top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chetyre poėta : stikhobiograficheskie povesti : M.I︠U︡. Lermontov, N.A. Nekrasov, I.S. Nikitin, A.M. Gorʹkiĭ / / Ėduard Shevelev
Chetyre poėta : stikhobiograficheskie povesti : M.I︠U︡. Lermontov, N.A. Nekrasov, I.S. Nikitin, A.M. Gorʹkiĭ / / Ėduard Shevelev
Autore Shevelev Ėduard
Pubbl/distr/stampa IEEE
Disciplina 535/.42
Altri autori (Persone) AndronovI. V (Ivan V.)
Soggetto topico Diffraction
Waves - Diffraction
Electromagnetic waves - Diffraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996206241303316
Shevelev Ėduard  
IEEE
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Chetyre poėta : stikhobiograficheskie povesti : M.I︠U︡. Lermontov, N.A. Nekrasov, I.S. Nikitin, A.M. Gorʹkiĭ / / Ėduard Shevelev
Chetyre poėta : stikhobiograficheskie povesti : M.I︠U︡. Lermontov, N.A. Nekrasov, I.S. Nikitin, A.M. Gorʹkiĭ / / Ėduard Shevelev
Autore Shevelev Ėduard
Pubbl/distr/stampa IEEE
Disciplina 535/.42
Altri autori (Persone) AndronovI. V (Ivan V.)
Soggetto topico Diffraction
Waves - Diffraction
Electromagnetic waves - Diffraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910872563203321
Shevelev Ėduard  
IEEE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Days on Diffraction' 2004 : proceedings of the International Seminar Days on Diffraction' 2004, June 29-July 2, 2004, St. Petersburg, Russia / / [edited by I.V. Andronov]
Days on Diffraction' 2004 : proceedings of the International Seminar Days on Diffraction' 2004, June 29-July 2, 2004, St. Petersburg, Russia / / [edited by I.V. Andronov]
Pubbl/distr/stampa IEEE
Disciplina 535/.42
Altri autori (Persone) AndronovI. V (Ivan V.)
Soggetto topico Diffraction
Waves - Diffraction
Electromagnetic waves - Diffraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996206240803316
IEEE
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Days on Diffraction' 2004 : proceedings of the International Seminar Days on Diffraction' 2004, June 29-July 2, 2004, St. Petersburg, Russia / / [edited by I.V. Andronov]
Days on Diffraction' 2004 : proceedings of the International Seminar Days on Diffraction' 2004, June 29-July 2, 2004, St. Petersburg, Russia / / [edited by I.V. Andronov]
Pubbl/distr/stampa IEEE
Disciplina 535/.42
Altri autori (Persone) AndronovI. V (Ivan V.)
Soggetto topico Diffraction
Waves - Diffraction
Electromagnetic waves - Diffraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910872563903321
IEEE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic radiation, scattering, and diffraction / / Prabhakar H. Pathak and Robert J. Burkholder
Electromagnetic radiation, scattering, and diffraction / / Prabhakar H. Pathak and Robert J. Burkholder
Autore Pathak P. H (Prabhakar Harihar), <1942->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Descrizione fisica 1 online resource (1146 pages)
Disciplina 539.2
Collana IEEE Press Series on Electromagnetic Wave Theory Ser.
Soggetto topico Electromagnetic waves - Scattering
Electromagnetic waves - Diffraction
Electromagnetic waves
ISBN 1-119-81053-1
1-119-81052-3
1-119-81054-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- 1 Maxwell's Equations, Constitutive Relations, Wave Equation, and Polarization -- 1.1 Introductory Comments -- 1.2 Maxwell's Equations -- 1.3 Constitutive Relations -- 1.4 Frequency Domain Fields -- 1.5 Kramers-Kronig Relationship -- 1.6 Vector and Scalar Wave Equations -- 1.6.1 Vector Wave Equations for EM Fields -- 1.6.2 Scalar Wave Equations for EM Fields -- 1.7 Separable Solutions of the Source-Free Wave Equation in Rectangular Coordinates and for Isotropic Homogeneous Media. Plane Waves -- 1.8 Polarization of Plane Waves, Poincare Sphere, and Stokes Parameters -- 1.8.1 Polarization States -- 1.8.2 General Elliptical Polarization -- 1.8.3 Decomposition of a Polarization State into Circularly Polarized Components -- 1.8.4 Poincare Sphere for Describing Polarization States -- 1.9 Phase and Group Velocity -- 1.10 Separable Solutions of the Source-Free Wave Equation in Cylindrical and Spherical Coordinates and for Isotropic Homogeneous Media -- 1.10.1 Source-Free Cylindrical Wave Solutions -- 1.10.2 Source-Free Spherical Wave Solutions -- References -- 2 EM Boundary and Radiation Conditions -- 2.1 EM Field Behavior Across a Boundary Surface -- 2.2 Radiation Boundary Condition -- 2.3 Boundary Conditions at a Moving Interface -- 2.3.1 Nonrelativistic Moving Boundary Conditions -- 2.3.2 Derivation of the Nonrelativistic Field Transformations -- 2.3.3 EM Field Transformations Based on the Special Theory of Relativity -- 2.4 Constitutive Relations for a Moving Medium -- References -- 3 Plane Wave Propagation in Planar Layered Media -- 3.1 Introduction -- 3.2 Plane Wave Reection from a Planar Boundary Between Two Di erent Media -- 3.2.1 Perpendicular Polarization Case -- 3.2.2 Parallel Polarization Case -- 3.2.3 Brewster Angle θb.
3.2.4 Critical Angle θc -- 3.2.5 Plane Wave Incident on a Lossy Half Space -- 3.2.6 Doppler Shift for Wave Reection from a Moving Mirror -- 3.3 Reection and Transmission of a Plane Wave Incident on a Planar Stratified Isotropic Medium Using a Transmission Matrix Approach -- 3.4 Plane Waves in Anisotropic Homogeneous Media -- 3.5 State Space Formulation for Waves in Planar Anisotropic Layered Media -- 3.5.1 Development of State Space Based Field Equations -- 3.5.2 Reection and Transmission of Plane Waves at the Interface Between Two Anisotropic Half Spaces -- 3.5.3 Transmission Type Matrix Analysis of Plane Waves in Multilayered Anisotropic Media -- References -- 4 Plane Wave Spectral Representation for EM Fields -- 4.1 Introduction -- 4.2 PWS Development -- References -- 5 Electromagnetic Potentials and Fields of Sources in Unbounded Regions -- 5.1 Introduction to Vector and Scalar Potentials -- 5.2 Construction of the Solution for Ā -- 5.3 Calculation of Fields from Potentials -- 5.4 Time Dependent Potentials for Sources and Fields in Unbounded Regions -- 5.5 Potentials and Fields of a Moving Point Charge -- 5.6 Cerenkov Radiation -- 5.7 Direct Calculation of Fields of Sources in Unbounded Regions Using a Dyadic Green's Function -- 5.7.1 Fields of Sources in Unbounded, Isotropic, Homogeneous Media in Terms of a Closed Form Representation of Green's Dyadic, G0 -- 5.7.2 On the Singular Nature of G0(rr) for Observation Points Within the Source Region -- 5.7.3 Representation of the Green's Dyadic G0 in Terms of an Integral in the Wavenumber (k) Space -- 5.7.4 Electromagnetic Radiation by a Source in a General Bianisotropic Medium Using a Green's Dyadic Ga in k-Space -- References -- 6 Electromagnetic Field Theorems and Related Topics -- 6.1 Conservation of Charge -- 6.2 Conservation of Power -- 6.3 Conservation of Momentum -- 6.4 Radiation Pressure.
6.5 Duality Theorem -- 6.6 Reciprocity Theorems and Conservation of Reactions -- 6.6.1 The Lorentz Reciprocity Theorem -- 6.6.2 Reciprocity Theorem for Bianisotropic Media -- 6.7 Uniqueness Theorem -- 6.8 Image Theorems -- 6.9 Equivalence Theorems -- 6.9.1 Volume Equivalence Theorem for EM Scattering -- 6.9.2 A Surface Equivalence Theorem for EM Scattering -- 6.9.3 A Surface Equivalence Theorem for Antennas -- 6.10 Antenna Impedance -- 6.11 Antenna Equivalent Circuit -- 6.12 The Receiving Antenna Problem -- 6.13 Expressions for Antenna Mutual Coupling Based on Generalized Reciprocity Theorems -- 6.13.1 Circuit Form of the Reciprocity Theorem for Antenna Mutual Coupling -- 6.13.2 A Mixed Circuit Field Form of a Generalized Reciprocity Theorem for Antenna Mutual Coupling -- 6.13.3 A Mutual Admittance Expression for Slot Antennas -- 6.13.4 Antenna Mutual Coupling, Reaction Concept, and Antenna Measurements -- 6.14 Relation Between Antenna and Scattering Problems -- 6.14.1 Exterior Radiation by a Slot Aperture Antenna Configuration -- 6.14.2 Exterior Radiation by a Monopole Antenna Configuration -- 6.15 Radar Cross Section -- 6.16 Antenna Directive Gain -- 6.17 Field Decomposition Theorem -- References -- 7 Modal Techniques for the Analysis of Guided Waves, Resonant Cavities, and Periodic Structures -- 7.1 On Modal Analysis of Some Guided Wave Problems -- 7.2 Classification of Modal Fields in Uniform Guiding Structures -- 7.2.1 TEMz Guided waves -- 7.3 TMz Guided Waves -- 7.4 TEz Guided Waves -- 7.5 Modal Expansions in Closed Uniform Waveguides -- 7.5.1 TMz Modes -- 7.5.2 TEz Modes -- 7.5.3 Orthogonality of Modes in Closed Perfectly Conducting Uniform Waveguides -- 7.6 E ect of Losses in Closed Guided Wave Structures -- 7.7 Source Excited Uniform Closed Perfectly Conducting Waveguides -- 7.8 An Analysis of Some Closed Metallic Waveguides.
7.8.1 Modes in a Parallel Plate Waveguide -- 7.8.2 Modes in a Rectangular Waveguide -- 7.8.3 Modes in a Circular Waveguide -- 7.8.4 Coaxial Waveguide -- 7.8.5 Obstacles and Discontinuities in Waveguides -- 7.8.6 Modal Propagation Past a Slot in a Waveguide -- 7.9 Closed and Open Waveguides Containing Penetrable Materials and Coatings -- 7.9.1 Material-Loaded Closed PEC Waveguide -- 7.9.2 Material Slab Waveguide -- 7.9.3 Grounded Material Slab Waveguide -- 7.9.4 The Goubau Line -- 7.9.5 Circular Cylindrical Optical Fiber Waveguides -- 7.10 Modal Analysis of Resonators -- 7.10.1 Rectangular Waveguide Cavity Resonator -- 7.10.2 Circular Waveguide Cavity Resonator -- 7.10.3 Dielectric Resonators -- 7.11 Excitation of Resonant Cavities -- 7.12 Modal Analysis of Periodic Arrays -- 7.12.1 Floquet Modal Analysis of an Infinite Planar Periodic Array of Electric Current Sources -- 7.12.2 Floquet Modal Analysis of an Infinite Planar Periodic Array of Current Sources Configured in a Skewed Grid -- 7.13 Higher-Order Floquet Modes and Associated Grating Lobe Circle Diagrams for Infinite Planar Periodic Arrays -- 7.13.1 Grating Lobe Circle Diagrams -- 7.14 On Waves Guided and Radiated by Periodic Structures -- 7.15 Scattering by a Planar Periodic Array -- 7.15.1 Analysis of the EM Plane Wave Scattering by an Infinite Periodic Slot Array in a Planar PEC Screen -- 7.16 Finite 1-D and 2-D Periodic Array of Sources -- 7.16.1 Analysis of Finite 1-D Periodic Arrays for the Case of Uniform Source Distribution and Far Zone Observation -- 7.16.2 Analysis of Finite 2-D Periodic Arrays for the Case of Uniform Distribution and Far Zone Observation -- 7.16.3 Floquet Modal Representation for Near and Far Fields of 1-D Nonuniform Finite Periodic Array Distributions.
7.16.4 Floquet Modal Representation for Near and Far Fields of 2-D Nonuniform Planar Periodic Finite Array Distributions -- References -- 8 Green's Functions for the Analysis of One-Dimensional Source-Excited Wave Problems -- 8.1 Introduction to the Sturm-Liouville Form of Di erential Equation for 1-D Wave Problems -- 8.2 Formulation of the Solution to the Sturm-Liouville Problem via the 1-D Green's Function Approach -- 8.3 Conditions Under Which the Green's Function Is Symmetric -- 8.4 Construction of the Green's Function G(x|x') -- 8.4.1 General Procedure to Obtain G(x|x') -- 8.5 Alternative Simplified Construction of G(x|x') Valid for the SymmetricCase -- 8.6 On the Existence and Uniqueness of G(x|x') -- 8.7 Eigenfunction Expansion Representation for G(x|x') -- 8.8 Delta Function Completeness Relation and the Construction of Eigenfunctions from G(x|x') = U(x< -- )T(x)/W -- 8.9 Explicit Representation of G(x|x') Using Step Functions -- References -- 9 Applications of One-Dimensional Green's Function Approach for the Analysis of Single and Coupled Set of EM Source Excited Transmission Lines -- 9.1 Introduction -- 9.2 Analytical Formulation for a Single Transmission Line Made Up of Two Conductors -- 9.3 Wave Solution for the Two Conductor Lines When There Are No Impressed Sources Distributed Anywhere Within the Line -- 9.4 Wave Solution for the Case of Impressed Sources Placed Anywhere on a Two Conductor Line -- 9.5 Excitation of a Two Conductor Transmission Line by an Externally Incident lectromagnetic Wave -- 9.6 A Matrix Green's Function Approach for Analyzing a Set of Coupled Transmission Lines -- 9.7 Solution to the Special Case of Two Coupled Lines (N = 2) with Homogeneous Dirichlet or Neumann End Conditions -- 9.8 Development of the Multiport Impedance Matrix for a Set of Coupled Transmission Lines.
9.9 Coupled Transmission Line Problems with Voltage Sources and Load Impedances at the End Terminals.
Record Nr. UNINA-9910555068203321
Pathak P. H (Prabhakar Harihar), <1942->  
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic radiation, scattering, and diffraction / / Prabhakar H. Pathak and Robert J. Burkholder
Electromagnetic radiation, scattering, and diffraction / / Prabhakar H. Pathak and Robert J. Burkholder
Autore Pathak P. H (Prabhakar Harihar), <1942->
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Descrizione fisica 1 online resource (1146 pages)
Disciplina 539.2
Collana IEEE Press Series on Electromagnetic Wave Theory
Soggetto topico Electromagnetic waves - Scattering
Electromagnetic waves - Diffraction
Electromagnetic waves
ISBN 1-119-81053-1
1-119-81052-3
1-119-81054-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- 1 Maxwell's Equations, Constitutive Relations, Wave Equation, and Polarization -- 1.1 Introductory Comments -- 1.2 Maxwell's Equations -- 1.3 Constitutive Relations -- 1.4 Frequency Domain Fields -- 1.5 Kramers-Kronig Relationship -- 1.6 Vector and Scalar Wave Equations -- 1.6.1 Vector Wave Equations for EM Fields -- 1.6.2 Scalar Wave Equations for EM Fields -- 1.7 Separable Solutions of the Source-Free Wave Equation in Rectangular Coordinates and for Isotropic Homogeneous Media. Plane Waves -- 1.8 Polarization of Plane Waves, Poincare Sphere, and Stokes Parameters -- 1.8.1 Polarization States -- 1.8.2 General Elliptical Polarization -- 1.8.3 Decomposition of a Polarization State into Circularly Polarized Components -- 1.8.4 Poincare Sphere for Describing Polarization States -- 1.9 Phase and Group Velocity -- 1.10 Separable Solutions of the Source-Free Wave Equation in Cylindrical and Spherical Coordinates and for Isotropic Homogeneous Media -- 1.10.1 Source-Free Cylindrical Wave Solutions -- 1.10.2 Source-Free Spherical Wave Solutions -- References -- 2 EM Boundary and Radiation Conditions -- 2.1 EM Field Behavior Across a Boundary Surface -- 2.2 Radiation Boundary Condition -- 2.3 Boundary Conditions at a Moving Interface -- 2.3.1 Nonrelativistic Moving Boundary Conditions -- 2.3.2 Derivation of the Nonrelativistic Field Transformations -- 2.3.3 EM Field Transformations Based on the Special Theory of Relativity -- 2.4 Constitutive Relations for a Moving Medium -- References -- 3 Plane Wave Propagation in Planar Layered Media -- 3.1 Introduction -- 3.2 Plane Wave Reection from a Planar Boundary Between Two Di erent Media -- 3.2.1 Perpendicular Polarization Case -- 3.2.2 Parallel Polarization Case -- 3.2.3 Brewster Angle θb.
3.2.4 Critical Angle θc -- 3.2.5 Plane Wave Incident on a Lossy Half Space -- 3.2.6 Doppler Shift for Wave Reection from a Moving Mirror -- 3.3 Reection and Transmission of a Plane Wave Incident on a Planar Stratified Isotropic Medium Using a Transmission Matrix Approach -- 3.4 Plane Waves in Anisotropic Homogeneous Media -- 3.5 State Space Formulation for Waves in Planar Anisotropic Layered Media -- 3.5.1 Development of State Space Based Field Equations -- 3.5.2 Reection and Transmission of Plane Waves at the Interface Between Two Anisotropic Half Spaces -- 3.5.3 Transmission Type Matrix Analysis of Plane Waves in Multilayered Anisotropic Media -- References -- 4 Plane Wave Spectral Representation for EM Fields -- 4.1 Introduction -- 4.2 PWS Development -- References -- 5 Electromagnetic Potentials and Fields of Sources in Unbounded Regions -- 5.1 Introduction to Vector and Scalar Potentials -- 5.2 Construction of the Solution for Ā -- 5.3 Calculation of Fields from Potentials -- 5.4 Time Dependent Potentials for Sources and Fields in Unbounded Regions -- 5.5 Potentials and Fields of a Moving Point Charge -- 5.6 Cerenkov Radiation -- 5.7 Direct Calculation of Fields of Sources in Unbounded Regions Using a Dyadic Green's Function -- 5.7.1 Fields of Sources in Unbounded, Isotropic, Homogeneous Media in Terms of a Closed Form Representation of Green's Dyadic, G0 -- 5.7.2 On the Singular Nature of G0(rr) for Observation Points Within the Source Region -- 5.7.3 Representation of the Green's Dyadic G0 in Terms of an Integral in the Wavenumber (k) Space -- 5.7.4 Electromagnetic Radiation by a Source in a General Bianisotropic Medium Using a Green's Dyadic Ga in k-Space -- References -- 6 Electromagnetic Field Theorems and Related Topics -- 6.1 Conservation of Charge -- 6.2 Conservation of Power -- 6.3 Conservation of Momentum -- 6.4 Radiation Pressure.
6.5 Duality Theorem -- 6.6 Reciprocity Theorems and Conservation of Reactions -- 6.6.1 The Lorentz Reciprocity Theorem -- 6.6.2 Reciprocity Theorem for Bianisotropic Media -- 6.7 Uniqueness Theorem -- 6.8 Image Theorems -- 6.9 Equivalence Theorems -- 6.9.1 Volume Equivalence Theorem for EM Scattering -- 6.9.2 A Surface Equivalence Theorem for EM Scattering -- 6.9.3 A Surface Equivalence Theorem for Antennas -- 6.10 Antenna Impedance -- 6.11 Antenna Equivalent Circuit -- 6.12 The Receiving Antenna Problem -- 6.13 Expressions for Antenna Mutual Coupling Based on Generalized Reciprocity Theorems -- 6.13.1 Circuit Form of the Reciprocity Theorem for Antenna Mutual Coupling -- 6.13.2 A Mixed Circuit Field Form of a Generalized Reciprocity Theorem for Antenna Mutual Coupling -- 6.13.3 A Mutual Admittance Expression for Slot Antennas -- 6.13.4 Antenna Mutual Coupling, Reaction Concept, and Antenna Measurements -- 6.14 Relation Between Antenna and Scattering Problems -- 6.14.1 Exterior Radiation by a Slot Aperture Antenna Configuration -- 6.14.2 Exterior Radiation by a Monopole Antenna Configuration -- 6.15 Radar Cross Section -- 6.16 Antenna Directive Gain -- 6.17 Field Decomposition Theorem -- References -- 7 Modal Techniques for the Analysis of Guided Waves, Resonant Cavities, and Periodic Structures -- 7.1 On Modal Analysis of Some Guided Wave Problems -- 7.2 Classification of Modal Fields in Uniform Guiding Structures -- 7.2.1 TEMz Guided waves -- 7.3 TMz Guided Waves -- 7.4 TEz Guided Waves -- 7.5 Modal Expansions in Closed Uniform Waveguides -- 7.5.1 TMz Modes -- 7.5.2 TEz Modes -- 7.5.3 Orthogonality of Modes in Closed Perfectly Conducting Uniform Waveguides -- 7.6 E ect of Losses in Closed Guided Wave Structures -- 7.7 Source Excited Uniform Closed Perfectly Conducting Waveguides -- 7.8 An Analysis of Some Closed Metallic Waveguides.
7.8.1 Modes in a Parallel Plate Waveguide -- 7.8.2 Modes in a Rectangular Waveguide -- 7.8.3 Modes in a Circular Waveguide -- 7.8.4 Coaxial Waveguide -- 7.8.5 Obstacles and Discontinuities in Waveguides -- 7.8.6 Modal Propagation Past a Slot in a Waveguide -- 7.9 Closed and Open Waveguides Containing Penetrable Materials and Coatings -- 7.9.1 Material-Loaded Closed PEC Waveguide -- 7.9.2 Material Slab Waveguide -- 7.9.3 Grounded Material Slab Waveguide -- 7.9.4 The Goubau Line -- 7.9.5 Circular Cylindrical Optical Fiber Waveguides -- 7.10 Modal Analysis of Resonators -- 7.10.1 Rectangular Waveguide Cavity Resonator -- 7.10.2 Circular Waveguide Cavity Resonator -- 7.10.3 Dielectric Resonators -- 7.11 Excitation of Resonant Cavities -- 7.12 Modal Analysis of Periodic Arrays -- 7.12.1 Floquet Modal Analysis of an Infinite Planar Periodic Array of Electric Current Sources -- 7.12.2 Floquet Modal Analysis of an Infinite Planar Periodic Array of Current Sources Configured in a Skewed Grid -- 7.13 Higher-Order Floquet Modes and Associated Grating Lobe Circle Diagrams for Infinite Planar Periodic Arrays -- 7.13.1 Grating Lobe Circle Diagrams -- 7.14 On Waves Guided and Radiated by Periodic Structures -- 7.15 Scattering by a Planar Periodic Array -- 7.15.1 Analysis of the EM Plane Wave Scattering by an Infinite Periodic Slot Array in a Planar PEC Screen -- 7.16 Finite 1-D and 2-D Periodic Array of Sources -- 7.16.1 Analysis of Finite 1-D Periodic Arrays for the Case of Uniform Source Distribution and Far Zone Observation -- 7.16.2 Analysis of Finite 2-D Periodic Arrays for the Case of Uniform Distribution and Far Zone Observation -- 7.16.3 Floquet Modal Representation for Near and Far Fields of 1-D Nonuniform Finite Periodic Array Distributions.
7.16.4 Floquet Modal Representation for Near and Far Fields of 2-D Nonuniform Planar Periodic Finite Array Distributions -- References -- 8 Green's Functions for the Analysis of One-Dimensional Source-Excited Wave Problems -- 8.1 Introduction to the Sturm-Liouville Form of Di erential Equation for 1-D Wave Problems -- 8.2 Formulation of the Solution to the Sturm-Liouville Problem via the 1-D Green's Function Approach -- 8.3 Conditions Under Which the Green's Function Is Symmetric -- 8.4 Construction of the Green's Function G(x|x') -- 8.4.1 General Procedure to Obtain G(x|x') -- 8.5 Alternative Simplified Construction of G(x|x') Valid for the SymmetricCase -- 8.6 On the Existence and Uniqueness of G(x|x') -- 8.7 Eigenfunction Expansion Representation for G(x|x') -- 8.8 Delta Function Completeness Relation and the Construction of Eigenfunctions from G(x|x') = U(x< -- )T(x)/W -- 8.9 Explicit Representation of G(x|x') Using Step Functions -- References -- 9 Applications of One-Dimensional Green's Function Approach for the Analysis of Single and Coupled Set of EM Source Excited Transmission Lines -- 9.1 Introduction -- 9.2 Analytical Formulation for a Single Transmission Line Made Up of Two Conductors -- 9.3 Wave Solution for the Two Conductor Lines When There Are No Impressed Sources Distributed Anywhere Within the Line -- 9.4 Wave Solution for the Case of Impressed Sources Placed Anywhere on a Two Conductor Line -- 9.5 Excitation of a Two Conductor Transmission Line by an Externally Incident lectromagnetic Wave -- 9.6 A Matrix Green's Function Approach for Analyzing a Set of Coupled Transmission Lines -- 9.7 Solution to the Special Case of Two Coupled Lines (N = 2) with Homogeneous Dirichlet or Neumann End Conditions -- 9.8 Development of the Multiport Impedance Matrix for a Set of Coupled Transmission Lines.
9.9 Coupled Transmission Line Problems with Voltage Sources and Load Impedances at the End Terminals.
Record Nr. UNINA-9910830156503321
Pathak P. H (Prabhakar Harihar), <1942->  
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of the physical theory of diffraction / / Pyotr Ya. Ufimtsev
Fundamentals of the physical theory of diffraction / / Pyotr Ya. Ufimtsev
Autore Ufimtsev P. IA (Petr IAkovlevich)
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE : , : Wiley, , 2014
Descrizione fisica 1 online resource (497 pages) : illustrations
Disciplina 535/.42
Collana New York Academy of Sciences
Soggetto topico Diffractive scattering
Electromagnetic waves - Diffraction
ISBN 1-118-75371-2
1-306-68506-0
1-118-84869-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Foreword to the First Edition xv -- Preface to the First Edition xix -- Acknowledgments xxi -- Introduction xxiii -- 1 Basic Notions in Acoustic and Electromagnetic Diffraction Problems 1 -- 1.1 Formulation of the Diffraction Problem / 1 -- 1.2 Scattered Field in the Far Zone / 3 -- 1.3 Physical Optics / 7 -- 1.3.1 Definition of Physical Optics / 7 -- 1.3.2 Total Scattering Cross-Section / 10 -- 1.3.3 Optical Theorem / 11 -- 1.3.4 Introducing Shadow Radiation / 12 -- 1.3.5 Shadow Contour Theorem and the Total Scattering Cross-Section / 17 -- 1.3.6 Shadow Radiation and Reflected Field in the Far Zone / 20 -- 1.3.7 Shadow Radiation and Reflection from Opaque Objects / 22 -- 1.4 Electromagnetic Waves / 23 -- 1.4.1 Basic Field Equations and PO Backscattering / 23 -- 1.4.2 PO Field Components: Reflected Field and Shadow Radiation / 26 -- 1.4.3 Electromagnetic Reflection and Shadow Radiation from Opaque Objects / 28 -- 1.5 Physical Interpretations of Shadow Radiation / 31 -- 1.5.1 Shadow Field and Transverse Diffusion / 31 -- 1.5.2 Fresnel Diffraction and Forward Scattering / 32 -- 1.6 Summary of Properties of Physical Optics Approximation / 32 -- 1.7 Nonuniform Component of an Induced Surface Field / 33 -- Problems / 36 -- 2 Wedge Diffraction: Exact Solution and Asymptotics 49 -- 2.1 Classical Solutions / 49 -- 2.2 Transition to Plane Wave Excitation / 55 -- 2.3 Conversion of the Series Solution to the Sommerfeld Integrals / 57 -- 2.4 The Sommerfeld Ray Asymptotics / 61 -- 2.5 The Pauli Asymptotics / 63 -- 2.6 Uniform Asymptotics: Extension of the Pauli Technique / 68 -- 2.7 Fast Convergent Integrals and Uniform Asymptotics: The “Magic Zero” Procedure / 72 -- Problems / 76 -- 3 Wedge Diffraction: The Physical Optics Field 87 -- 3.1 Original PO Integrals / 87 -- 3.2 Conversion of PO Integrals to the Canonical Form / 90 -- 3.3 Fast Convergent Integrals and Asymptotics for the PO Diffracted Field / 94 -- Problems / 100 -- 4 Wedge Diffraction: Radiation by Fringe Components of Surface Sources 103.
4.1 Integrals and Asymptotics / 104 -- 4.2 Integral Forms of Functions f (1) and g(1) / 112 -- 4.3 Oblique Incidence of a Plane Wave at a Wedge / 114 -- 4.3.1 Acoustic Waves / 114 -- 4.3.2 Electromagnetic Waves / 118 -- Problems / 120 -- 5 First-Order Diffraction at Strips and Polygonal Cylinders 123 -- 5.1 Diffraction at a Strip / 124 -- 5.1.1 Physical Optics Part of the Scattered Field / 124 -- 5.1.2 Total Scattered Field / 128 -- 5.1.3 Numerical Analysis of the Scattered Field / 132 -- 5.1.4 First-Order PTD with Truncated Scattering Sources j(1) h / 135 -- 5.2 Diffraction at a Triangular Cylinder / 140 -- 5.2.1 Symmetric Scattering: PO Approximation / 141 -- 5.2.2 Backscattering: PO Approximation / 143 -- 5.2.3 Symmetric Scattering: First-Order PTD Approximation / 145 -- 5.2.4 Backscattering: First-Order PTD Approximation / 148 -- 5.2.5 Numerical Analysis of the Scattered Field / 150 -- Problems / 152 -- 6 Axially Symmetric Scattering of AcousticWaves at Bodies of Revolution 157 -- 6.1 Diffraction at a Canonical Conic Surface / 158 -- 6.1.1 Integrals for the Scattered Field / 159 -- 6.1.2 Ray Asymptotics / 160 -- 6.1.3 Focal Fields / 166 -- 6.1.4 Bessel Interpolations for the Field u(1) s,h / 167 -- 6.2 Scattering at a Disk / 169 -- 6.2.1 Physical Optics Approximation / 169 -- 6.2.2 Relationships Between Acoustic and Electromagnetic PO Fields / 171 -- 6.2.3 Field Generated by Fringe Scattering Sources / 172 -- 6.2.4 Total Scattered Field / 173 -- 6.3 Scattering at Cones: Focal Field / 176 -- 6.3.1 Asymptotic Approximations for the Field / 176 -- 6.3.2 Numerical Analysis of Backscattering / 179 -- 6.4 Bodies of Revolution with Nonzero Gaussian Curvature: Backscattered Focal Fields / 183 -- 6.4.1 PO Approximation / 184 -- 6.4.2 Total Backscattered Focal Field: First-Order PTD Asymptotics / 186 -- 6.4.3 Backscattering from Paraboloids / 186 -- 6.4.4 Backscattering from Spherical Segments / 192 -- 6.5 Bodies of Revolution with Nonzero Gaussian Curvature: Axially Symmetric Bistatic Scattering / 196.
6.5.1 Ray Asymptotics for the PO Field / 196 -- 6.5.2 Bessel Interpolations for the PO Field in the Region - �� ≤ �� ≤ / 200 -- 6.5.3 Bessel Interpolations for the PTD Field in the Region - �� ≤ �� ≤ / 200 -- 6.5.4 Asymptotics for the PTD Field in the Region 2�� < �� ≤ - �� Away from the GO Boundary �� = 2�� / 201 -- 6.5.5 Uniform Approximations for the PO Field in the Ray Region 2�� ≤ �� ≤ - ��, Including the GO Boundary �� = 2�� / 202 -- 6.5.6 Approximation of the PO Field in the Shadow Region for Reflected Rays / 205 -- Problems / 207 -- 7 Elementary Acoustic and Electromagnetic Edge Waves 211 -- 7.1 Elementary Strips on a Canonical Wedge / 212 -- 7.2 Integrals for j(1) s,h on Elementary Strips / 213 -- 7.3 Triple Integrals for Elementary Edge Waves / 217 -- 7.4 Transformation of Triple Integrals into One-Dimensional Integrals / 220 -- 7.5 General Asymptotics for Elementary Edge Waves / 225 -- 7.6 Analytic Properties of Elementary Edge Waves / 230 -- 7.7 Numerical Calculations of Acoustic Elementary Fringe Waves / 234 -- 7.8 Electromagnetic Elementary Edge Waves / 237 -- 7.8.1 Electromagnetic EEWs on the Diffraction Cone Outside the Wedge / 241 -- 7.8.2 Electromagnetic EEWs on the Diffraction Cone Inside the Wedge / 243 -- 7.8.3 Numerical Calculations of Electromagnetic Elementary Fringe Waves / 245 -- 7.9 Improved Theory of Elementary Edge Waves: Removal of the Grazing Singularity / 245 -- 7.9.1 Acoustic EEWs / 248 -- 7.9.2 Electromagnetic EEWs Generated by the Modified Nonuniform Current / 253 -- 7.10 Some References Related to Elementary Edge Waves / 256 -- Problems / 257 -- 8 Ray and Caustic Asymptotics for Edge Diffracted Waves 261 -- 8.1 Ray Asymptotics / 261 -- 8.1.1 Acoustic Waves / 261 -- 8.1.2 Electromagnetic Waves / 266 -- 8.1.3 Comments on Ray Asymptotics / 267 -- 8.2 Caustic Asymptotics / 269 -- 8.2.1 Acoustic waves / 269 -- 8.2.2 Electromagnetic Waves / 274 -- 8.3 Relationships between PTD and GTD / 275 -- Problems / 276 -- 9 Multiple Diffraction of Edge Waves: Grazing Incidence and Slope Diffraction 285.
9.1 Statement of the Problem and Related References / 285 -- 9.2 Grazing Diffraction / 286 -- 9.2.1 Acoustic Waves / 286 -- 9.2.2 Electromagnetic Waves / 290 -- 9.3 Slope Diffraction in Configuration of Figure 9.1 / 292 -- 9.3.1 Acoustic Waves / 292 -- 9.3.2 Electromagnetic Waves / 295 -- 9.4 Slope Diffraction: General Case / 296 -- 9.4.1 Acoustic Waves / 296 -- 9.4.2 Electromagnetic Waves / 299 -- Problems / 302 -- 10 Diffraction Interaction of Neighboring Edges on a Ruled Surface 305 -- 10.1 Diffraction at an Acoustically Hard Surface / 306 -- 10.2 Diffraction at an Acoustically Soft Surface / 309 -- 10.3 Diffraction of Electromagnetic Waves / 312 -- 10.4 Test Problem: Secondary Diffraction at a Strip / 314 -- 10.4.1 Diffraction at a Hard Strip / 314 -- 10.4.2 Diffraction at a Soft Strip / 317 -- Problems / 318 -- 11 Focusing of Multiple Acoustic Edge Waves Diffracted at a Convex Body of Revolution with a Flat Base 325 -- 11.1 Statement of the Problem and its Characteristic Features / 325 -- 11.2 Multiple Hard Diffraction / 327 -- 11.3 Multiple Soft Diffraction / 328 -- Problems / 330 -- 12 Focusing of Multiple Edge Waves Diffracted at a Disk 333 -- 12.1 Multiple Hard Diffraction / 334 -- 12.2 Multiple Soft Diffraction / 336 -- 12.3 Multiple Diffraction of Electromagnetic Waves / 340 -- Problems / 341 -- 13 Backscattering at a Finite-Length Cylinder 343 -- 13.1 Acoustic Waves / 343 -- 13.1.1 PO Approximation / 343 -- 13.1.2 Backscattering Produced by the Nonuniform Component j(1) / 347 -- 13.1.3 Total Backscattered Field / 352 -- 13.2 Electromagnetic Waves / 354 -- 13.2.1 E-polarization / 354 -- 13.2.2 H-polarization / 360 -- Problems / 362 -- 14 Bistatic Scattering at a Finite-Length Cylinder 365 -- 14.1 Acoustic Waves / 365 -- 14.1.1 PO Approximation / 366 -- 14.1.2 Shadow Radiation as a Part of the Physical Optics Field / 368 -- 14.1.3 PTD for Bistatic Scattering at a Hard Cylinder / 370 -- 14.1.4 Beams and Rays of the Scattered Field / 376 -- 14.1.5 PO Shooting-Through Rays and Their Cancellation by Fringe Rays / 381.
14.1.6 Refined Asymptotics for the Specular Beam Reflected from the Lateral Surface / 382 -- 14.2 Electromagnetic Waves / 386 -- 14.2.1 E-Polarization / 386 -- 14.2.2 H-Polarization / 388 -- 14.2.3 Refined Asymptotics for the Specular Beam Reflected from the Lateral Surface / 390 -- Problems / 393 -- Conclusion 397 -- References 399 -- Appendix to Chapter 4: MATLAB Codes for Two-Dimensional Fringe Waves and Figures (F. Hacivelioglu and L. Sevgi) 411 -- Appendix to Chapter 6: MATLAB Codes for Axial Backscattering at Bodies of Revolution (F. Hacivelioglu and L. Sevgi) 431 -- Appendix to Section 7.7: MATLAB Codes for Diffraction Coefficients of Acoustic Elementary Fringe Waves (F. Hacivelioglu and L. Sevgi) 439 -- Appendix to Section 7.8.3: MATLAB Codes for Diffraction Coefficients of Electromagnetic Elementary Fringe Waves (F. Hacivelioglu and L. Sevgi) 443 -- Appendix to Section 7.9.2: Field d⃗E (0) mod Radiated by Modified Uniform Currents ⃗J (0) mod Induced on Elementary Strips (P. Ya. Ufimtsev) 447 -- Index 451.
Record Nr. UNINA-9910794611603321
Ufimtsev P. IA (Petr IAkovlevich)  
Hoboken, New Jersey : , : IEEE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fundamentals of the physical theory of diffraction / / Pyotr Ya. Ufimtsev
Fundamentals of the physical theory of diffraction / / Pyotr Ya. Ufimtsev
Autore Ufimtsev P. IA (Petr IAkovlevich)
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : IEEE : , : Wiley, , 2014
Descrizione fisica 1 online resource (497 pages) : illustrations
Disciplina 535/.42
Collana New York Academy of Sciences
Soggetto topico Diffractive scattering
Electromagnetic waves - Diffraction
ISBN 1-118-75371-2
1-306-68506-0
1-118-84869-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface xiii -- Foreword to the First Edition xv -- Preface to the First Edition xix -- Acknowledgments xxi -- Introduction xxiii -- 1 Basic Notions in Acoustic and Electromagnetic Diffraction Problems 1 -- 1.1 Formulation of the Diffraction Problem / 1 -- 1.2 Scattered Field in the Far Zone / 3 -- 1.3 Physical Optics / 7 -- 1.3.1 Definition of Physical Optics / 7 -- 1.3.2 Total Scattering Cross-Section / 10 -- 1.3.3 Optical Theorem / 11 -- 1.3.4 Introducing Shadow Radiation / 12 -- 1.3.5 Shadow Contour Theorem and the Total Scattering Cross-Section / 17 -- 1.3.6 Shadow Radiation and Reflected Field in the Far Zone / 20 -- 1.3.7 Shadow Radiation and Reflection from Opaque Objects / 22 -- 1.4 Electromagnetic Waves / 23 -- 1.4.1 Basic Field Equations and PO Backscattering / 23 -- 1.4.2 PO Field Components: Reflected Field and Shadow Radiation / 26 -- 1.4.3 Electromagnetic Reflection and Shadow Radiation from Opaque Objects / 28 -- 1.5 Physical Interpretations of Shadow Radiation / 31 -- 1.5.1 Shadow Field and Transverse Diffusion / 31 -- 1.5.2 Fresnel Diffraction and Forward Scattering / 32 -- 1.6 Summary of Properties of Physical Optics Approximation / 32 -- 1.7 Nonuniform Component of an Induced Surface Field / 33 -- Problems / 36 -- 2 Wedge Diffraction: Exact Solution and Asymptotics 49 -- 2.1 Classical Solutions / 49 -- 2.2 Transition to Plane Wave Excitation / 55 -- 2.3 Conversion of the Series Solution to the Sommerfeld Integrals / 57 -- 2.4 The Sommerfeld Ray Asymptotics / 61 -- 2.5 The Pauli Asymptotics / 63 -- 2.6 Uniform Asymptotics: Extension of the Pauli Technique / 68 -- 2.7 Fast Convergent Integrals and Uniform Asymptotics: The “Magic Zero” Procedure / 72 -- Problems / 76 -- 3 Wedge Diffraction: The Physical Optics Field 87 -- 3.1 Original PO Integrals / 87 -- 3.2 Conversion of PO Integrals to the Canonical Form / 90 -- 3.3 Fast Convergent Integrals and Asymptotics for the PO Diffracted Field / 94 -- Problems / 100 -- 4 Wedge Diffraction: Radiation by Fringe Components of Surface Sources 103.
4.1 Integrals and Asymptotics / 104 -- 4.2 Integral Forms of Functions f (1) and g(1) / 112 -- 4.3 Oblique Incidence of a Plane Wave at a Wedge / 114 -- 4.3.1 Acoustic Waves / 114 -- 4.3.2 Electromagnetic Waves / 118 -- Problems / 120 -- 5 First-Order Diffraction at Strips and Polygonal Cylinders 123 -- 5.1 Diffraction at a Strip / 124 -- 5.1.1 Physical Optics Part of the Scattered Field / 124 -- 5.1.2 Total Scattered Field / 128 -- 5.1.3 Numerical Analysis of the Scattered Field / 132 -- 5.1.4 First-Order PTD with Truncated Scattering Sources j(1) h / 135 -- 5.2 Diffraction at a Triangular Cylinder / 140 -- 5.2.1 Symmetric Scattering: PO Approximation / 141 -- 5.2.2 Backscattering: PO Approximation / 143 -- 5.2.3 Symmetric Scattering: First-Order PTD Approximation / 145 -- 5.2.4 Backscattering: First-Order PTD Approximation / 148 -- 5.2.5 Numerical Analysis of the Scattered Field / 150 -- Problems / 152 -- 6 Axially Symmetric Scattering of AcousticWaves at Bodies of Revolution 157 -- 6.1 Diffraction at a Canonical Conic Surface / 158 -- 6.1.1 Integrals for the Scattered Field / 159 -- 6.1.2 Ray Asymptotics / 160 -- 6.1.3 Focal Fields / 166 -- 6.1.4 Bessel Interpolations for the Field u(1) s,h / 167 -- 6.2 Scattering at a Disk / 169 -- 6.2.1 Physical Optics Approximation / 169 -- 6.2.2 Relationships Between Acoustic and Electromagnetic PO Fields / 171 -- 6.2.3 Field Generated by Fringe Scattering Sources / 172 -- 6.2.4 Total Scattered Field / 173 -- 6.3 Scattering at Cones: Focal Field / 176 -- 6.3.1 Asymptotic Approximations for the Field / 176 -- 6.3.2 Numerical Analysis of Backscattering / 179 -- 6.4 Bodies of Revolution with Nonzero Gaussian Curvature: Backscattered Focal Fields / 183 -- 6.4.1 PO Approximation / 184 -- 6.4.2 Total Backscattered Focal Field: First-Order PTD Asymptotics / 186 -- 6.4.3 Backscattering from Paraboloids / 186 -- 6.4.4 Backscattering from Spherical Segments / 192 -- 6.5 Bodies of Revolution with Nonzero Gaussian Curvature: Axially Symmetric Bistatic Scattering / 196.
6.5.1 Ray Asymptotics for the PO Field / 196 -- 6.5.2 Bessel Interpolations for the PO Field in the Region - �� ≤ �� ≤ / 200 -- 6.5.3 Bessel Interpolations for the PTD Field in the Region - �� ≤ �� ≤ / 200 -- 6.5.4 Asymptotics for the PTD Field in the Region 2�� < �� ≤ - �� Away from the GO Boundary �� = 2�� / 201 -- 6.5.5 Uniform Approximations for the PO Field in the Ray Region 2�� ≤ �� ≤ - ��, Including the GO Boundary �� = 2�� / 202 -- 6.5.6 Approximation of the PO Field in the Shadow Region for Reflected Rays / 205 -- Problems / 207 -- 7 Elementary Acoustic and Electromagnetic Edge Waves 211 -- 7.1 Elementary Strips on a Canonical Wedge / 212 -- 7.2 Integrals for j(1) s,h on Elementary Strips / 213 -- 7.3 Triple Integrals for Elementary Edge Waves / 217 -- 7.4 Transformation of Triple Integrals into One-Dimensional Integrals / 220 -- 7.5 General Asymptotics for Elementary Edge Waves / 225 -- 7.6 Analytic Properties of Elementary Edge Waves / 230 -- 7.7 Numerical Calculations of Acoustic Elementary Fringe Waves / 234 -- 7.8 Electromagnetic Elementary Edge Waves / 237 -- 7.8.1 Electromagnetic EEWs on the Diffraction Cone Outside the Wedge / 241 -- 7.8.2 Electromagnetic EEWs on the Diffraction Cone Inside the Wedge / 243 -- 7.8.3 Numerical Calculations of Electromagnetic Elementary Fringe Waves / 245 -- 7.9 Improved Theory of Elementary Edge Waves: Removal of the Grazing Singularity / 245 -- 7.9.1 Acoustic EEWs / 248 -- 7.9.2 Electromagnetic EEWs Generated by the Modified Nonuniform Current / 253 -- 7.10 Some References Related to Elementary Edge Waves / 256 -- Problems / 257 -- 8 Ray and Caustic Asymptotics for Edge Diffracted Waves 261 -- 8.1 Ray Asymptotics / 261 -- 8.1.1 Acoustic Waves / 261 -- 8.1.2 Electromagnetic Waves / 266 -- 8.1.3 Comments on Ray Asymptotics / 267 -- 8.2 Caustic Asymptotics / 269 -- 8.2.1 Acoustic waves / 269 -- 8.2.2 Electromagnetic Waves / 274 -- 8.3 Relationships between PTD and GTD / 275 -- Problems / 276 -- 9 Multiple Diffraction of Edge Waves: Grazing Incidence and Slope Diffraction 285.
9.1 Statement of the Problem and Related References / 285 -- 9.2 Grazing Diffraction / 286 -- 9.2.1 Acoustic Waves / 286 -- 9.2.2 Electromagnetic Waves / 290 -- 9.3 Slope Diffraction in Configuration of Figure 9.1 / 292 -- 9.3.1 Acoustic Waves / 292 -- 9.3.2 Electromagnetic Waves / 295 -- 9.4 Slope Diffraction: General Case / 296 -- 9.4.1 Acoustic Waves / 296 -- 9.4.2 Electromagnetic Waves / 299 -- Problems / 302 -- 10 Diffraction Interaction of Neighboring Edges on a Ruled Surface 305 -- 10.1 Diffraction at an Acoustically Hard Surface / 306 -- 10.2 Diffraction at an Acoustically Soft Surface / 309 -- 10.3 Diffraction of Electromagnetic Waves / 312 -- 10.4 Test Problem: Secondary Diffraction at a Strip / 314 -- 10.4.1 Diffraction at a Hard Strip / 314 -- 10.4.2 Diffraction at a Soft Strip / 317 -- Problems / 318 -- 11 Focusing of Multiple Acoustic Edge Waves Diffracted at a Convex Body of Revolution with a Flat Base 325 -- 11.1 Statement of the Problem and its Characteristic Features / 325 -- 11.2 Multiple Hard Diffraction / 327 -- 11.3 Multiple Soft Diffraction / 328 -- Problems / 330 -- 12 Focusing of Multiple Edge Waves Diffracted at a Disk 333 -- 12.1 Multiple Hard Diffraction / 334 -- 12.2 Multiple Soft Diffraction / 336 -- 12.3 Multiple Diffraction of Electromagnetic Waves / 340 -- Problems / 341 -- 13 Backscattering at a Finite-Length Cylinder 343 -- 13.1 Acoustic Waves / 343 -- 13.1.1 PO Approximation / 343 -- 13.1.2 Backscattering Produced by the Nonuniform Component j(1) / 347 -- 13.1.3 Total Backscattered Field / 352 -- 13.2 Electromagnetic Waves / 354 -- 13.2.1 E-polarization / 354 -- 13.2.2 H-polarization / 360 -- Problems / 362 -- 14 Bistatic Scattering at a Finite-Length Cylinder 365 -- 14.1 Acoustic Waves / 365 -- 14.1.1 PO Approximation / 366 -- 14.1.2 Shadow Radiation as a Part of the Physical Optics Field / 368 -- 14.1.3 PTD for Bistatic Scattering at a Hard Cylinder / 370 -- 14.1.4 Beams and Rays of the Scattered Field / 376 -- 14.1.5 PO Shooting-Through Rays and Their Cancellation by Fringe Rays / 381.
14.1.6 Refined Asymptotics for the Specular Beam Reflected from the Lateral Surface / 382 -- 14.2 Electromagnetic Waves / 386 -- 14.2.1 E-Polarization / 386 -- 14.2.2 H-Polarization / 388 -- 14.2.3 Refined Asymptotics for the Specular Beam Reflected from the Lateral Surface / 390 -- Problems / 393 -- Conclusion 397 -- References 399 -- Appendix to Chapter 4: MATLAB Codes for Two-Dimensional Fringe Waves and Figures (F. Hacivelioglu and L. Sevgi) 411 -- Appendix to Chapter 6: MATLAB Codes for Axial Backscattering at Bodies of Revolution (F. Hacivelioglu and L. Sevgi) 431 -- Appendix to Section 7.7: MATLAB Codes for Diffraction Coefficients of Acoustic Elementary Fringe Waves (F. Hacivelioglu and L. Sevgi) 439 -- Appendix to Section 7.8.3: MATLAB Codes for Diffraction Coefficients of Electromagnetic Elementary Fringe Waves (F. Hacivelioglu and L. Sevgi) 443 -- Appendix to Section 7.9.2: Field d⃗E (0) mod Radiated by Modified Uniform Currents ⃗J (0) mod Induced on Elementary Strips (P. Ya. Ufimtsev) 447 -- Index 451.
Record Nr. UNINA-9910828287003321
Ufimtsev P. IA (Petr IAkovlevich)  
Hoboken, New Jersey : , : IEEE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
International Seminar : proceedings : 29-31 May 2001, Saint Petersburg, Russia / / Institute of Electrical and Electronics Engineers
International Seminar : proceedings : 29-31 May 2001, Saint Petersburg, Russia / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2001
Descrizione fisica 1 online resource (214 pages)
Disciplina 535.42
Altri autori (Persone) AndronovI. V (Ivan V.)
Soggetto topico Diffraction
Waves - Diffraction
Electromagnetic waves - Diffraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996206739303316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2001
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
International Seminar Day on Diffraction : millennium workshop : proceedings : May 29-June 1, 2000, St. Petersburg, Russia / / [edited by I.V. Anfronov]
International Seminar Day on Diffraction : millennium workshop : proceedings : May 29-June 1, 2000, St. Petersburg, Russia / / [edited by I.V. Anfronov]
Pubbl/distr/stampa IEEE
Altri autori (Persone) AndronovI. V (Ivan V.)
Soggetto topico Diffraction
Waves - Diffraction
Electromagnetic waves - Diffraction
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti International Seminar Day on Diffraction Millennium Workshop
Record Nr. UNISA-996217253303316
IEEE
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui