ANSI/IEEE 450-1980 : IEEE Recommended Practice for Maintenance, Testing , and Replacement of Large Lead Storage Batteries for Generating Stations and Substations / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | New York, N.Y. : , : IEEE, , 1980 |
Descrizione fisica | 1 online resource (14 pages) : illustrations |
Disciplina | 338.7762131042 |
Soggetto topico |
Electric power-plants - Equipment and supplies
Storage batteries |
ISBN | 1-5044-0347-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | ANSI/IEEE 450-1980 |
Record Nr. | UNINA-9910136435003321 |
New York, N.Y. : , : IEEE, , 1980 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
ANSI/IEEE 450-1980 : IEEE Recommended Practice for Maintenance, Testing , and Replacement of Large Lead Storage Batteries for Generating Stations and Substations / / Institute of Electrical and Electronics Engineers |
Pubbl/distr/stampa | New York, N.Y. : , : IEEE, , 1980 |
Descrizione fisica | 1 online resource (14 pages) : illustrations |
Disciplina | 338.7762131042 |
Soggetto topico |
Electric power-plants - Equipment and supplies
Storage batteries |
ISBN | 1-5044-0347-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | ANSI/IEEE 450-1980 |
Record Nr. | UNISA-996279866403316 |
New York, N.Y. : , : IEEE, , 1980 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Harmonic modeling of voltage source converters using simple numerical methods / / Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin |
Autore | Lian Ryan Kuo-Lung |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021] |
Descrizione fisica | 1 online resource (419 pages) |
Disciplina | 621.3815322 |
Collana | IEEE Press. |
Soggetto topico |
Harmonics (Electric waves) - Mathematical models
Electromagnetic interference - Mathematical models Electric power-plants - Equipment and supplies Electric current converters - Mathematical models Numerical analysis |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-52715-5
1-119-52719-8 1-119-52714-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Symbols -- Chapter 1 Fundamental Theory -- 1.1 Background -- 1.2 Definition of Harmonics -- 1.3 Fourier Series -- 1.3.1 Trigonometric Form -- 1.3.2 Phasor Form -- 1.3.3 Exponential Form -- 1.4 Waveform Symmetry -- 1.4.1 Even Symmetry -- 1.4.2 Odd Symmetry -- 1.4.3 Half‐Wave Symmetry -- 1.5 Phase Sequence of Harmonics -- 1.6 Frequency Domain and Harmonic Domain -- 1.7 Power Definitions -- 1.7.1 Average Power -- 1.7.2 Apparent and Reactive Power -- 1.8 Harmonic Indices -- 1.8.1 Total Harmonic Distortion (THD) -- 1.8.2 Total Demand Distortion (TDD) -- 1.8.3 True Power Factor -- 1.9 Detrimental Effects of Harmonics -- 1.9.1 Resonance -- 1.9.2 Misoperations of Meters and Relays -- 1.9.3 Harmonics Impact on Motors -- 1.9.4 Harmonics Impact on Transformers -- 1.10 Characteristic Harmonic and Non‐Characteristic Harmonic -- 1.11 Harmonic Current Injection Method -- 1.12 Steady‐State vs. Transient Response -- 1.13 Steady‐State Modeling -- 1.14 Large‐Signal Modeling vs. Small‐Signal Modeling -- 1.15 Discussion of IEEE Standard (STD) 519 -- 1.16 Supraharmonics -- Chapter 2 Power Electronics Basics -- 2.1 Some Basics -- 2.2 Semiconductors vs. Wide Bandgap Semiconductors -- 2.3 Types of Static Switches -- 2.3.1 Uncontrolled Static Switch -- 2.3.2 Semi‐Controllable Switches -- 2.3.3 Controlled Switch -- 2.4 Combination of Switches -- 2.5 Classification Based on Commutation Process -- 2.6 Voltage Source Converter vs. Current Source Converter -- Chapter 3 Basic Numerical Iterative Methods -- 3.1 Definition of Error -- 3.2 The Gauss-Seidel Method -- 3.3 Predictor‐Corrector -- 3.4 Newton's Method -- 3.4.1 Root Finding -- 3.4.2 Numerical Integration -- 3.4.3 Power Flow -- 3.4.4 Harmonic Power Flow -- 3.4.5 Shooting Method -- 3.4.6 Advantages of Newton's Method -- 3.4.7 Quasi‐Newton Method.
3.4.8 Limitation of Newton's Method -- 3.5 PSO -- Chapter 4 Matrix Exponential -- 4.1 Definition of Matrix Exponential -- 4.2 Evaluation of Matrix Exponential -- 4.2.1 Inverse Laplace Transform -- 4.2.2 Cayley-Hamilton Method -- 4.2.3 Padé Approximation -- 4.2.4 Scaling and Squaring -- 4.3 Krylov Subspace Method -- 4.4 Krylov Space Method with Restarting -- 4.5 Application of Augmented Matrix on DC‐DC Converters -- 4.6 Runge-Kutta Methods -- Chapter 5 Modeling of Voltage Source Converters -- 5.1 Single‐Phase Two‐Level VSCs -- 5.1.1 Switching Functions -- 5.1.2 Switched Circuits -- 5.2 Three‐Phase Two‐Level VSCs -- 5.3 Three‐Phase Multilevel Voltage Source Converter -- 5.3.1 Multilevel PWM -- 5.3.2 Diode Clamped Multilevel VSCs -- 5.3.3 Flying Capacitor Multilevel VSCs -- 5.3.4 Cascaded Multi‐Level VSCs -- 5.3.5 Modular Multi‐Level VSC -- Chapter 6 Frequency Coupling Matrices -- 6.1 Construction of FCM in the Harmonic Domain -- 6.2 Construction of FCM in the Time Domain -- Chapter 7 General Control Approaches of a VSC -- 7.1 Reference Frame -- 7.1.1 Stationary‐abc Frame -- 7.1.2 Stationary‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- αβ Frame -- 7.1.3 Synchronous‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- dq Frame -- 7.1.4 Phase‐Locked Loop -- 7.2 Control Strategies -- 7.2.1 Vector‐Current Controller -- 7.2.2 Direct Power Controller -- 7.2.3 DC‐bus Voltage Controller -- 7.2.4 Circulating Current Controller -- Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems -- 8.1 Introduction -- 8.2 Generalized Procedure -- 8.2.1 Step 1: Determine How and Where to Break the Loop -- 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible. 8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled -- 8.2.4 Step 4: Formulate the Mismatch Equations -- 8.2.5 Step 5: Iterate to Find the Solution -- 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures -- 8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method -- 8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method -- 8.4 The Loop‐Breaking 3 Method -- Chapter 9 Loop‐Breaking 1 Method -- 9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control -- 9.2 Loop‐Breaking 1 Method for a Two‐Level VSC -- 9.2.1 Block 1 -- 9.2.2 Current Controller Block -- 9.2.3 Voltage Controller Block -- 9.3 Solution Flow Diagram -- 9.3.1 Initialization -- 9.3.2 Jacobian Matrix -- 9.3.3 Number of Modulating Voltage Harmonics to be Included -- Chapter 10 Loop‐Breaking 2 Method for Solving a VSC -- 10.1 Modeling for a Closed‐Loop DC‐DC Converter -- 10.1.1 Model of the Buck Converter -- 10.1.2 Constraints of Steady‐State -- 10.1.3 Switching Time Constraints -- 10.1.4 Solution Flow Diagram -- 10.2 Two‐Level VSC Modeling: Open‐Loop Equations -- 10.2.1 Steady‐State Constraints -- 10.2.2 Switching Time Constraints -- 10.2.3 Solution Flow Diagram -- 10.2.4 Initialization -- 10.2.5 Jacobian Matrix -- 10.3 Comparison Between the LB 1 and LB 2 Methods -- 10.3.1 Case #1: Balanced System -- 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry -- 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry -- 10.4 Large‐Signal Modeling for Line‐Commutated Power Converter -- 10.4.1 Discontinuous Conduction Mode -- 10.4.2 Continuous Conduction Mode -- 10.4.3 Steady‐State Constraint Equations -- 10.4.4 General Comments -- Chapter 11 Loop‐Breaking 3 Method -- 11.1 OpenDSS -- 11.2 Interfacing OpenDSS with MATLAB -- 11.3 Interfacing OpenDSS with Harmonic Models of VSCs. Chapter 12 Small‐Signal Harmonic Model of a VSC -- 12.1 Problem Statement -- 12.2 Gauss-Seidel LB 3 and Newton LB 3 -- 12.2.1 Current Injection Method -- 12.2.2 Norton Circuit Method -- 12.3 Small‐Signal Analysis of DC‐DC Converter -- 12.4 Small‐Signal Analysis of a Two‐Level VSC -- 12.4.1 Approach from Section 12.3 -- 12.4.2 Simpler Approach -- Chapter 13 Parameter Estimation for a Single VSC -- 13.1 Background on Parameter Estimation -- 13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models -- 13.3 Estimation Validations -- 13.3.1 Experimental Validation -- 13.3.2 PSCAD/EMTDC Validation -- Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation -- 14.1 Introduction of Deep Learning -- 14.2 Domain Adaptation -- 14.3 Parameter Estimation for Multiple VSCs -- 14.4 Notations for DA -- 14.5 Supervised Domain Adaptation for Regression -- 14.6 Supervised Domain Adaptation for Classification -- 14.7 Test Setup -- 14.7.1 Data Generator -- 14.7.2 Data Preprocessing -- 14.8 Performance Metrics -- 14.8.1 R square (Regression) -- 14.8.2 Mean Absolute Percentage Error, MAPE (Regression) -- 14.8.3 Accuracy (Classification) -- 14.8.4 F1 score (Classification) -- 14.9 Test Results -- 14.9.1 Classification Task on Multiple VSC -- 14.9.2 Regression Task on Multiple VSC -- 14.10 Software for Running the Codes -- 14.11 Implementation of Domain Adaptation -- 14.11.1 Data Generation -- 14.11.2 Regression -- 14.11.3 Classification Network -- References -- Index -- EULA. |
Record Nr. | UNINA-9910555250603321 |
Lian Ryan Kuo-Lung | ||
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Harmonic modeling of voltage source converters using simple numerical methods / / Ryan Kuo-Lung Lia, Ramadhani Kurniawan Subroto. Bing Hao Lin |
Autore | Lian Ryan Kuo-Lung |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021] |
Descrizione fisica | 1 online resource (419 pages) |
Disciplina | 621.3815322 |
Collana | IEEE Press. |
Soggetto topico |
Harmonics (Electric waves) - Mathematical models
Electromagnetic interference - Mathematical models Electric power-plants - Equipment and supplies Electric current converters - Mathematical models Numerical analysis |
ISBN |
1-119-52715-5
1-119-52719-8 1-119-52714-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Symbols -- Chapter 1 Fundamental Theory -- 1.1 Background -- 1.2 Definition of Harmonics -- 1.3 Fourier Series -- 1.3.1 Trigonometric Form -- 1.3.2 Phasor Form -- 1.3.3 Exponential Form -- 1.4 Waveform Symmetry -- 1.4.1 Even Symmetry -- 1.4.2 Odd Symmetry -- 1.4.3 Half‐Wave Symmetry -- 1.5 Phase Sequence of Harmonics -- 1.6 Frequency Domain and Harmonic Domain -- 1.7 Power Definitions -- 1.7.1 Average Power -- 1.7.2 Apparent and Reactive Power -- 1.8 Harmonic Indices -- 1.8.1 Total Harmonic Distortion (THD) -- 1.8.2 Total Demand Distortion (TDD) -- 1.8.3 True Power Factor -- 1.9 Detrimental Effects of Harmonics -- 1.9.1 Resonance -- 1.9.2 Misoperations of Meters and Relays -- 1.9.3 Harmonics Impact on Motors -- 1.9.4 Harmonics Impact on Transformers -- 1.10 Characteristic Harmonic and Non‐Characteristic Harmonic -- 1.11 Harmonic Current Injection Method -- 1.12 Steady‐State vs. Transient Response -- 1.13 Steady‐State Modeling -- 1.14 Large‐Signal Modeling vs. Small‐Signal Modeling -- 1.15 Discussion of IEEE Standard (STD) 519 -- 1.16 Supraharmonics -- Chapter 2 Power Electronics Basics -- 2.1 Some Basics -- 2.2 Semiconductors vs. Wide Bandgap Semiconductors -- 2.3 Types of Static Switches -- 2.3.1 Uncontrolled Static Switch -- 2.3.2 Semi‐Controllable Switches -- 2.3.3 Controlled Switch -- 2.4 Combination of Switches -- 2.5 Classification Based on Commutation Process -- 2.6 Voltage Source Converter vs. Current Source Converter -- Chapter 3 Basic Numerical Iterative Methods -- 3.1 Definition of Error -- 3.2 The Gauss-Seidel Method -- 3.3 Predictor‐Corrector -- 3.4 Newton's Method -- 3.4.1 Root Finding -- 3.4.2 Numerical Integration -- 3.4.3 Power Flow -- 3.4.4 Harmonic Power Flow -- 3.4.5 Shooting Method -- 3.4.6 Advantages of Newton's Method -- 3.4.7 Quasi‐Newton Method.
3.4.8 Limitation of Newton's Method -- 3.5 PSO -- Chapter 4 Matrix Exponential -- 4.1 Definition of Matrix Exponential -- 4.2 Evaluation of Matrix Exponential -- 4.2.1 Inverse Laplace Transform -- 4.2.2 Cayley-Hamilton Method -- 4.2.3 Padé Approximation -- 4.2.4 Scaling and Squaring -- 4.3 Krylov Subspace Method -- 4.4 Krylov Space Method with Restarting -- 4.5 Application of Augmented Matrix on DC‐DC Converters -- 4.6 Runge-Kutta Methods -- Chapter 5 Modeling of Voltage Source Converters -- 5.1 Single‐Phase Two‐Level VSCs -- 5.1.1 Switching Functions -- 5.1.2 Switched Circuits -- 5.2 Three‐Phase Two‐Level VSCs -- 5.3 Three‐Phase Multilevel Voltage Source Converter -- 5.3.1 Multilevel PWM -- 5.3.2 Diode Clamped Multilevel VSCs -- 5.3.3 Flying Capacitor Multilevel VSCs -- 5.3.4 Cascaded Multi‐Level VSCs -- 5.3.5 Modular Multi‐Level VSC -- Chapter 6 Frequency Coupling Matrices -- 6.1 Construction of FCM in the Harmonic Domain -- 6.2 Construction of FCM in the Time Domain -- Chapter 7 General Control Approaches of a VSC -- 7.1 Reference Frame -- 7.1.1 Stationary‐abc Frame -- 7.1.2 Stationary‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- αβ Frame -- 7.1.3 Synchronous‐< -- 3:spiinlinemath 0:display& -- equals -- "inline" 0:overflow& -- equals -- "scroll" > -- dq Frame -- 7.1.4 Phase‐Locked Loop -- 7.2 Control Strategies -- 7.2.1 Vector‐Current Controller -- 7.2.2 Direct Power Controller -- 7.2.3 DC‐bus Voltage Controller -- 7.2.4 Circulating Current Controller -- Chapter 8 Generalized Steady‐State Solution Procedure for Closed‐Loop Converter Systems -- 8.1 Introduction -- 8.2 Generalized Procedure -- 8.2.1 Step 1: Determine How and Where to Break the Loop -- 8.2.2 Step 2: Check if the Calculation Flows of the Broken System are Feasible. 8.2.3 Step 3: Determine What Domain of Each Component in the System Should be Modeled -- 8.2.4 Step 4: Formulate the Mismatch Equations -- 8.2.5 Step 5: Iterate to Find the Solution -- 8.3 Previously Proposed Methods Derived from the Proposed Solution Procedures -- 8.3.1 Steady‐State Methods Derived from Loop‐Breaking 1 Method -- 8.3.2 Steady‐State Methods Derived from Loop‐Breaking 2 Method -- 8.4 The Loop‐Breaking 3 Method -- Chapter 9 Loop‐Breaking 1 Method -- 9.1 A Typical Two‐Level VSC with AC Current Control and DC Voltage Control -- 9.2 Loop‐Breaking 1 Method for a Two‐Level VSC -- 9.2.1 Block 1 -- 9.2.2 Current Controller Block -- 9.2.3 Voltage Controller Block -- 9.3 Solution Flow Diagram -- 9.3.1 Initialization -- 9.3.2 Jacobian Matrix -- 9.3.3 Number of Modulating Voltage Harmonics to be Included -- Chapter 10 Loop‐Breaking 2 Method for Solving a VSC -- 10.1 Modeling for a Closed‐Loop DC‐DC Converter -- 10.1.1 Model of the Buck Converter -- 10.1.2 Constraints of Steady‐State -- 10.1.3 Switching Time Constraints -- 10.1.4 Solution Flow Diagram -- 10.2 Two‐Level VSC Modeling: Open‐Loop Equations -- 10.2.1 Steady‐State Constraints -- 10.2.2 Switching Time Constraints -- 10.2.3 Solution Flow Diagram -- 10.2.4 Initialization -- 10.2.5 Jacobian Matrix -- 10.3 Comparison Between the LB 1 and LB 2 Methods -- 10.3.1 Case #1: Balanced System -- 10.3.2 Case #2: Unbalanced System with AC Waveform Exhibiting Half‐Wave Symmetry -- 10.3.3 Case #3: Unbalanced System, No Waveform Symmetry -- 10.4 Large‐Signal Modeling for Line‐Commutated Power Converter -- 10.4.1 Discontinuous Conduction Mode -- 10.4.2 Continuous Conduction Mode -- 10.4.3 Steady‐State Constraint Equations -- 10.4.4 General Comments -- Chapter 11 Loop‐Breaking 3 Method -- 11.1 OpenDSS -- 11.2 Interfacing OpenDSS with MATLAB -- 11.3 Interfacing OpenDSS with Harmonic Models of VSCs. Chapter 12 Small‐Signal Harmonic Model of a VSC -- 12.1 Problem Statement -- 12.2 Gauss-Seidel LB 3 and Newton LB 3 -- 12.2.1 Current Injection Method -- 12.2.2 Norton Circuit Method -- 12.3 Small‐Signal Analysis of DC‐DC Converter -- 12.4 Small‐Signal Analysis of a Two‐Level VSC -- 12.4.1 Approach from Section 12.3 -- 12.4.2 Simpler Approach -- Chapter 13 Parameter Estimation for a Single VSC -- 13.1 Background on Parameter Estimation -- 13.2 Parameter Estimator Based on White‐Box‐and‐Black‐Box Models -- 13.3 Estimation Validations -- 13.3.1 Experimental Validation -- 13.3.2 PSCAD/EMTDC Validation -- Chapter 14 Parameter Estimation for Multiple VSCs with Domain Adaptation -- 14.1 Introduction of Deep Learning -- 14.2 Domain Adaptation -- 14.3 Parameter Estimation for Multiple VSCs -- 14.4 Notations for DA -- 14.5 Supervised Domain Adaptation for Regression -- 14.6 Supervised Domain Adaptation for Classification -- 14.7 Test Setup -- 14.7.1 Data Generator -- 14.7.2 Data Preprocessing -- 14.8 Performance Metrics -- 14.8.1 R square (Regression) -- 14.8.2 Mean Absolute Percentage Error, MAPE (Regression) -- 14.8.3 Accuracy (Classification) -- 14.8.4 F1 score (Classification) -- 14.9 Test Results -- 14.9.1 Classification Task on Multiple VSC -- 14.9.2 Regression Task on Multiple VSC -- 14.10 Software for Running the Codes -- 14.11 Implementation of Domain Adaptation -- 14.11.1 Data Generation -- 14.11.2 Regression -- 14.11.3 Classification Network -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830140203321 |
Lian Ryan Kuo-Lung | ||
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
IEEE Std C37.122.5-2013 (Revision of IEEE Std 1125-1993) : IEEE guide for moisture measurement and control in SF6 gas-insulated equipment / / IEEE |
Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2013 |
Descrizione fisica | 1 online resource |
Disciplina | 621.3126 |
Soggetto topico |
Electric substations
Electric power-plants - Equipment and supplies |
ISBN | 0-7381-8760-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
IEEE Std C37.122.5-2013 (Revision of IEEE Std 1125-1993): IEEE Guide for Moisture Measurement and Control in SF6 Gas-Insulated Equipment
IEEE Std C37.122.5-2013 |
Record Nr. | UNINA-9910135350403321 |
[Place of publication not identified] : , : IEEE, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
IEEE Std C37.122.5-2013 (Revision of IEEE Std 1125-1993) : IEEE guide for moisture measurement and control in SF6 gas-insulated equipment / / IEEE |
Pubbl/distr/stampa | [Place of publication not identified] : , : IEEE, , 2013 |
Descrizione fisica | 1 online resource |
Disciplina | 621.3126 |
Soggetto topico |
Electric substations
Electric power-plants - Equipment and supplies |
ISBN | 0-7381-8760-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti |
IEEE Std C37.122.5-2013 (Revision of IEEE Std 1125-1993): IEEE Guide for Moisture Measurement and Control in SF6 Gas-Insulated Equipment
IEEE Std C37.122.5-2013 |
Record Nr. | UNISA-996281037403316 |
[Place of publication not identified] : , : IEEE, , 2013 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Sustainable energy conversion for electricity and coproducts : principles, technologies, and equipment / / Ashok Rao |
Autore | Rao Ashok D. |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (426 p.) |
Disciplina | 621.042 |
Soggetto topico |
Electric power production - Energy conservation
Electric power-plants - Equipment and supplies Renewable energy sources Fuel trade - By-products Chemicals |
ISBN | 1-119-06419-8 |
Classificazione | TEC009010 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright Page; Contents; Preface; About The Book; About The Author; 1 Introduction to Energy Systems; 1.1 Energy Sources and Distribution of Resources; 1.1.1 Fossil Fuels; 1.1.1.1 Natural Gas; 1.1.1.2 Petroleum; 1.1.1.3 Coal; 1.1.1.4 Oil Shale; 1.1.2 Nuclear; 1.1.3 Renewables; 1.1.3.1 Biomass and Municipal Solid Waste; 1.1.3.2 Hydroelectric; 1.1.3.3 Solar; 1.1.3.4 Wind; 1.1.3.5 Geothermal; 1.2 Energy and The Environment; 1.2.1 Criteria and Other Air Pollutants; 1.2.1.1 Carbon Monoxide and Organic Compounds; 1.2.1.2 Sulfur Oxides; 1.2.1.3 Nitrogen Oxides; 1.2.1.4 Ozone
1.2.1.5 Lead 1.2.1.6 Particulate Matter; 1.2.1.7 Mercury; 1.2.2 Carbon Dioxide Emissions, Capture, and Storage; 1.2.3 Water Usage; 1.3 Holistic Approach; 1.3.1 Supply Chain and Life Cycle Assessment; 1.4 Conclusions; References; 2 Thermodynamics; 2.1 First Law; 2.1.1 Application to a Combustor; 2.1.1.1 Methane Combustor Exhaust Temperature; 2.1.2 Efficiency Based on First Law; 2.2 Second Law; 2.2.1 Quality Destruction and Entropy Generation; 2.2.2 Second Law Analysis; 2.2.3 First and Second Law Efficiencies; 2.3 Combustion and Gibbs Free Energy Minimization; 2.4 Nonideal Behavior 2.4.1 Gas Phase 2.4.2 Vapor-Liquid Phases; References; 3 Fluid Flow Equipment; 3.1 Fundamentals of Fluid Flow; 3.1.1 Flow Regimes; 3.1.2 Extended Bernoulli Equation; 3.2 Single-Phase Incompressible Flow; 3.2.1 Pressure Drop in Pipes; 3.2.2 Pressure Drop in Fittings; 3.3 Single-Phase Compressible Flow; 3.3.1 Pressure Drop in Pipes and Fittings; 3.3.2 Choked Flow; 3.4 Two-Phase Fluid Flow; 3.4.1 Gas-Liquid Flow Regimes; 3.4.2 Pressure Drop in Pipes and Fittings; 3.4.3 Droplet Separation; 3.5 Solid fluid Systems; 3.5.1 Flow Regimes; 3.5.2 Pressure Drop; 3.5.3 Pneumatic Conveying 3.6 Fluid Velocity in Pipes 3.7 Turbomachinery; 3.7.1 Pumps; 3.7.1.1 Centrifugal Pumps; 3.7.1.2 Axial Pumps; 3.7.1.3 Rotary Pumps; 3.7.1.4 Reciprocating Pumps; 3.7.1.5 Specific Speed; 3.7.1.6 Net Positive Suction Head; 3.7.1.7 Pumping Power; 3.7.1.8 System Requirements and Pump Characteristics; 3.7.2 Compressors; 3.7.2.1 Centrifugal Compressors; 3.7.2.2 Axial Compressors; 3.7.2.3 Reciprocating Compressors; 3.7.2.4 Rotary Screw Compressors; 3.7.2.5 System Requirements and Compressor Characteristics; 3.7.2.6 Compression Power and Intercooling; 3.7.3 Fans and Blowers; 3.7.4 Expansion Turbines 3.7.4.1 Expansion Power and ReheatReferences; 4 Heat Transfer Equipment; 4.1 Fundamentals of Heat Transfer; 4.1.1 Conduction; 4.1.2 Convection; 4.1.2.1 Heat Transfer by Free Convection from Vertical and Horizontal Flat Surfaces; 4.1.2.2 Heat Transfer by Free Convection from Horizontal Pipes; 4.1.2.3 Heat Transfer by Forced Convection through a Tube; 4.1.2.4 Heat Transfer by Forced Convection over a Bank of Tubes; 4.1.2.5 Heat Transfer by Condensation outside a Tube; 4.1.2.6 Heat Transfer by Boiling outside a Tube; 4.1.2.7 Heat Transfer by Boiling inside a Tube 4.1.2.8 Heat Transfer from Tubes with Fins |
Record Nr. | UNINA-9910140625503321 |
Rao Ashok D. | ||
Hoboken, New Jersey : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable energy conversion for electricity and coproducts : principles, technologies, and equipment / / Ashok Rao |
Autore | Rao Ashok D. |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2015 |
Descrizione fisica | 1 online resource (426 p.) |
Disciplina | 621.042 |
Soggetto topico |
Electric power production - Energy conservation
Electric power-plants - Equipment and supplies Renewable energy sources Fuel trade - By-products Chemicals |
ISBN | 1-119-06419-8 |
Classificazione | TEC009010 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Title Page; Copyright Page; Contents; Preface; About The Book; About The Author; 1 Introduction to Energy Systems; 1.1 Energy Sources and Distribution of Resources; 1.1.1 Fossil Fuels; 1.1.1.1 Natural Gas; 1.1.1.2 Petroleum; 1.1.1.3 Coal; 1.1.1.4 Oil Shale; 1.1.2 Nuclear; 1.1.3 Renewables; 1.1.3.1 Biomass and Municipal Solid Waste; 1.1.3.2 Hydroelectric; 1.1.3.3 Solar; 1.1.3.4 Wind; 1.1.3.5 Geothermal; 1.2 Energy and The Environment; 1.2.1 Criteria and Other Air Pollutants; 1.2.1.1 Carbon Monoxide and Organic Compounds; 1.2.1.2 Sulfur Oxides; 1.2.1.3 Nitrogen Oxides; 1.2.1.4 Ozone
1.2.1.5 Lead 1.2.1.6 Particulate Matter; 1.2.1.7 Mercury; 1.2.2 Carbon Dioxide Emissions, Capture, and Storage; 1.2.3 Water Usage; 1.3 Holistic Approach; 1.3.1 Supply Chain and Life Cycle Assessment; 1.4 Conclusions; References; 2 Thermodynamics; 2.1 First Law; 2.1.1 Application to a Combustor; 2.1.1.1 Methane Combustor Exhaust Temperature; 2.1.2 Efficiency Based on First Law; 2.2 Second Law; 2.2.1 Quality Destruction and Entropy Generation; 2.2.2 Second Law Analysis; 2.2.3 First and Second Law Efficiencies; 2.3 Combustion and Gibbs Free Energy Minimization; 2.4 Nonideal Behavior 2.4.1 Gas Phase 2.4.2 Vapor-Liquid Phases; References; 3 Fluid Flow Equipment; 3.1 Fundamentals of Fluid Flow; 3.1.1 Flow Regimes; 3.1.2 Extended Bernoulli Equation; 3.2 Single-Phase Incompressible Flow; 3.2.1 Pressure Drop in Pipes; 3.2.2 Pressure Drop in Fittings; 3.3 Single-Phase Compressible Flow; 3.3.1 Pressure Drop in Pipes and Fittings; 3.3.2 Choked Flow; 3.4 Two-Phase Fluid Flow; 3.4.1 Gas-Liquid Flow Regimes; 3.4.2 Pressure Drop in Pipes and Fittings; 3.4.3 Droplet Separation; 3.5 Solid fluid Systems; 3.5.1 Flow Regimes; 3.5.2 Pressure Drop; 3.5.3 Pneumatic Conveying 3.6 Fluid Velocity in Pipes 3.7 Turbomachinery; 3.7.1 Pumps; 3.7.1.1 Centrifugal Pumps; 3.7.1.2 Axial Pumps; 3.7.1.3 Rotary Pumps; 3.7.1.4 Reciprocating Pumps; 3.7.1.5 Specific Speed; 3.7.1.6 Net Positive Suction Head; 3.7.1.7 Pumping Power; 3.7.1.8 System Requirements and Pump Characteristics; 3.7.2 Compressors; 3.7.2.1 Centrifugal Compressors; 3.7.2.2 Axial Compressors; 3.7.2.3 Reciprocating Compressors; 3.7.2.4 Rotary Screw Compressors; 3.7.2.5 System Requirements and Compressor Characteristics; 3.7.2.6 Compression Power and Intercooling; 3.7.3 Fans and Blowers; 3.7.4 Expansion Turbines 3.7.4.1 Expansion Power and ReheatReferences; 4 Heat Transfer Equipment; 4.1 Fundamentals of Heat Transfer; 4.1.1 Conduction; 4.1.2 Convection; 4.1.2.1 Heat Transfer by Free Convection from Vertical and Horizontal Flat Surfaces; 4.1.2.2 Heat Transfer by Free Convection from Horizontal Pipes; 4.1.2.3 Heat Transfer by Forced Convection through a Tube; 4.1.2.4 Heat Transfer by Forced Convection over a Bank of Tubes; 4.1.2.5 Heat Transfer by Condensation outside a Tube; 4.1.2.6 Heat Transfer by Boiling outside a Tube; 4.1.2.7 Heat Transfer by Boiling inside a Tube 4.1.2.8 Heat Transfer from Tubes with Fins |
Record Nr. | UNINA-9910825968003321 |
Rao Ashok D. | ||
Hoboken, New Jersey : , : Wiley, , 2015 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|