top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advanced modeling in computational electromagnetic compatibility [[electronic resource] /] / Dragan Poljak
Advanced modeling in computational electromagnetic compatibility [[electronic resource] /] / Dragan Poljak
Autore Poljak D (Dragan)
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (516 p.)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility - Mathematical models
Electromagnetic compatibility - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-280-82227-9
9786610822270
0-470-11688-9
0-470-11687-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; CONTENTS; PREFACE; PART I: FUNDAMENTAL CONCEPTS IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; 1. Introduction to Computational Electromagnetics and Electromagnetic Compatibility; 1.1 Historical Note on Modeling in Electromagnetics; 1.2 Electromagnetic Compatibility and Electromagnetic Interference; 1.2.1 EMC Computational Models and Solution Methods; 1.2.2 Classification of EMC Models; 1.2.3 Summary Remarks on EMC Modeling; 1.3 References; 2. Fundamentals of Electromagnetic Theory; 2.1 Differential Form of Maxwell Equations
2.2 Integral Form of Maxwell Equations2.3 Maxwell Equations for Moving Media; 2.4 The Continuity Equation; 2.5 Ohm's Law; 2.6 Conservation Law in the Electromagnetic Field; 2.7 The Electromagnetic Wave Equations; 2.8 Boundary Relationships for Discontinuities in Material Properties; 2.9 The Electromagnetic Potentials; 2.10 Boundary Relationships for Potential Functions; 2.11 Potential Wave Equations; 2.11.1 Coulomb Gauge; 2.11.2 Diffusion Gauge; 2.11.3 Lorentz Gauge; 2.12 Retarded Potentials; 2.13 General Boundary Conditions and Uniqueness Theorem; 2.14 Electric and Magnetic Walls
2.15 The Lagrangian Form of Electromagnetic Field Laws2.15.1 Lagrangian Formulation and Hamilton Variational Principle; 2.15.2 Lagrangian Formulation and Hamilton Variational Principle in Electromagnetics; 2.16 Complex Phasor Notation of Time-Harmonic Electromagnetic Fields; 2.16.1 Poyinting Theorem for Complex Phasors; 2.16.2 Complex Phasor Form of Electromagnetic Wave Equations; 2.16.3 The Retarded Potentials for the Time-Harmonic Fields; 2.17 Transmission Line Theory; 2.17.1 Field Coupling Using Transmission Line Models
2.17.2 Derivation of Telegrapher's Equation for the Two-Wire Transmission Line2.18 Plane Wave Propagation; 2.19 Radiation; 2.19.1 Radiation Mechanism; 2.19.2 Hertzian Dipole; 2.19.3 Fundamental Antenna Parameters; 2.19.4 Linear Antennas; 2.20 References; 3 Introduction to Numerical Methods in Electromagnetics; 3.1 Analytical Versus Numerical Methods; 3.1.1 Frequency and Time Domain Modeling; 3.2 Overview of Numerical Methods: Domain, Boundary, and Source Simulation; 3.2.1 Modeling of Problems via the Domain Methods: FDM and FEM
3.2.2 Modeling of Problems via the BEM: Direct and Indirect Approach3.3 The Finite Difference Method; 3.3.1 One-Dimensional FDM; 3.3.2 Two-Dimensional FDM; 3.4 The Finite Element Method; 3.4.1 Basic Concepts of FEM; 3.4.2 One-Dimensional FEM; 3.4.3 Two-Dimensional FEM; 3.5 The Boundary Element Method; 3.5.1 Integral Equation Formulation; 3.5.2 Boundary Element Discretization; 3.5.3 Computational Example for 2D Static Problem; 3.6 References; 4 Static Field Analysis; 4.1 Electrostatic Fields; 4.2 Magnetostatic Fields; 4.3 Modeling of Static Field Problems
4.3.1 Integral Equations in Electrostatics Using Sources
Record Nr. UNINA-9910143678003321
Poljak D (Dragan)  
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced modeling in computational electromagnetic compatibility [[electronic resource] /] / Dragan Poljak
Advanced modeling in computational electromagnetic compatibility [[electronic resource] /] / Dragan Poljak
Autore Poljak D (Dragan)
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (516 p.)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility - Mathematical models
Electromagnetic compatibility - Data processing
ISBN 1-280-82227-9
9786610822270
0-470-11688-9
0-470-11687-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; CONTENTS; PREFACE; PART I: FUNDAMENTAL CONCEPTS IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; 1. Introduction to Computational Electromagnetics and Electromagnetic Compatibility; 1.1 Historical Note on Modeling in Electromagnetics; 1.2 Electromagnetic Compatibility and Electromagnetic Interference; 1.2.1 EMC Computational Models and Solution Methods; 1.2.2 Classification of EMC Models; 1.2.3 Summary Remarks on EMC Modeling; 1.3 References; 2. Fundamentals of Electromagnetic Theory; 2.1 Differential Form of Maxwell Equations
2.2 Integral Form of Maxwell Equations2.3 Maxwell Equations for Moving Media; 2.4 The Continuity Equation; 2.5 Ohm's Law; 2.6 Conservation Law in the Electromagnetic Field; 2.7 The Electromagnetic Wave Equations; 2.8 Boundary Relationships for Discontinuities in Material Properties; 2.9 The Electromagnetic Potentials; 2.10 Boundary Relationships for Potential Functions; 2.11 Potential Wave Equations; 2.11.1 Coulomb Gauge; 2.11.2 Diffusion Gauge; 2.11.3 Lorentz Gauge; 2.12 Retarded Potentials; 2.13 General Boundary Conditions and Uniqueness Theorem; 2.14 Electric and Magnetic Walls
2.15 The Lagrangian Form of Electromagnetic Field Laws2.15.1 Lagrangian Formulation and Hamilton Variational Principle; 2.15.2 Lagrangian Formulation and Hamilton Variational Principle in Electromagnetics; 2.16 Complex Phasor Notation of Time-Harmonic Electromagnetic Fields; 2.16.1 Poyinting Theorem for Complex Phasors; 2.16.2 Complex Phasor Form of Electromagnetic Wave Equations; 2.16.3 The Retarded Potentials for the Time-Harmonic Fields; 2.17 Transmission Line Theory; 2.17.1 Field Coupling Using Transmission Line Models
2.17.2 Derivation of Telegrapher's Equation for the Two-Wire Transmission Line2.18 Plane Wave Propagation; 2.19 Radiation; 2.19.1 Radiation Mechanism; 2.19.2 Hertzian Dipole; 2.19.3 Fundamental Antenna Parameters; 2.19.4 Linear Antennas; 2.20 References; 3 Introduction to Numerical Methods in Electromagnetics; 3.1 Analytical Versus Numerical Methods; 3.1.1 Frequency and Time Domain Modeling; 3.2 Overview of Numerical Methods: Domain, Boundary, and Source Simulation; 3.2.1 Modeling of Problems via the Domain Methods: FDM and FEM
3.2.2 Modeling of Problems via the BEM: Direct and Indirect Approach3.3 The Finite Difference Method; 3.3.1 One-Dimensional FDM; 3.3.2 Two-Dimensional FDM; 3.4 The Finite Element Method; 3.4.1 Basic Concepts of FEM; 3.4.2 One-Dimensional FEM; 3.4.3 Two-Dimensional FEM; 3.5 The Boundary Element Method; 3.5.1 Integral Equation Formulation; 3.5.2 Boundary Element Discretization; 3.5.3 Computational Example for 2D Static Problem; 3.6 References; 4 Static Field Analysis; 4.1 Electrostatic Fields; 4.2 Magnetostatic Fields; 4.3 Modeling of Static Field Problems
4.3.1 Integral Equations in Electrostatics Using Sources
Record Nr. UNINA-9910829809003321
Poljak D (Dragan)  
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advanced modeling in computational electromagnetic compatibility [[electronic resource] /] / Dragan Poljak
Advanced modeling in computational electromagnetic compatibility [[electronic resource] /] / Dragan Poljak
Autore Poljak D (Dragan)
Pubbl/distr/stampa Hoboken, N.J., : Wiley-Interscience, c2007
Descrizione fisica 1 online resource (516 p.)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility - Mathematical models
Electromagnetic compatibility - Data processing
ISBN 1-280-82227-9
9786610822270
0-470-11688-9
0-470-11687-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ADVANCED MODELING IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; CONTENTS; PREFACE; PART I: FUNDAMENTAL CONCEPTS IN COMPUTATIONAL ELECTROMAGNETIC COMPATIBILITY; 1. Introduction to Computational Electromagnetics and Electromagnetic Compatibility; 1.1 Historical Note on Modeling in Electromagnetics; 1.2 Electromagnetic Compatibility and Electromagnetic Interference; 1.2.1 EMC Computational Models and Solution Methods; 1.2.2 Classification of EMC Models; 1.2.3 Summary Remarks on EMC Modeling; 1.3 References; 2. Fundamentals of Electromagnetic Theory; 2.1 Differential Form of Maxwell Equations
2.2 Integral Form of Maxwell Equations2.3 Maxwell Equations for Moving Media; 2.4 The Continuity Equation; 2.5 Ohm's Law; 2.6 Conservation Law in the Electromagnetic Field; 2.7 The Electromagnetic Wave Equations; 2.8 Boundary Relationships for Discontinuities in Material Properties; 2.9 The Electromagnetic Potentials; 2.10 Boundary Relationships for Potential Functions; 2.11 Potential Wave Equations; 2.11.1 Coulomb Gauge; 2.11.2 Diffusion Gauge; 2.11.3 Lorentz Gauge; 2.12 Retarded Potentials; 2.13 General Boundary Conditions and Uniqueness Theorem; 2.14 Electric and Magnetic Walls
2.15 The Lagrangian Form of Electromagnetic Field Laws2.15.1 Lagrangian Formulation and Hamilton Variational Principle; 2.15.2 Lagrangian Formulation and Hamilton Variational Principle in Electromagnetics; 2.16 Complex Phasor Notation of Time-Harmonic Electromagnetic Fields; 2.16.1 Poyinting Theorem for Complex Phasors; 2.16.2 Complex Phasor Form of Electromagnetic Wave Equations; 2.16.3 The Retarded Potentials for the Time-Harmonic Fields; 2.17 Transmission Line Theory; 2.17.1 Field Coupling Using Transmission Line Models
2.17.2 Derivation of Telegrapher's Equation for the Two-Wire Transmission Line2.18 Plane Wave Propagation; 2.19 Radiation; 2.19.1 Radiation Mechanism; 2.19.2 Hertzian Dipole; 2.19.3 Fundamental Antenna Parameters; 2.19.4 Linear Antennas; 2.20 References; 3 Introduction to Numerical Methods in Electromagnetics; 3.1 Analytical Versus Numerical Methods; 3.1.1 Frequency and Time Domain Modeling; 3.2 Overview of Numerical Methods: Domain, Boundary, and Source Simulation; 3.2.1 Modeling of Problems via the Domain Methods: FDM and FEM
3.2.2 Modeling of Problems via the BEM: Direct and Indirect Approach3.3 The Finite Difference Method; 3.3.1 One-Dimensional FDM; 3.3.2 Two-Dimensional FDM; 3.4 The Finite Element Method; 3.4.1 Basic Concepts of FEM; 3.4.2 One-Dimensional FEM; 3.4.3 Two-Dimensional FEM; 3.5 The Boundary Element Method; 3.5.1 Integral Equation Formulation; 3.5.2 Boundary Element Discretization; 3.5.3 Computational Example for 2D Static Problem; 3.6 References; 4 Static Field Analysis; 4.1 Electrostatic Fields; 4.2 Magnetostatic Fields; 4.3 Modeling of Static Field Problems
4.3.1 Integral Equations in Electrostatics Using Sources
Record Nr. UNINA-9910841696203321
Poljak D (Dragan)  
Hoboken, N.J., : Wiley-Interscience, c2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Electromagnetic theory of reverberation chambers / / D. A. Hill
Electromagnetic theory of reverberation chambers / / D. A. Hill
Autore Hill D. A
Pubbl/distr/stampa Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1998
Descrizione fisica 1 online resource
Altri autori (Persone) HillD. A
Collana NIST technical note
Soggetto topico Electromagnetic compatibility - Mathematical models
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910711202803321
Hill D. A  
Gaithersburg, MD : , : U.S. Dept. of Commerce, National Institute of Standards and Technology, , 1998
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
EMC analysis methods and computational models / by Frederick M. Tesche, Michel V. Ianoz, Torbjorn Karlsson
EMC analysis methods and computational models / by Frederick M. Tesche, Michel V. Ianoz, Torbjorn Karlsson
Autore Tesche, Frederick M.
Pubbl/distr/stampa New York : John Wiley & Sons, Inc., c1997
Descrizione fisica xxvi, 623 p. : ill. ; 24 cm
Disciplina 621.382
Altri autori (Persone) Ianoz, Michel V.
Karlsson, Torbjorn
Soggetto topico Electromagnetic compatibility - Mathematical models
ISBN 047115573X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001889589707536
Tesche, Frederick M.  
New York : John Wiley & Sons, Inc., c1997
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Radiating non-uniform transmission line systems and the partial element equivalent circuit method [[electronic resource] /] / Jurgen Nitsch, Frank Gronwald and Günter Wollenberg
Radiating non-uniform transmission line systems and the partial element equivalent circuit method [[electronic resource] /] / Jurgen Nitsch, Frank Gronwald and Günter Wollenberg
Autore Nitsch Jürgen
Pubbl/distr/stampa Hoboken, NJ, : J. Wiley, c2009
Descrizione fisica 1 online resource (350 p.)
Disciplina 621.38131
621.382/24
Altri autori (Persone) GronwaldFrank
WollenbergGünter
Soggetto topico Electromagnetic compatibility - Mathematical models
Electric lines - Mathematical models
Electronic circuit design - Data processing
Electronic apparatus and appliances - Design and construction - Data processing
ISBN 1-282-38498-8
9786612384981
0-470-68242-6
0-470-68241-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RADIATING NONUNIFORM TRANSMISSION-LINE SYSTEMS AND THE PARTIAL ELEMENT EQUIVALENT CIRCUIT METHOD; Contents; Preface; References; Acknowledgments; List of Symbols; Introduction; References; 1 Fundamentals of Electrodynamics; 1.1 Maxwell Equations Derived from Conservation Laws - an Axiomatic Approach; 1.1.1 Charge Conservation; 1.1.2 Lorentz Force and Magnetic Flux Conservation; 1.1.3 Constitutive Relations and the Properties of Space time; 1.1.4 Remarks; 1.2 The Electromagnetic Field as a Gauge Field - a Gauge Field Approach
1.2.1 Differences of Physical Fields that are Described by Reference Systems 1.2.2 The Phase of Microscopic Matter Fields; 1.2.3 The Reference Frame of a Phase; 1.2.4 The Gauge Fields of a Phase; 1.2.5 Dynamics of the Gauge Field; 1.3 The Relation Between the Axiomatic Approach and the Gauge Field Approach; 1.3.1 No ether Theorem and Electric Charge Conservation; 1.3.2 Minimal Coupling and the Lorentz Force; 1.3.3 Bianchi Identity and Magnetic Flux Conservation; 1.3.4 Gauge Approach and Constitutive Relations; 1.4 Solutions of Maxwell Equations; 1.4.1 Wave Equations
1.4.1.1 Decoupling of Maxwell Equations 1.4.1.2 Equations of Motion for the Electromagnetic Potentials; 1.4.1.3 Maxwell Equations in the Frequency Domain and Helmholtz Equations; 1.4.1.4 Maxwell Equations in Reciprocal Space; 1.4.2 Boundary Conditions at Interfaces; 1.4.3 Dynamical and Nondynamical Components of the Electromagnetic Field; 1.4.3.1 Helmholtz's Vector Theorem, Longitudinal and Transverse Fields; 1.4.3.2 Nondynamical Maxwell Equations as Boundary Conditions in Time; 1.4.3.3 Longitudinal Part of the Maxwell Equations; 1.4.3.4 Transverse Part of the Maxwell Equations
1.4.4 Electromagnetic Energy and the Singularities of the Electromagnetic Field 1.4.5 Coulomb Fields and Radiation Fields; 1.4.6 The Green's Function Method; 1.4.6.1 Basic Ideas; 1.4.6.2 Self-Adjointness of Differential Operators and Boundary Conditions; 1.4.6.3 General Solutions of Maxwell Equations; 1.4.6.4 Basic Relations Between Electromagnetic Green's Functions; 1.5 Boundary Value Problems and Integral Equations; 1.5.1 Surface Integral Equations in Short; 1.5.2 The Standard Electric Field Integral Equations of Antenna Theory and Radiating Nonuniform Transmission-Line Systems
1.5.2.1 Pocklington's Equation 1.5.2.2 Hall ́en's Equation; 1.5.2.3 Mixed-Potential Integral Equation; 1.5.2.4 Schelkunoff 's Equation; References; 2 Nonuniform Transmission-Line Systems; 2.1 Multiconductor Transmission Lines: General Equations; 2.1.1 Geometric Representation of Nonuniform Transmission Lines; 2.1.1.1 Local Coordinate System; 2.1.1.2 Tangential Surface Vector; 2.1.1.3 Volume and Surface Integrals; 2.1.2 Derivation of Generalized Transmission-Line Equations; 2.1.2.1 Continuity Equation; 2.1.2.2 Reconstruction of the Densities; 2.1.3 Mixed Potential Integral Equation
2.1.3.1 Thin-Wire Approximation
Record Nr. UNINA-9910139970503321
Nitsch Jürgen  
Hoboken, NJ, : J. Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Radiating non-uniform transmission line systems and the partial element equivalent circuit method [[electronic resource] /] / Jurgen Nitsch, Frank Gronwald and Günter Wollenberg
Radiating non-uniform transmission line systems and the partial element equivalent circuit method [[electronic resource] /] / Jurgen Nitsch, Frank Gronwald and Günter Wollenberg
Autore Nitsch Jürgen
Pubbl/distr/stampa Hoboken, NJ, : J. Wiley, c2009
Descrizione fisica 1 online resource (350 p.)
Disciplina 621.38131
621.382/24
Altri autori (Persone) GronwaldFrank
WollenbergGünter
Soggetto topico Electromagnetic compatibility - Mathematical models
Electric lines - Mathematical models
Electronic circuit design - Data processing
Electronic apparatus and appliances - Design and construction - Data processing
ISBN 1-282-38498-8
9786612384981
0-470-68242-6
0-470-68241-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto RADIATING NONUNIFORM TRANSMISSION-LINE SYSTEMS AND THE PARTIAL ELEMENT EQUIVALENT CIRCUIT METHOD; Contents; Preface; References; Acknowledgments; List of Symbols; Introduction; References; 1 Fundamentals of Electrodynamics; 1.1 Maxwell Equations Derived from Conservation Laws - an Axiomatic Approach; 1.1.1 Charge Conservation; 1.1.2 Lorentz Force and Magnetic Flux Conservation; 1.1.3 Constitutive Relations and the Properties of Space time; 1.1.4 Remarks; 1.2 The Electromagnetic Field as a Gauge Field - a Gauge Field Approach
1.2.1 Differences of Physical Fields that are Described by Reference Systems 1.2.2 The Phase of Microscopic Matter Fields; 1.2.3 The Reference Frame of a Phase; 1.2.4 The Gauge Fields of a Phase; 1.2.5 Dynamics of the Gauge Field; 1.3 The Relation Between the Axiomatic Approach and the Gauge Field Approach; 1.3.1 No ether Theorem and Electric Charge Conservation; 1.3.2 Minimal Coupling and the Lorentz Force; 1.3.3 Bianchi Identity and Magnetic Flux Conservation; 1.3.4 Gauge Approach and Constitutive Relations; 1.4 Solutions of Maxwell Equations; 1.4.1 Wave Equations
1.4.1.1 Decoupling of Maxwell Equations 1.4.1.2 Equations of Motion for the Electromagnetic Potentials; 1.4.1.3 Maxwell Equations in the Frequency Domain and Helmholtz Equations; 1.4.1.4 Maxwell Equations in Reciprocal Space; 1.4.2 Boundary Conditions at Interfaces; 1.4.3 Dynamical and Nondynamical Components of the Electromagnetic Field; 1.4.3.1 Helmholtz's Vector Theorem, Longitudinal and Transverse Fields; 1.4.3.2 Nondynamical Maxwell Equations as Boundary Conditions in Time; 1.4.3.3 Longitudinal Part of the Maxwell Equations; 1.4.3.4 Transverse Part of the Maxwell Equations
1.4.4 Electromagnetic Energy and the Singularities of the Electromagnetic Field 1.4.5 Coulomb Fields and Radiation Fields; 1.4.6 The Green's Function Method; 1.4.6.1 Basic Ideas; 1.4.6.2 Self-Adjointness of Differential Operators and Boundary Conditions; 1.4.6.3 General Solutions of Maxwell Equations; 1.4.6.4 Basic Relations Between Electromagnetic Green's Functions; 1.5 Boundary Value Problems and Integral Equations; 1.5.1 Surface Integral Equations in Short; 1.5.2 The Standard Electric Field Integral Equations of Antenna Theory and Radiating Nonuniform Transmission-Line Systems
1.5.2.1 Pocklington's Equation 1.5.2.2 Hall ́en's Equation; 1.5.2.3 Mixed-Potential Integral Equation; 1.5.2.4 Schelkunoff 's Equation; References; 2 Nonuniform Transmission-Line Systems; 2.1 Multiconductor Transmission Lines: General Equations; 2.1.1 Geometric Representation of Nonuniform Transmission Lines; 2.1.1.1 Local Coordinate System; 2.1.1.2 Tangential Surface Vector; 2.1.1.3 Volume and Surface Integrals; 2.1.2 Derivation of Generalized Transmission-Line Equations; 2.1.2.1 Continuity Equation; 2.1.2.2 Reconstruction of the Densities; 2.1.3 Mixed Potential Integral Equation
2.1.3.1 Thin-Wire Approximation
Record Nr. UNINA-9910826929703321
Nitsch Jürgen  
Hoboken, NJ, : J. Wiley, c2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vereinfachte Modellierung von feldbeaufschlagten Kabelbäumen / / Benedikt Schetelig
Vereinfachte Modellierung von feldbeaufschlagten Kabelbäumen / / Benedikt Schetelig
Autore Schetelig Benedikt
Pubbl/distr/stampa Stuttgart : , : Ibidem-Verlag, , [2014]
Descrizione fisica 1 online resource (141 pages)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility - Mathematical models
ISBN 3-8382-6634-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Intro -- 1. Einleitung -- 2. Leitungstheorie für Mehrfachleiter -- 2.1. Voraussetzungen und Gültigkeit -- 2.2. Spannungen und Ströme auf Mehrfachleiter -- 2.3. Feldeinkopplungen in der Leitungstheorie -- 2.4. Beschreibung von Mehrleiterkabelbäumen mithilfe von Spice-Modellen -- 3. Reduzierung des Querschnitts von komplexen Kabelbäumen -- 3.1. Reduzierung durch Gruppierung von Adern -- 3.1.1. Grundlagen der Methode äquivalenter Kabelbündel -- 3.1.2. Anwendungsbeispiel Querschnittsreduzierung -- 3.1.3. Reduzierung der Anzahl verdrillter Adernpaare -- 3.1.4. Berücksichtigung von Inhomogenitäten im Kabelbaum -- 3.2. Reduzierung durch Gewichtung von Adern -- 3.2.1. Bestimmung der Störströme auf Basis der Widerstandsverhältnisse -- 3.2.2. Bestimmung der Störströme mit numerischen Abschätzungen -- 3.2.3. Bestimmung der Störströme aufgrund von leitungstheoretischen Ansätzen -- 3.2.4. Enfluss der Richtung des Feldeinfalls auf die Größenverhältnisse der eingekoppelten Ströme -- 4. Topologische Zerlegung von Kabelbäumen -- 4.1. Anwendungssituation -- 4.2. Abschnittsweise Analyse von Mehrleiterkabelbäumen -- 4.3. Bestimmung der vollbesetzten Eingangsimpedanzmatrix -- 4.4. Beispielrechnung für eine abschnittsweise Störfestigkeitsanalyse -- 4.5. Bedeutung des Strahlungswiderstands für die Eingangsimpedanz -- 4.6. Der Strahlungswiderstand von Mehrleiterkabelbäumen -- 5. Vereinfachte Störfestigkeitsanalyse geschirmter Kabelbäume -- 5.1. Leitungstheoretische Beschreibung geschirmter Kabel -- 5.2. Bestimmung der Koppelgrößen für Koaxialkabel -- 5.2.1. Analytische Berechnung -- 5.2.2. Messtechnische Bestimmung -- 5.2.3. Einfluss der Stromverteilung über den Querschnitt des Kabelschirms -- 5.2.4. Berechnung der Koppelgrößen aus Messwerten -- 5.3. Bestimmung der Störströme mithilfe der Koppelparameter -- 5.4. Koppel- und Störverläufe weiterer Schirmkabel.
5.5. Charakterisierung geschirmter Mehrleiterkabel mit herkömmlichen Transferparametern -- 5.6. Charakterisierung von MTL-Schirmkabeln mit äquivalenten Koppelgrößen -- 5.7. Umrechnung der äquivalenten Koppelparameter in die herkömmlichen Transfergrößen -- 5.8. Schirmersatzmodelle für die Bestimmung der Schirmströme -- 6. Zusammenfassung -- Anhang -- A. Bestimmung der Leitungsparameter typischer Kabeltypen -- A.1. Berechnung aus geometrischen Parametern -- A.2. Berechnung aus Messwerten -- B. Bestimmung der Gleichtaktwellenimpedanz -- C. Vierpol-Parameter -- C.1. Herleitung des Eingangswiderstands aus den Z-Parametern -- C.2. Herleitung der Spannungsübertragung aus den ABCD-Parametern -- D. Abkürzungen und Formelzeichen -- Literaturverzeichnis.
Record Nr. UNINA-9910794011303321
Schetelig Benedikt  
Stuttgart : , : Ibidem-Verlag, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Vereinfachte Modellierung von feldbeaufschlagten Kabelbäumen / / Benedikt Schetelig
Vereinfachte Modellierung von feldbeaufschlagten Kabelbäumen / / Benedikt Schetelig
Autore Schetelig Benedikt
Pubbl/distr/stampa Stuttgart : , : Ibidem-Verlag, , [2014]
Descrizione fisica 1 online resource (141 pages)
Disciplina 621.38224
Soggetto topico Electromagnetic compatibility - Mathematical models
ISBN 3-8382-6634-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Nota di contenuto Intro -- 1. Einleitung -- 2. Leitungstheorie für Mehrfachleiter -- 2.1. Voraussetzungen und Gültigkeit -- 2.2. Spannungen und Ströme auf Mehrfachleiter -- 2.3. Feldeinkopplungen in der Leitungstheorie -- 2.4. Beschreibung von Mehrleiterkabelbäumen mithilfe von Spice-Modellen -- 3. Reduzierung des Querschnitts von komplexen Kabelbäumen -- 3.1. Reduzierung durch Gruppierung von Adern -- 3.1.1. Grundlagen der Methode äquivalenter Kabelbündel -- 3.1.2. Anwendungsbeispiel Querschnittsreduzierung -- 3.1.3. Reduzierung der Anzahl verdrillter Adernpaare -- 3.1.4. Berücksichtigung von Inhomogenitäten im Kabelbaum -- 3.2. Reduzierung durch Gewichtung von Adern -- 3.2.1. Bestimmung der Störströme auf Basis der Widerstandsverhältnisse -- 3.2.2. Bestimmung der Störströme mit numerischen Abschätzungen -- 3.2.3. Bestimmung der Störströme aufgrund von leitungstheoretischen Ansätzen -- 3.2.4. Enfluss der Richtung des Feldeinfalls auf die Größenverhältnisse der eingekoppelten Ströme -- 4. Topologische Zerlegung von Kabelbäumen -- 4.1. Anwendungssituation -- 4.2. Abschnittsweise Analyse von Mehrleiterkabelbäumen -- 4.3. Bestimmung der vollbesetzten Eingangsimpedanzmatrix -- 4.4. Beispielrechnung für eine abschnittsweise Störfestigkeitsanalyse -- 4.5. Bedeutung des Strahlungswiderstands für die Eingangsimpedanz -- 4.6. Der Strahlungswiderstand von Mehrleiterkabelbäumen -- 5. Vereinfachte Störfestigkeitsanalyse geschirmter Kabelbäume -- 5.1. Leitungstheoretische Beschreibung geschirmter Kabel -- 5.2. Bestimmung der Koppelgrößen für Koaxialkabel -- 5.2.1. Analytische Berechnung -- 5.2.2. Messtechnische Bestimmung -- 5.2.3. Einfluss der Stromverteilung über den Querschnitt des Kabelschirms -- 5.2.4. Berechnung der Koppelgrößen aus Messwerten -- 5.3. Bestimmung der Störströme mithilfe der Koppelparameter -- 5.4. Koppel- und Störverläufe weiterer Schirmkabel.
5.5. Charakterisierung geschirmter Mehrleiterkabel mit herkömmlichen Transferparametern -- 5.6. Charakterisierung von MTL-Schirmkabeln mit äquivalenten Koppelgrößen -- 5.7. Umrechnung der äquivalenten Koppelparameter in die herkömmlichen Transfergrößen -- 5.8. Schirmersatzmodelle für die Bestimmung der Schirmströme -- 6. Zusammenfassung -- Anhang -- A. Bestimmung der Leitungsparameter typischer Kabeltypen -- A.1. Berechnung aus geometrischen Parametern -- A.2. Berechnung aus Messwerten -- B. Bestimmung der Gleichtaktwellenimpedanz -- C. Vierpol-Parameter -- C.1. Herleitung des Eingangswiderstands aus den Z-Parametern -- C.2. Herleitung der Spannungsübertragung aus den ABCD-Parametern -- D. Abkürzungen und Formelzeichen -- Literaturverzeichnis.
Record Nr. UNINA-9910817960603321
Schetelig Benedikt  
Stuttgart : , : Ibidem-Verlag, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui