnetic Methods and Applications; Contents; Preface; Chapter 1 Novelties of Spectral Domain Analysis in Antenna Characterizations: Concept, Formulation, and Applications; Chapter 2 High-Order FDTD Methods; Chapter 3 GPU Acceleration of FDTD Method for Simulation of Microwave Circuits; Chapter 4 Recent FDTD Advances for Electromagnetic Wave Propagation in the Ionosphere; Chapter 5 Phi Coprocessor Acceleration Techniques in Computational Electromagnetic Methods
Chapter 6 Domain Decomposition Methods for Finite Element Analysis of Large-Scale Electromagnetic Problems Chapter 7 High-Accuracy Computations for Electromagnetic Integral Equations; Chapter 8 Fast Electromagnetic Solver Based on Randomized Pseudo-Skeleton Approximation; Chapter 9 Computational Electromagnetics for the Evaluation of EMC Issues in Multicomponen tEnergy Systems; Chapter 10 Manipulation of Electromagnetic Waves Based on New Unique Metamaterials: Theory and Applications; Chapter 11 Time-Domain Integral Equation Method for Transient Problems Chapter 12 Statistical Methods and Computational Electromagnetics Applied to Human Exposure Assessment About the Authors; Index; 1.1 INTRODUCTION; 1.2 ANTENNA RADIATION ANALYSIS IN THE SPECTRAL DOMAIN; 1.3 OBTAINING THE PLANE WAVE SPECTRUM FROM FAR-FIELD PATTERNS AND RADIATED POWER; 1.4 PLANE WAVE SPECTRUM COMPUTATION VIA FAST FOURIER TRANSFORM; 1.5 COORDINATE TRANSFORMATIONS FOR GENERALIZED SIMULATION AND MEASUREMENT SYSTEMS; 1.6 THEORETICAL VALIDATION OF NEAR-FIELD PREDICTION; 1.7 SOME PRACTICAL EXAMPLES; REFERENCES; 2.1 FOURTH ORDER DIFFERENCES IN FDTD DISCRETE SPACE 2.2 SEAMLESS HYBRID S24/FDTD SIMULATIONS2.3 ABSORBING BOUNDARY CONDITIONS; 2.4 POINT CURRENT AND FIELD SOURCES; 2.5 PLANE WAVE SOURCES; 2.6 PEC MODELING; 2.7 ADVANCED FORMS OF HIGH-ORDER FDTD ALGORITHMS; REFERENCES; 3.1 INTRODUCTION; 3.2 FDTD CODE FOR MICROWAVE CIRCUIT SIMULATION; 3.3 FDTD CODE USING CUDA; 3.4 NUMERICAL RESULTS; REFERENCES; 4.1 INTRODUCTION; 4.2 CURRENT STATE OF THE ART; 4.3 FDTD EARTH-IONOSPHERE MODEL OVERVIEW; 4.4 NEW MAGNETIZED IONOSPHERIC PLASMA ALGORITHM; 4.5 STOCHASTIC FDTD (S-FDTD); 4.6 INPUT TO FDTD/S-FDTD EARTH-PLAMSA IONOSPHERE MODELS; 4.7 CONCLUSIONS; REFERENCES 5.1 INTRODUCTION5.2 ENVIRONMENT REQUIREMENTS AND SETTINGS; 5.3 CODE DEVELOPMENT; 5.4 NUMERICAL RESULTS; REFERENCES; 6.1 FETI METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS; 6.2 FETI-DP METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS; 6.3 LM-BASED NONCONFORMAL FETI-DP METHOD; 6.4 CE-BASED NONCONFORMAL FETI-DP METHOD; 6.5 FETI-DP METHOD ENHANCED BY THE SECOND-ORDER TRANSMISSION CONDITION; 6.6 HYBRID NONCONFORMAL FETI/CONFORMAL FETI-DP METHOD; 6.7 NUMERICAL EXAMPLES; 6.8 SUMMARY; REFERENCES; 7.1 NORMALIZED RESIDUAL ERROR; 7.2 HIGH-ORDER TREATMENT OF SMOOTH TARGETS; 7.3 THE DIPOLE ANTENNA 7.4 HIGH-ORDER TREATMENT OF WEDGE SINGULARITIES |
Record Nr. | UNINA-9910794618703321 |
Boston ; ; London : , : Artech House, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced computational electromagnetic methods and applications / / Wenhua Yu [and three others], editors |
Pubbl/distr/stampa | Boston ; ; London : , : Artech House, , [2015] |
Descrizione fisica | 1 online resource (597 p.) |
Disciplina | 537.0285 |
Collana | Artech House antennas and electromagnetics analysis library Advanced computational electromagnetic methods and applications |
Soggetto topico |
Electromagnetism - Data processing
Electromagnetism - Computer simulation |
ISBN |
1-5231-1693-5
1-60807-897-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro; Advanced Computational Electromagnetic Methods and Applications; Contents; Preface; Chapter 1 Novelties of Spectral Domain Analysis in Antenna Characterizations: Concept, Formulation, and Applications; Chapter 2 High-Order FDTD Methods; Chapter 3 GPU Acceleration of FDTD Method for Simulation of Microwave Circuits; Chapter 4 Recent FDTD Advances for Electromagnetic Wave Propagation in the Ionosphere; Chapter 5 Phi Coprocessor Acceleration Techniques in Computational Electromagnetic Methods
Chapter 6 Domain Decomposition Methods for Finite Element Analysis of Large-Scale Electromagnetic Problems Chapter 7 High-Accuracy Computations for Electromagnetic Integral Equations; Chapter 8 Fast Electromagnetic Solver Based on Randomized Pseudo-Skeleton Approximation; Chapter 9 Computational Electromagnetics for the Evaluation of EMC Issues in Multicomponen tEnergy Systems; Chapter 10 Manipulation of Electromagnetic Waves Based on New Unique Metamaterials: Theory and Applications; Chapter 11 Time-Domain Integral Equation Method for Transient Problems Chapter 12 Statistical Methods and Computational Electromagnetics Applied to Human Exposure Assessment About the Authors; Index; 1.1 INTRODUCTION; 1.2 ANTENNA RADIATION ANALYSIS IN THE SPECTRAL DOMAIN; 1.3 OBTAINING THE PLANE WAVE SPECTRUM FROM FAR-FIELD PATTERNS AND RADIATED POWER; 1.4 PLANE WAVE SPECTRUM COMPUTATION VIA FAST FOURIER TRANSFORM; 1.5 COORDINATE TRANSFORMATIONS FOR GENERALIZED SIMULATION AND MEASUREMENT SYSTEMS; 1.6 THEORETICAL VALIDATION OF NEAR-FIELD PREDICTION; 1.7 SOME PRACTICAL EXAMPLES; REFERENCES; 2.1 FOURTH ORDER DIFFERENCES IN FDTD DISCRETE SPACE 2.2 SEAMLESS HYBRID S24/FDTD SIMULATIONS2.3 ABSORBING BOUNDARY CONDITIONS; 2.4 POINT CURRENT AND FIELD SOURCES; 2.5 PLANE WAVE SOURCES; 2.6 PEC MODELING; 2.7 ADVANCED FORMS OF HIGH-ORDER FDTD ALGORITHMS; REFERENCES; 3.1 INTRODUCTION; 3.2 FDTD CODE FOR MICROWAVE CIRCUIT SIMULATION; 3.3 FDTD CODE USING CUDA; 3.4 NUMERICAL RESULTS; REFERENCES; 4.1 INTRODUCTION; 4.2 CURRENT STATE OF THE ART; 4.3 FDTD EARTH-IONOSPHERE MODEL OVERVIEW; 4.4 NEW MAGNETIZED IONOSPHERIC PLASMA ALGORITHM; 4.5 STOCHASTIC FDTD (S-FDTD); 4.6 INPUT TO FDTD/S-FDTD EARTH-PLAMSA IONOSPHERE MODELS; 4.7 CONCLUSIONS; REFERENCES 5.1 INTRODUCTION5.2 ENVIRONMENT REQUIREMENTS AND SETTINGS; 5.3 CODE DEVELOPMENT; 5.4 NUMERICAL RESULTS; REFERENCES; 6.1 FETI METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS; 6.2 FETI-DP METHODS WITH ONE AND TWO LAGRANGE MULTIPLIERS; 6.3 LM-BASED NONCONFORMAL FETI-DP METHOD; 6.4 CE-BASED NONCONFORMAL FETI-DP METHOD; 6.5 FETI-DP METHOD ENHANCED BY THE SECOND-ORDER TRANSMISSION CONDITION; 6.6 HYBRID NONCONFORMAL FETI/CONFORMAL FETI-DP METHOD; 6.7 NUMERICAL EXAMPLES; 6.8 SUMMARY; REFERENCES; 7.1 NORMALIZED RESIDUAL ERROR; 7.2 HIGH-ORDER TREATMENT OF SMOOTH TARGETS; 7.3 THE DIPOLE ANTENNA 7.4 HIGH-ORDER TREATMENT OF WEDGE SINGULARITIES |
Record Nr. | UNINA-9910824248803321 |
Boston ; ; London : , : Artech House, , [2015] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced computer techniques in applied electromagnetics [[electronic resource] /] / edited by Sławomir Wiak, Andrzej Krawczyk and Ivo Dolezel |
Pubbl/distr/stampa | Amsterdam, : Ios Press, c2008 |
Descrizione fisica | 1 online resource (472 p.) |
Disciplina | 621.30285 |
Altri autori (Persone) |
DoleželIvo
KrawczykAndrzej WiakS (Sławomir) |
Collana | Studies in applied electromagnetics and mechanics |
Soggetto topico |
Electromagnetism - Computer simulation
Electromagnetism - Data processing Magneto-electric machines Magneto-electric machines - Computer simulation |
Soggetto genere / forma | Electronic books. |
ISBN |
6611968555
1-281-96855-2 9786611968557 1-4416-0151-1 1-60750-359-X 600-00-1180-6 1-59734-380-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Title page; Preface; Contents; Chapter A. Fundamental Problems and Methods; A1. Fundamental Problems; A2. Methods; Chapter B. Computer Methods in Applied Electromagnetism; B1. Computation Methods; B2. Numerical Models of Devices; Chapter C. Applications; C1. Electrical Machines and Transformers; C2. Actuators and Special Devices; C3. Special Applications; Author Index |
Record Nr. | UNINA-9910454032303321 |
Amsterdam, : Ios Press, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced computer techniques in applied electromagnetics [[electronic resource] /] / edited by Sławomir Wiak, Andrzej Krawczyk and Ivo Dolezel |
Pubbl/distr/stampa | Amsterdam, : Ios Press, c2008 |
Descrizione fisica | 1 online resource (472 p.) |
Disciplina | 621.30285 |
Altri autori (Persone) |
DoleželIvo
KrawczykAndrzej WiakS (Sławomir) |
Collana | Studies in applied electromagnetics and mechanics |
Soggetto topico |
Electromagnetism - Computer simulation
Electromagnetism - Data processing Magneto-electric machines Magneto-electric machines - Computer simulation |
ISBN |
6611968555
1-281-96855-2 9786611968557 1-4416-0151-1 1-60750-359-X 600-00-1180-6 1-59734-380-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Title page; Preface; Contents; Chapter A. Fundamental Problems and Methods; A1. Fundamental Problems; A2. Methods; Chapter B. Computer Methods in Applied Electromagnetism; B1. Computation Methods; B2. Numerical Models of Devices; Chapter C. Applications; C1. Electrical Machines and Transformers; C2. Actuators and Special Devices; C3. Special Applications; Author Index |
Record Nr. | UNINA-9910782445703321 |
Amsterdam, : Ios Press, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi |
Autore | Sevgi Levent |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014] |
Descrizione fisica | 1 online resource (666 pages) |
Disciplina | 621.380285/53 |
Collana | IEEE Press series on electromagnetic wave theory |
Soggetto topico | Electromagnetism - Computer simulation |
Soggetto genere / forma | Electronic books. |
ISBN |
9781118716182
9781118877111 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92.
4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182. 8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package “WedgeGUIDE,” 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275. 10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417. 14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604. 16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659. |
Record Nr. | UNISA-996211709803316 |
Sevgi Levent | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi |
Autore | Sevgi Levent |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014] |
Descrizione fisica | 1 online resource (666 pages) |
Disciplina | 621.380285/53 |
Collana | IEEE Press series on electromagnetic wave theory |
Soggetto topico | Electromagnetism - Computer simulation |
ISBN |
1-118-87711-X
1-118-71644-2 9781118716410 |
Classificazione | SCI022000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92.
4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182. 8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package “WedgeGUIDE,” 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275. 10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417. 14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604. 16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659. |
Record Nr. | UNINA-9910648493303321 |
Sevgi Levent | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Electromagnetic modeling and simulation [[electronic resource] /] / Levent Sevgi |
Autore | Sevgi Levent |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014] |
Descrizione fisica | 1 online resource (666 pages) |
Disciplina | 621.380285/53 |
Collana | IEEE Press series on electromagnetic wave theory |
Soggetto topico | Electromagnetism - Computer simulation |
ISBN |
1-118-87711-X
1-118-71644-2 9781118716410 |
Classificazione | SCI022000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface xvii -- About the Author xxvii -- Acknowledgments xxix -- 1 Introduction to MODSIM 1 -- 1.1 Models and Modeling, 2 -- 1.2 Validation, Verifi cation, and Calibration, 5 -- 1.3 Available Core Models, 7 -- 1.4 Model Selection Criteria, 9 -- 1.5 Graduate Level EM MODSIM Course, 11 -- 1.5.1 Course Description and Plan, 11 -- 1.5.2 Available Virtual EM Tools, 12 -- 1.6 EM-MODSIM Lecture Flow, 12 -- 1.7 Two Level EM Guided Wave Lecture, 17 -- 1.8 Conclusions, 19 -- References, 19 -- 2 Engineers Speak with Numbers 23 -- 2.1 Introduction, 23 -- 2.2 Measurement, Calculation, and Error Analysis, 24 -- 2.3 Significant Digits, Truncation, and Round-Off Errors, 27 -- 2.4 Error Propagation, 28 -- 2.5 Error and Confi dence Level, 29 -- 2.5.1 Predicting the Population's Confidence Interval, 33 -- 2.6 Hypothesis Testing, 36 -- 2.6.1 Testing Population Mean, 38 -- 2.6.2 Testing Population Proportion, 39 -- 2.6.3 Testing Two Population Averages, 39 -- 2.6.4 Testing Two Population Proportions, 39 -- 2.6.5 Testing Paired Data, 40 -- 2.7 Hypothetical Tests on Cell Phones, 41 -- 2.8 Conclusions, 45 -- References, 45 -- 3 Numerical Analysis in Electromagnetics 47 -- 3.1 Taylor's Expansion and Numerical Differentiation, 47 -- 3.1.1 Taylor's Expansion and Ordinary Differential Equations, 50 -- 3.1.2 Poisson and Laplace Equations, 52 -- 3.1.3 An Iterative (Finite-Difference) Solution, 53 -- 3.2 Numerical Integration, 58 -- 3.2.1 Rectangular Method, 58 -- 3.3 Nonlinear Equations and Root Search, 62 -- 3.4 Linear Systems of Equations, 64 -- References, 69 -- 4 Fourier Transform and Fourier Series 71 -- 4.1 Introduction, 71 -- 4.2 Fourier Transform, 72 -- 4.2.1 Fourier Transform (FT), 72 -- 4.2.2 Discrete Fourier Transform (DFT), 74 -- 4.2.3 Fast Fourier Transform (FFT), 76 -- 4.2.4 Aliasing, Spectral Leakage, and Scalloping Loss, 77 -- 4.2.5 Windowing and Window Functions, 80 -- 4.3 Basic Discretization Requirements, 81 -- 4.4 Fourier Series Representation, 85 -- 4.5 Rectangular Pulse and Its Harmonics, 92.
4.6 Conclusions, 92 -- References, 94 -- 5 Stochastic Modeling in Electromagnetics 95 -- 5.1 Introduction, 95 -- 5.2 Radar Signal Environment, 98 -- 5.2.1 Random Number Generation, 98 -- 5.2.2 Noise Generation, 101 -- 5.2.3 Signal Generation, 108 -- 5.2.4 Clutter Generation, 108 -- 5.3 Total Radar Signal, 111 -- 5.4 Decision Making and Detection, 114 -- 5.4.1 Hypothesis Operating Characteristics (HOCs), 115 -- 5.4.2 A Communication/Radar Receiver, 119 -- 5.5 Conclusions, 129 -- References, 130 -- 6 Electromagnetic Theory: Basic Review 133 -- 6.1 Maxwell Equations and Reduction, 133 -- 6.2 Waveguiding Structures, 134 -- 6.3 Radiation Problems and Vector Potentials, 136 -- 6.4 The Delta Dirac Function, 138 -- 6.5 Coordinate Systems and Basic Operators, 139 -- 6.6 The Point Source Representation, 141 -- 6.7 Field Representation of a Point/Line Source, 142 -- 6.8 Alternative Field Representations, 143 -- 6.9 Transverse Electric/Magnetic Fields, 145 -- 6.9.1 The 3D TE/TM Waves, 145 -- 6.9.2 The 2D TE/TM Waves, 146 -- 6.10 The TE/TM Source Injection, 151 -- 6.11 Second-Order EM Differential Equations, 154 -- 6.12 EM Wave-Transmission Line Analogy, 155 -- 6.13 Time Dependence in Maxwell Equations, 157 -- 6.14 Physical Fundamentals, 158 -- References, 158 -- 7 Sturm-Liouville Equation: The Bridge between Eigenvalue and Green's Function Problems 161 -- 7.1 Introduction, 161 -- 7.2 Guided Wave Scenarios, 162 -- 7.3 The Sturm-Liouville Equation, 165 -- 7.3.1 The Eigenvalue Problem, 167 -- 7.3.2 The Green's Function (GF) Problem, 168 -- 7.3.3 Finite z-Domain Problem, 169 -- 7.3.4 Infi nite z-Domain Problem, 170 -- 7.3.5 Relation between Eigenvalue and Green's Function Problems, 171 -- 7.4 Conclusions, 172 -- References, 173 -- 8 The 2D Nonpenetrable Parallel Plate Waveguide 175 -- 8.1 Introduction, 176 -- 8.2 Propagation Inside a 2D-PEC Parallel Plate Waveguide, 177 -- 8.2.1 Formulation of the TE- and TM-Type Problems, 178 -- 8.2.2 The Green's Function Problem, 181 -- 8.2.3 Accessing the Spectral Domain: Separation of Variables, 182. 8.2.4 Spectral Representations: Eigenvalue Problems, 183 -- 8.2.5 Spectral Representations: 1D Characteristic Green's Functions, 184 -- 8.2.6 The 2D Green's Function Problem: Alternative Representations, 185 -- 8.3 Alternative Representation: Eigenray Solution, 187 -- 8.3.1 Relation between Eigenmode and Eigenray Representations, 191 -- 8.3.2 2D GF and Hybrid Ray-Mode Decomposition, 192 -- 8.4 A 2D-PEC Parallel Plate Waveguide Simulator, 194 -- 8.4.1 Representations Used for Mode, Ray, and Hybrid Solutions, 195 -- 8.4.2 MATLAB Packages: RayMode and Hybrid, 207 -- 8.4.3 Numerical Examples, 210 -- 8.5 Eigenvalue Extraction from Propagation Characteristics, 215 -- 8.5.1 Longitudinal Correlation Function, 215 -- 8.5.2 Numerical Illustrations, 217 -- 8.6 Tilted Beam Excitation, 221 -- 8.7 Conclusions, 223 -- References, 225 -- 9 Wedge Waveguide with Nonpenetrable Boundaries 227 -- 9.1 Introduction, 228 -- 9.2 Statement of the Problem: Physical Configuration and Ray-Asymptotic Guided Wave Schematizations, 229 -- 9.3 Source-Free Solutions, 230 -- 9.3.1 Separable Coordinates: Conventional NM, 230 -- 9.3.2 Weakly Nonseparable Coordinates: AM, 231 -- 9.3.3 Uniformizing the AM Near Caustics: IM, 232 -- 9.4 Test Problem: The 2D Line-Source-Excited Nonpenetrable Wedge Waveguide, 234 -- 9.4.1 Exact Solution in Cylindrical Coordinate, 234 -- 9.4.2 Approximate Solutions in Rectangular Coordinates, 241 -- 9.4.3 IM Spectral Representation, 244 -- 9.5 The MATLAB Package “WedgeGUIDE,” 247 -- 9.6 Numerical Tests and Illustrations, 249 -- 9.7 Conclusions, 256 -- Appendix 9A: Formation of the Spectral IM Integral in Section 9.3.3, 257 -- References, 262 -- 10 High Frequency Asymptotics: The 2D Wedge Diffraction Problem 265 -- 10.1 Introduction, 266 -- 10.2 Plane Wave Illumination and HFA Models, 268 -- 10.2.1 Exact Solution by Series Summation, 268 -- 10.2.2 The Physical Optics (PO) Solution, 270 -- 10.2.3 The PTD Solution, 272 -- 10.2.4 The UTD Solution, 273 -- 10.2.5 The Parabolic Equation (PE) Solution, 275. 10.3 HFA Models under Line Source (LS) Excitations, 275 -- 10.3.1 Exact Solution by Series Summation, 276 -- 10.3.2 Exact Solution by Integral, 277 -- 10.3.3 The Parabolic Equation (PE) Solution, 277 -- 10.4 Basic MATLAB Scripts, 278 -- 10.5 The WedgeGUI Virtual Tool and Some Examples, 291 -- 10.6 Conclusions, 297 -- References, 298 -- 11 Antennas: Isotropic Radiators and Beam Forming/Beam Steering 301 -- 11.1 Introduction, 301 -- 11.2 Arrays of Isotropic Radiators, 303 -- 11.3 The ARRAY Package, 306 -- 11.4 Beam Forming/Steering Examples, 310 -- 11.5 Conclusions, 317 -- References, 318 -- 12 Simple Propagation Models and Ray Solutions 319 -- 12.1 Introduction, 320 -- 12.2 Ray-Tracing Approaches, 321 -- 12.3 A Ray-Shooting MATLAB Package, 323 -- 12.4 Characteristic Examples, 329 -- 12.5 Flat-Earth Problem and 2Ray Model, 333 -- 12.6 Knife-Edge Problem and 4Ray Model, 338 -- 12.7 Ray Plus Diffraction Models, 348 -- 12.8 Conclusions, 351 -- References, 351 -- 13 Method of Moments 353 -- 13.1 Introduction, 353 -- 13.2 Approximating a Periodic Function by Other Functions: Fourier Series Representation, 354 -- 13.3 Introduction to the MoM, 359 -- 13.4 Simple Applications of MoM, 361 -- 13.4.1 An Ordinary Differential Equation, 361 -- 13.4.2 The Parallel Plate Capacitor, 364 -- 13.4.3 Propagation over PEC Flat Earth, 366 -- 13.5 MoM Applied to Radiation and Scattering Problems, 372 -- 13.5.1 A Complex Antenna Structure, 372 -- 13.5.2 Ground Wave Propagation Modeling, 373 -- 13.5.3 EM Scattering from Infinitely Long Cylinder, 376 -- 13.5.4 3D RCS Modeling, 381 -- 13.6 MoM Applied to Wedge Diffraction Problem, 386 -- 13.7 MoM Applied to Wedge Waveguide Problem, 397 -- 13.8 Conclusions, 402 -- References, 402 -- 14 Finite-Difference Time-Domain Method 407 -- 14.1 FDTD Representation of EM Plane Waves, 407 -- 14.1.1 Maxwell Equations and Plane Waves, 408 -- 14.1.2 FDTD and Discretization, 410 -- 14.1.3 A One-Dimensional FDTD MATLAB Script, 417 -- 14.1.4 MATLAB-Based FDTD1D Package, 417. 14.2 Transmission Lines and Time-Domain Reflectometer, 429 -- 14.2.1 Transmission Line (TL) Theory, 430 -- 14.2.2 Plane Wave-Transmission Line Analogy, 434 -- 14.2.3 FDTD Representation of TL Equations, 437 -- 14.2.4 MATLAB-Based TDRMeter Package, 447 -- 14.2.5 Fourier Analysis and Reflection Characteristics, 454 -- 14.2.6 Laplace Analysis and Fault Identification, 456 -- 14.2.7 Step Response, 464 -- 14.3 1D FDTD with Second-Order Differential Equations, 468 -- 14.4 Two-Dimensional (2D) FDTD Modeling, 472 -- 14.4.1 Field Components and FDTD Equations, 476 -- 14.4.2 FDTD-Based Virtual Tool: MGL2D Package, 477 -- 14.4.3 Characteristic Examples, 479 -- 14.5 Canonical 2D Wedge Scattering Problem, 494 -- 14.5.1 Problem Postulation, 494 -- 14.5.2 Review of Analytical Models, 496 -- 14.5.3 The FDTD Model, 499 -- 14.5.4 Discretization and Dey-Mittra Approach, 502 -- 14.5.5 The WedgeFDTD Package and Examples, 505 -- 14.5.6 Wedge Diffraction and FDTD versus MoM, 510 -- 14.6 Conclusions, 512 -- References, 512 -- 15 Parabolic Equation Method 515 -- 15.1 Introduction, 516 -- 15.2 The Parabolic Equation (PE) Model, 518 -- 15.3 The Split-Step Parabolic Equation (SSPE) Propagation Tool, 520 -- 15.4 The Finite Element Method-Based PE Propagation Tool, 528 -- 15.5 Atmospheric Refractivity Effects, 531 -- 15.6 A 2D Surface Duct Scenario and Reference Solutions, 533 -- 15.7 LINPE Algorithm and Canonical Tests/Comparisons, 538 -- 15.8 The GrSSPE Package, 558 -- 15.9 The Single-Knife-Edge Problem, 566 -- 15.10 Accurate Source Modeling, 571 -- 15.11 Dielectric Slab Waveguide, 580 -- 15.11.1 Even and Odd Symmetric Solutions, 582 -- 15.11.2 The SSPE Propagator and Eigenvalue Extraction, 584 -- 15.11.3 The Matlab-Based DiSLAB Package, 585 -- 15.12 Conclusions, 591 -- References, 591 -- 16 Parallel Plate Waveguide Problem 595 -- 16.1 Introduction, 595 -- 16.2 Problem Postulation and Analytical Solutions: Revisited, 599 -- 16.2.1 Green's Function in Terms of Mode Summation, 602 -- 16.2.2 Mode Summation for a Tilted/Directive Antenna, 604. 16.2.3 Eigenray Representation, 606 -- 16.2.4 Hybrid Ray + Image Method, 613 -- 16.3 Numerical Models, 613 -- 16.3.1 Split Step Parabolic Equation Model, 613 -- 16.3.2 Finite-Difference Time-Domain Model, 617 -- 16.3.3 Method of Moments (MoM), 622 -- 16.4 Conclusions, 638 -- References, 639 -- Appendix A Introduction to MATLAB 643 -- Appendix B Suggested References 653 -- Appendix C Suggested Tutorials and Feature Articles 655 -- Index 659. |
Record Nr. | UNINA-9910830480003321 |
Sevgi Levent | ||
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2014] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Electromagnetic simulation using the FDTD method / / Dennis M. Sullivan |
Autore | Sullivan Dennis Michael <1949-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken [New Jersey] : , : Wiley, , c2013 |
Descrizione fisica | 1 online resource (198 p.) |
Disciplina | 537.01 |
Soggetto topico |
Electromagnetism - Computer simulation
Finite differences Time-domain analysis |
ISBN |
1-118-64670-3
1-118-64663-0 1-118-64668-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | One-Dimensional Simulation with the FDTD Method -- More on One-Dimensional Simulation -- Two-Dimensional Simulation -- Three-Dimensional Simulation -- Examples of Electromagnetic Simulation Using FDTD -- Quantum Simulation -- Appendix A: The Z Transform. |
Record Nr. | UNINA-9910139246503321 |
Sullivan Dennis Michael <1949-> | ||
Hoboken [New Jersey] : , : Wiley, , c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Electromagnetic simulation using the FDTD method / / Dennis M. Sullivan |
Autore | Sullivan Dennis Michael <1949-> |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken [New Jersey] : , : Wiley, , c2013 |
Descrizione fisica | 1 online resource (198 p.) |
Disciplina | 537.01 |
Soggetto topico |
Electromagnetism - Computer simulation
Finite differences Time-domain analysis |
ISBN |
1-118-64670-3
1-118-64663-0 1-118-64668-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | One-Dimensional Simulation with the FDTD Method -- More on One-Dimensional Simulation -- Two-Dimensional Simulation -- Three-Dimensional Simulation -- Examples of Electromagnetic Simulation Using FDTD -- Quantum Simulation -- Appendix A: The Z Transform. |
Record Nr. | UNINA-9910830974103321 |
Sullivan Dennis Michael <1949-> | ||
Hoboken [New Jersey] : , : Wiley, , c2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|