top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2015 Australasian Universities Power Engineering Conference : 27-30 September 2015, Wollongong, Australia / / hosted by the Australian Power Quality and Reliability Centre, University of Wollongong, Australia
2015 Australasian Universities Power Engineering Conference : 27-30 September 2015, Wollongong, Australia / / hosted by the Australian Power Quality and Reliability Centre, University of Wollongong, Australia
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2015
Descrizione fisica 1 online resource (114 pages)
Disciplina 621.3
Soggetto topico Electric power systems - Management
Electrical engineering
Automatic control
ISBN 1-4799-8725-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996279771703316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2015
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2015 Australasian Universities Power Engineering Conference : 27-30 September 2015, Wollongong, Australia / / hosted by the Australian Power Quality and Reliability Centre, University of Wollongong, Australia
2015 Australasian Universities Power Engineering Conference : 27-30 September 2015, Wollongong, Australia / / hosted by the Australian Power Quality and Reliability Centre, University of Wollongong, Australia
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2015
Descrizione fisica 1 online resource (114 pages)
Disciplina 621.3
Soggetto topico Electric power systems - Management
Electrical engineering
Automatic control
ISBN 1-4799-8725-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910135172703321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Agile energy systems : global distributed on-site and central grid power / / Woodrow W. Clark
Agile energy systems : global distributed on-site and central grid power / / Woodrow W. Clark
Autore Clark Woodrow W.
Edizione [Second edition.]
Pubbl/distr/stampa Amsterdam, Netherlands : , : Elsevier, , 2017
Descrizione fisica 1 online resource (307 pages) : illustrations
Disciplina 621.31
Soggetto topico Electric power systems - Management
Energy policy - California
ISBN 0-08-101761-8
0-08-101760-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583354803321
Clark Woodrow W.  
Amsterdam, Netherlands : , : Elsevier, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AUPEC : 2018 Australasian Universities Power Engineering Conference : 27-30 November 2018, Auckland, New Zealand / / Institute of Electrical and Electronics Engineers
AUPEC : 2018 Australasian Universities Power Engineering Conference : 27-30 November 2018, Auckland, New Zealand / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Descrizione fisica 1 online resource (949 pages)
Disciplina 621.3
Soggetto topico Electrical engineering
Electric power systems - Management
ISBN 1-5386-8474-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910330759103321
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
AUPEC : 2018 Australasian Universities Power Engineering Conference : 27-30 November 2018, Auckland, New Zealand / / Institute of Electrical and Electronics Engineers
AUPEC : 2018 Australasian Universities Power Engineering Conference : 27-30 November 2018, Auckland, New Zealand / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Descrizione fisica 1 online resource (949 pages)
Disciplina 621.3
Soggetto topico Electrical engineering
Electric power systems - Management
ISBN 1-5386-8474-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996575472103316
Piscataway, New Jersey : , : Institute of Electrical and Electronics Engineers, , 2019
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
AUPEC : 2017 Australasian Universities Power Engineering Conference : 19-22 November 2017
AUPEC : 2017 Australasian Universities Power Engineering Conference : 19-22 November 2017
Pubbl/distr/stampa New York : , : IEEE, , 2018
Descrizione fisica 1 online resource (160 pages)
Soggetto topico Electric power systems - Management
Electrical engineering
Automatic control
ISBN 1-5386-2647-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996280255203316
New York : , : IEEE, , 2018
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
AUPEC : 2017 Australasian Universities Power Engineering Conference : 19-22 November 2017
AUPEC : 2017 Australasian Universities Power Engineering Conference : 19-22 November 2017
Pubbl/distr/stampa New York : , : IEEE, , 2018
Descrizione fisica 1 online resource (160 pages)
Soggetto topico Electric power systems - Management
Electrical engineering
Automatic control
ISBN 1-5386-2647-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910258257803321
New York : , : IEEE, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Australasian Universities Power Engineering Conference
Australasian Universities Power Engineering Conference
Pubbl/distr/stampa [Piscataway, N.J.] : , : IEEE
Disciplina 62131
621.3
Soggetto topico Electrical engineering
Electric power systems - Management
Electric power systems - Australia
Génie électrique
Réseaux électriques (Énergie) - Gestion
Réseaux électriques (Énergie) - Australie
Electric power systems
Soggetto genere / forma Periodicals.
Conference papers and proceedings.
ISSN 2474-1507
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Universities Power Engineering Conference
AUPEC
Record Nr. UNINA-9910626136403321
[Piscataway, N.J.] : , : IEEE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Australasian Universities Power Engineering Conference
Australasian Universities Power Engineering Conference
Pubbl/distr/stampa [Piscataway, N.J.] : , : IEEE
Disciplina 62131
621.3
Soggetto topico Electrical engineering
Electric power systems - Management
Electric power systems - Australia
Génie électrique
Réseaux électriques (Énergie) - Gestion
Réseaux électriques (Énergie) - Australie
Electric power systems
Soggetto genere / forma Periodicals.
Conference papers and proceedings.
ISSN 2474-1507
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti Universities Power Engineering Conference
AUPEC
Record Nr. UNISA-996581528803316
[Piscataway, N.J.] : , : IEEE
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution Through Analytics
Data-Driven Energy Management and Tariff Optimization in Power Systems : Shaping the Future of Electricity Distribution Through Analytics
Autore Arasteh Hamidreza
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (320 pages)
Disciplina 333.7932
Altri autori (Persone) SianoPierluigi
MoslemiNiki
GuerreroJosep M
Soggetto topico Electric power systems - Management
Energy consumption - Forecasting
ISBN 1-394-29030-6
1-394-29028-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Editors -- List of Contributors -- Preface -- Chapter 1 Fundamentals of Power System Data and Analytics -- 1.1 Introduction -- 1.2 Background -- 1.2.1 Concept, Opportunities, and Challenges of Present and Future Power Systems -- 1.2.2 Transformation in the Power Industry -- 1.2.3 Drivers and Barriers -- 1.3 Data‐rich Power Systems -- 1.3.1 Data Sources and Types -- 1.3.2 Data Structure -- 1.4 Data Analytics in Power Systems -- 1.4.1 What Is Data Analytics? -- 1.4.2 Analytics Techniques -- 1.5 Data Analytics‐Based Decision‐Making in Future Power Systems -- 1.5.1 Decision Framework -- 1.5.1.1 Uncertainty Issues -- 1.5.1.2 Behavioral Analytics -- 1.5.1.3 Policy Mechanisms -- 1.5.2 Computational Aspects -- 1.6 Conclusion -- 1.7 Future Trends and Challenges -- References -- Chapter 2 Advanced Predictive Modeling for Energy Consumption and Demand -- 2.1 The Role of Load Forecasting in Power System Planning -- 2.2 Need for Short‐Term Demand Forecasting -- 2.3 Components of Power Demand and Factors Affecting Demand Growth -- 2.3.1 Electricity Demand from the Consumer Type Perspective -- 2.3.2 Electricity Demand from the Supply Perspective -- 2.4 Electricity Demand in Networks with High Renewable Energy Sources -- 2.5 Machine Learning and Its Applications in Demand Forecast -- 2.5.1 Application of Clustering in Load Forecasting -- 2.6 The Impact of Macro‐decisions on Long‐term Load Forecasting -- 2.6.1 Natural Gas as a Primary Energy Carrier for Heating Demand -- 2.7 Conclusion -- References -- Chapter 3 Demand Response and Customer‐Centric Energy Management -- 3.1 Introduction -- 3.2 Background -- 3.3 Future Power Systems Aspects, Trends, and Challenges -- 3.4 Transforming to Customer‐Centric Era -- 3.4.1 Differences Between Customer‐Centric DR Solution and Other Ways in the Future Power System.
3.4.2 Drivers and Enablers -- 3.5 Customer‐Centric Power System Structure -- 3.5.1 Physical Layer -- 3.5.1.1 Physical Resources -- 3.5.1.2 Physical Constraints of the System -- 3.5.2 Cyber‐Social Layers -- 3.5.2.1 Centralized Approach (Traditional) -- 3.5.2.2 Decentralized Approach (Future) -- 3.6 Conclusion and Future Trends -- References -- Chapter 4 Applications of Data Mining in Industrial Tariff Design and Energy Management: Concepts and Practical Insights -- 4.1 Introduction -- 4.1.1 Data Mining: Concepts, Procedures, and Tools -- 4.1.2 Energy Management and the Role of Data Mining -- 4.1.3 Aims and Scope -- 4.2 Investigating Industrial Load Data: Analysis Through Various Indexes -- 4.3 Classification of Industries -- 4.4 Discussion and Conclusions -- References -- Chapter 5 Data‐Driven Tariff Design for Equitable Energy Distribution -- 5.1 Introduction -- 5.1.1 Literature Review and Contributions -- 5.1.2 Chapter Organization -- 5.2 Proposed Approach and Formulations -- 5.3 Describing the Case Study -- 5.4 Simulation Results -- 5.5 Conclusions and Future Works -- References -- Chapter 6 Applying Artificial Intelligence to Improve the Penetration of Renewable Energy in Power Systems -- 6.1 Introduction -- 6.2 Machine Learning Techniques -- 6.2.1 Artificial Neural Network and Deep Neural Network -- 6.2.2 Convolutional Neural Network -- 6.2.3 Recurrent Neural Network -- 6.2.4 Long Short‐Term Memory -- 6.3 General View of ML/DL Methods for RES Integration -- 6.3.1 Data Preprocessing -- 6.3.1.1 Normalization -- 6.3.1.2 Wrong/Missing Values and Outliers -- 6.3.1.3 Data Resolution -- 6.3.1.4 Inactive Time Data -- 6.3.1.5 Data Augmentation -- 6.3.1.6 Correlation -- 6.3.1.7 Data Clustering -- 6.3.2 Deterministic/Probabilistic Forecasting Methods -- 6.3.2.1 Deterministic Methods -- 6.3.2.2 Probabilistic Forecasting Methods -- 6.3.3 Evaluation Measures.
6.4 ML/DL Application for Integration of RES -- 6.4.1 Renewable Resources Data Prediction/Planning -- 6.4.2 RES Power Generation Prediction/Operation -- 6.4.3 Electric Load and Demand Forecasting -- 6.4.4 Stability Analysis -- 6.4.4.1 Security Assessment -- 6.4.4.2 Stability Assessment -- 6.5 Integrated Machine Learning and Optimization Approach -- 6.6 Conclusion -- References -- Chapter 7 Machine Learning‐Based Solutions for Renewable Energy Integration -- 7.1 Introduction -- 7.2 Machine Learning Importance in RESs Sector -- 7.2.1 AI‐Based Algorithms in RESs -- 7.2.2 ML Algorithms Application in RESs -- 7.3 Role of ML in Optimizing Renewable Energy Generation -- 7.3.1 Different Programming Models in RES Optimization -- 7.3.2 Optimization Objectives in RESs -- 7.3.3 ML Applications in Optimizing Renewable Energy Generation -- 7.4 Ensuring Grid Stability Through ML‐Based Forecasting -- 7.4.1 Grid Stability Forecasting -- 7.4.2 Grid Stability Through ML‐Based Forecasting -- 7.5 Challenges and Future Direction in ML‐Based Approaches to RESs -- 7.5.1 Challenges in ML‐Based Approaches to RESs -- 7.5.2 Future Directions in ML‐Based Approaches to RESs -- 7.6 Conclusion -- References -- Chapter 8 Application of Artificial Neural Networks in Solar Photovoltaic Power Forecasting -- 8.1 RES Share in World Energy Transition -- 8.2 Applications of PV Panels in Energy Systems -- 8.3 Disadvantages of PV Panels -- 8.4 Importance of PV Power Forecasting -- 8.5 Proposed Algorithm for PV Power Prediction -- 8.6 Numerical Results and Discussions -- 8.7 Concluding Remarks -- References -- Chapter 9 Power System Resilience Evaluation Data Challenges and Solutions -- 9.1 Introduction -- 9.2 A Review of Power System Resilience Metrics -- 9.3 The General Framework for the Resilience Assessment of the Power System -- 9.4 Data Required for Power System Resilience Studies.
9.4.1 Data of Natural Origin -- 9.4.2 Basic Data of the Power System -- 9.4.3 Data on Failure and Restoration Rates -- 9.5 Data Analysis and Correction -- 9.6 Disaster Forecasting in Power System Resilience Studies -- 9.7 Modeling the Impact of Disaster on Power System Performance -- 9.8 Static Model in Machine Learning -- 9.9 Spatiotemporal Random Process -- 9.9.1 Dynamic Model for Chain Failures -- 9.9.2 Nonstationary Failure‐Recovery‐Impact Processes -- 9.10 Lessons Learned and Concluding Remarks -- 9.11 Future Work -- References -- Chapter 10 Nonintrusive Load Monitoring in Smart Grids Using Deep Learning Approach -- 10.1 Introduction -- 10.2 Deep Learning Neural Networks -- 10.2.1 RNN -- 10.2.2 LSTM -- 10.2.3 CNN -- 10.2.4 Convolutional Layer -- 10.2.5 Pooling Layer -- 10.2.6 Fully Connected Layer -- 10.3 The Proposed Method -- 10.3.1 Pre‐Processing and Preparing Data -- 10.3.2 Proposed Method Architecture -- 10.3.3 Proposed Method's Parameters -- 10.3.4 Performance Evaluation -- 10.4 Results and Discussion -- 10.5 Challenges and Future Trends -- 10.6 Conclusion -- References -- Chapter 11 Power System Cyber‐Physical Security and Resiliency Based on Data‐Driven Methods -- 11.1 Introduction -- 11.2 Fundamental Concepts -- 11.2.1 Cyber‐Physical Power System (CPPS) -- 11.2.2 Security and Resiliency -- 11.3 Role of Data Analytics -- 11.3.1 Basic Methods -- 11.3.1.1 Supervised Learning (SL) -- 11.3.1.2 Unsupervised Learning (UL) -- 11.3.2 Advanced Techniques -- 11.3.2.1 Dimensionality Reduction (DR) -- 11.3.2.2 Feature Engineering -- 11.3.2.3 Reinforcement Learning -- 11.3.2.4 Integrated Models -- 11.4 Interdependency Modeling -- 11.4.1 Direct Modeling -- 11.4.2 Testbeds -- 11.4.3 Game‐Theoretic -- 11.4.4 Machine Learning -- 11.5 Cyber‐Physical Threats -- 11.5.1 Physical Attacks -- 11.5.2 Cyberattacks -- 11.5.2.1 Confidentiality.
11.5.2.2 Availability -- 11.5.2.3 Integrity -- 11.5.3 Coordinated Attacks -- 11.6 Defense Framework -- 11.6.1 Preventive Measures -- 11.6.1.1 Supply Chain Security -- 11.6.1.2 Access Control -- 11.6.1.3 Personnel Training -- 11.6.1.4 Resource Allocation -- 11.6.1.5 Infrastructure Hardening -- 11.6.1.6 Moving Target Defense -- 11.6.2 Mitigation Actions -- 11.6.2.1 Attack Detection -- 11.6.2.2 Data Recovery -- 11.6.2.3 Reconfiguration and Restoration -- 11.6.2.4 Forensic Analysis -- 11.7 Conclusion -- References -- Chapter 12 Application of Artificial Intelligence in Undervoltage Load Shedding in Digitalized Power Systems -- 12.1 Introduction -- 12.2 Load‐Shedding Strategies -- 12.2.1 Conventional LS -- 12.2.2 Adaptive LS -- 12.2.3 AI‐Based LS -- 12.3 Principles of UVLS -- 12.3.1 Amount of Load Shed -- 12.3.2 Location for LS -- 12.3.3 Application of VSI for UVLS -- 12.4 AI‐Based Methods -- 12.5 Case Study -- 12.5.1 Database Generation -- 12.5.2 Offline Training -- 12.5.3 Online Application -- 12.6 Future Challenges and Transfer Learning -- 12.7 Conclusion -- References -- Index -- EULA.
Record Nr. UNINA-9911042410503321
Arasteh Hamidreza  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui