Electrical machine drives control : an introduction / / Juha Pyrhönen, Valéria Hrabovcová, R. Scott Semken
| Electrical machine drives control : an introduction / / Juha Pyrhönen, Valéria Hrabovcová, R. Scott Semken |
| Autore | Pyrhönen Juha |
| Pubbl/distr/stampa | Chichester, West Sussex, England : , : Wiley, , 2016 |
| Descrizione fisica | 1 online resource (527 p.) |
| Disciplina | 621.46 |
| Soggetto topico |
Electric driving
Electric motors - Electronic control |
| ISBN |
1-119-26040-X
1-119-26044-2 1-119-26047-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Electrical Machine Drives Control: An Introduction; Contents; Preface; Abbreviations and Symbols; 1: Introduction to electrical machine drives control; 1.1 What is an electrical machine drive?; 1.2 Controlled variable speed drives; 1.2.1 DC variable speed drives; 1.2.2 AC variable speed drives; 1.3 Electrical machine drive implementation; 1.4 Controlled electrical drives and energy efficiency; 1.5 The electrical drive as an element of a controlled industrial process; References; 2: Aspects common to all controlled electrical machine drive types
2.1 Pulse width modulation converter electrical motor drive2.2 Converter interface to power source; 2.3 Fundamental mechanics; 2.4 Basic mechanical load types; 2.5 Proportional-integral-derivative controller in electrical drives; 2.6 The speed, torque, or position control of an electrical drive; 2.7 Control time rates and embedded system principles; 2.8 Per-unit values; 3: The fundamentals of electric machines; 3.1 Energy conversion in electric machines; 3.2 Industrial machine windings; 3.3 Effective winding turns and spatial harmonics; 3.4 Induction machine rotors; 3.5 The damper winding 3.6 AC winding systems3.7 DC machine windings; 3.8 The brushless DC machine; 3.9 The magnetic circuit of an electric machine; 3.10 Motor voltage, flux linkage, flux, field weakening, and voltage reserve; 3.11 Motors in power-electronic electrical drives; References; 4: The fundamentals of space-vector theory; 4.1 Introduction to the space vector for current linkage; 4.1.1 Mathematical representation of the space vector; 4.1.2 Two-axis representation of the space vector; 4.1.3 Coordinate transformation of the space vector; 4.2 Space-vector equivalent circuits and the voltage-vector equations 4.3 Space-vector model in the general reference frame4.4 The two-axis model; 4.5 Application of space-vector theory; References; 5: Torque and force production and power; 5.1 The Lorentz force; 5.2 The general equation for torque; 5.3 Power; 5.4 Reluctance torque and co-energy; 5.5 Reluctance torque and the cross-field principle in a rotating field machine; 5.6 Maxwell's stress tensor in the definition of torque; References; 6: Basic control principles for electric machines; 6.1 The control of a DC machine; 6.2 AC machine control basics; 6.3 Vector control of AC motors 6.4 Direct flux-linkage control and direct torque control6.4.1 The basis of direct torque control; 6.4.2 DFLC implementation; 6.4.3 Shortcomings of direct flux-linkage control; 6.5 Improving DFLC to achieve DTC; 6.5.1 Current model correction; 6.5.2 Stator flux-linkage eccentricity correction; 6.6 Other control principles; References; 7: DC and AC power electronic topologies - modulation for the control of rotating-field motors; 7.1 The thyristor bridge as a power-electronic drive component; 7.2 The cycloconverter; 7.3 The load commutated inverter drive 7.4 Voltage source inverter power stages |
| Record Nr. | UNINA-9910166634803321 |
Pyrhönen Juha
|
||
| Chichester, West Sussex, England : , : Wiley, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
IEEE Std 1068-2015 (Revision of IEEE Std 1068-2009) : IEEE Standard for the Repair and Rewinding of AC Electric Motors in the Petroleum, Chemical, and Process Industries / / Institute of Electrical and Electronics Engineers
| IEEE Std 1068-2015 (Revision of IEEE Std 1068-2009) : IEEE Standard for the Repair and Rewinding of AC Electric Motors in the Petroleum, Chemical, and Process Industries / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, New Jersey : , : IEEE, , 2016 |
| Descrizione fisica | 1 online resource (90 pages) |
| Disciplina | 621.46 |
| Soggetto topico |
Electric motors, Induction - Automatic control
Electric motors - Electronic control |
| ISBN | 1-5044-0103-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | IEEE Std 1068-2015 |
| Record Nr. | UNINA-9910137371203321 |
| Piscataway, New Jersey : , : IEEE, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
IEEE Std 1068-2015 (Revision of IEEE Std 1068-2009) : IEEE Standard for the Repair and Rewinding of AC Electric Motors in the Petroleum, Chemical, and Process Industries / / Institute of Electrical and Electronics Engineers
| IEEE Std 1068-2015 (Revision of IEEE Std 1068-2009) : IEEE Standard for the Repair and Rewinding of AC Electric Motors in the Petroleum, Chemical, and Process Industries / / Institute of Electrical and Electronics Engineers |
| Pubbl/distr/stampa | Piscataway, New Jersey : , : IEEE, , 2016 |
| Descrizione fisica | 1 online resource (90 pages) |
| Disciplina | 621.46 |
| Soggetto topico |
Electric motors, Induction - Automatic control
Electric motors - Electronic control |
| ISBN | 1-5044-0103-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | IEEE Std 1068-2015 |
| Record Nr. | UNISA-996280523403316 |
| Piscataway, New Jersey : , : IEEE, , 2016 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Integrated Motor Drives
| Integrated Motor Drives |
| Autore | Deng Xu |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2023 |
| Descrizione fisica | 1 online resource (294 pages) |
| Disciplina | 621.46 |
| Altri autori (Persone) | MecrowBarrie |
| Collana | Energy Engineering Series |
| Soggetto topico | Electric motors - Electronic control |
| ISBN |
1-83724-494-4
1-5231-5540-X 1-83953-187-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title -- Copyright -- Contents -- About the editors -- 1 Introduction -- 1.1 Concept of integrated motor drives -- 1.2 Types of IMDs -- 1.2.1 Standard frame mounting -- 1.2.2 Endplate mounted integration -- 1.2.3 Mounting within the machine casing -- 1.3 Contents of the book -- References -- 2 Electrical machines for an integrated drive -- 2.1 Machine issues for integrated drives -- 2.2 Motor modularisation -- 2.2.1 Rationale for modular motor drives -- 2.2.2 Machine compatibility with modular stator windings -- 2.2.3 Manufacturing issues for modular motors with concentrated windings -- 2.2.4 Motor characteristics for fault-tolerant modular motor drives -- 2.2.5 Concluding remarks -- 2.3 Winding materials and wire types -- 2.4 Insulation -- 2.4.1 Resonant voltage overshoot at the motor terminals -- 2.4.2 Voltage distribution in the motor windings -- 2.4.3 Mitigation methods for waveforms with high dv/dt values -- 2.4.4 Motor coil insulation systems -- 2.5 Magnetic cores -- 2.5.1 Soft magnetic materials -- 2.5.2 Hard magnetic materials - permanent magnets -- References -- 3 Power converter and control techniques -- 3.1 Overview of electric drives -- 3.2 Power converters -- 3.2.1 Power semiconductor switching devices -- 3.2.2 Converter topologies -- 3.2.3 Power converters integration in IMDs -- 3.3 Sensors -- 3.3.1 Current sensing technology -- 3.3.2 Rotational position and speed sensing technology -- 3.4 Control methods -- 3.4.1 Torque and speed control -- 3.4.2 Open loop voltage/frequency control -- 3.4.3 Dynamic torque control -- 3.4.4 Multiphase and modular machines -- 3.5 Control hardware -- 3.5.1 Control platforms -- 3.5.2 Peripherals -- 3.5.3 Prototyping systems -- 3.5.4 Distributed architectures and data networking -- 3.6 Thermal, environmental, and EMI constraints -- 3.7 Summary -- References.
4 Wide bandgap semiconductor switching devices in integrated motor drives -- 4.1 Wide bandgap power semiconductor devices -- 4.1.1 WBG (SiC and GaN) material properties and benefits for integrated motor drive applications -- 4.1.2 Overview of WBG switch configurations for IMD applications -- 4.2 Application of WBG devices in integrated motor drives -- 4.2.1 Potential benefits of WBG devices for integrated motor drives -- 4.2.2 Challenges caused by WBG devices in VSI-based IMDs -- 4.2.3 Standard techniques for overcoming WBG switch challenges in VSI-based IMDs -- 4.2.4 Current and future applications of WBG technology in VSI-based IMDs -- 4.3 Unfolding opportunities for WBG devices in future IMDs -- 4.3.1 Introduction to CSIs as alternative to VSIs -- 4.3.2 Impact of WBG switch devices on renewed CSI interest -- 4.3.3 Advantages of CSIs over VSIs using WBG switches -- 4.3.4 Challenges posed by CSIs using WBG switches -- 4.3.5 Case history: 3 kW WBG-based CSI integrated motor drive [19] -- 4.3.6 CSI-IMD technology scalability -- 4.4 Closing comments -- References -- 5 Thermal management of integrated motor drives -- 5.1 Introduction -- 5.2 Thermal management of electrical machines -- 5.2.1 Thermal management of electrical machines - system classification -- 5.2.2 Mechanical and thermal integration of IMDs - system architectures -- 5.2.3 Conventional (non-cryogenic) thermal management of IMDs - examples -- 5.2.4 Cryogenic thermal management of IMDs - examples -- 5.3 Thermal management of power converters for IMD -- 5.3.1 Packaging of power electronics module -- 5.3.2 Electrical interconnects -- 5.3.3 Die attachment -- 5.3.4 Encapsulant -- 5.3.5 Substrates -- 5.3.6 Power electronic cooling methodologies -- 5.3.7 Forced air cooled -- 5.3.8 Cold plate -- 5.3.9 Pin-Fin -- 5.3.10 Jet impingement -- 5.3.11 Turbulator -- 5.3.12 IMD cooling arrangements. 5.3.13 Summary -- 5.4 Outlook -- 5.4.1 Liquid metal cooling -- 5.4.2 Phase change materials (PCMs) cooling -- 5.4.3 Cryogenic cooling -- References -- 6 Passive devices -- 6.1 Energy storage needs -- 6.1.1 PWM switching frequency -- 6.1.2 Semiconductor switching transient -- 6.1.3 Peak power demands -- 6.2 Passive component technology -- 6.2.1 Capacitors -- 6.2.2 Inductors -- 6.2.3 Cable -- 6.2.4 Electrical insulation materials -- 6.3 Power systems -- 6.3.1 Battery system -- 6.3.2 DC power grid -- 6.3.3 AC mains supply -- 6.4 Design trends of integrated drive systems -- 6.5 Introduction of EMI and EMC -- 6.5.1 Differential mode and common mode -- 6.5.2 The RF content in a typical motor drive system -- 6.5.3 Noise source -- 6.5.4 Propagation path and coupling -- 6.5.5 Design for EMC and mitigation scheme -- 6.6 Filter simulation -- 6.7 Conclusion -- References -- 7 Gearboxes -- 7.1 Introduction -- 7.1.1 Gear types -- 7.1.2 Gear ratios -- 7.1.3 Gear theory -- 7.1.4 Gear geometry -- 7.2 Gearbox arrangements -- 7.2.1 Multi-stage gearbox layouts -- 7.2.2 Electric vehicle transmission layouts -- 7.3 Gear stress analysis -- 7.3.1 The principles of ISO 6336 -- 7.3.2 ISO 6336 terminology and key factors -- 7.3.3 ISO 6336 load-time analysis -- 7.4 Gear optimization -- 7.4.1 Transmission error and tooth contact analysis -- 7.4.2 Micro and macro gear geometry optimization -- 7.5 Manufacturing methods -- 7.6 Gear quality control and measurement -- 7.7 Steel selection and heat treatment methods -- 7.8 Gear failure modes -- 7.9 Bearings -- 7.10 Lubrication and cooling -- References -- 8 Research prototypes and commercial products -- 8.1 Research prototype 1: development of a high-speed, permanent magnet, SiC-based drive with integrated input filters -- 8.1.1 Background -- 8.1.2 Integrated motor design -- 8.1.3 Prototype manufacture. 8.1.4 Comparison with other discrete AC inductors -- 8.1.5 Winding connection considerations -- 8.1.6 Power electronics integration -- 8.1.7 Conclusion -- 8.2 Research prototype 2: wide bandgap-based current source inverter integrated motor drive* -- 8.2.1 Introduction -- 8.2.2 Design of WBG-based CSI for IMD applications -- 8.2.3 Thermal performance analysis of electric machine and IMD -- 8.2.4 Conclusions -- 8.3 Research prototype 3: a novel approach to thermal and electrical integration of high power density drives in automotive applications -- 8.3.1 Introduction -- 8.3.2 Overview of the system -- 8.3.3 Integrated power module design -- 8.3.4 Thermal management -- 8.3.5 Results -- 8.3.6 Conclusions -- 8.4 Commercial product: ProteanDrive by Protean Electric -- 8.4.1 Motivation for integration -- 8.4.2 Description of integrated approach -- 8.4.3 Operational experience -- 8.4.4 Future integration possibilities -- References -- 9 Emerging technologies and needs -- 9.1 Summary IMDs' challenges -- 9.2 Emerging design concepts -- 9.2.1 Holistic design approach -- 9.2.2 Modular and scalable design -- 9.3 Emerging assembly technologies -- 9.3.1 PCB embedding -- 9.3.2 High-temperature packaging techniques -- 9.3.3 Additive manufacturing -- References -- Index. |
| Record Nr. | UNINA-9911007126803321 |
Deng Xu
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
PID and predictive control of electrical drives and power converters using Matlab®/Simulink®/ / Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng
| PID and predictive control of electrical drives and power converters using Matlab®/Simulink®/ / Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng |
| Autore | Wang Liuping |
| Pubbl/distr/stampa | Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2015] |
| Descrizione fisica | 1 online resource (370 p.) |
| Disciplina | 621.46 |
| Soggetto topico |
PID controllers
Electric motors - Electronic control Electric power supplies to apparatus - Automatic control |
| ISBN |
1-118-33947-9
1-118-33945-2 1-118-33946-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
About the Authors xiii -- Preface xv -- Acknowledgment xix -- List of Symbols and Acronyms xxi -- 1 Modeling of AC Drives and Power Converter 1 -- 1.1 Space Phasor Representation 1 -- 1.1.1 Space Vector for Magnetic Motive Force 1 -- 1.1.2 Space Vector Representation of Voltage Equation 4 -- 1.2 Model of Surface Mounted PMSM 5 -- 1.2.1 Representation in Stationary Reference Frame 5 -- 1.2.2 Representation in Synchronous Reference Frame 7 -- 1.2.3 Electromagnetic Torque 8 -- 1.3 Model of Interior Magnets PMSM 10 -- 1.3.1 Complete Model of PMSM 11 -- 1.4 Per Unit Model and PMSM Parameters 11 -- 1.4.1 Per Unit Model and Physical Parameters 11 -- 1.4.2 Experimental Validation of PMSM Model 12 -- 1.5 Modeling of Induction Motor 13 -- 1.5.1 Space Vector Representation of Voltage Equation of Induction Motor 13 -- 1.5.2 Representation in Stationary Reference Frame 17 -- 1.5.3 Representation in Reference Frame 17 -- 1.5.4 Electromagnetic Torque of Induction Motor 19 -- 1.5.5 Model Parameters of Induction Motor and Model Validation 19 -- 1.6 Modeling of Power Converter 21 -- 1.6.1 Space Vector Representation of Voltage Equation for Power Converter 22 -- 1.6.2 Representation in Reference Frame 22 -- 1.6.3 Representation in Reference Frame 23 -- 1.6.4 Energy Balance Equation 24 -- 1.7 Summary 25 -- 1.8 Further Reading 25 -- References 25 -- 2 Control of Semiconductor Switches via PWM Technologies 27 -- 2.1 Topology of IGBT Inverter 28 -- 2.2 Six-step Operating Mode 30 -- 2.3 Carrier Based PWM 31 -- 2.3.1 Sinusoidal PWM 31 -- 2.3.2 Carrier Based PWM with Zero-sequence Injection 32 -- 2.4 Space Vector PWM 35 -- 2.5 Simulation Study of the Effect of PWM 37 -- 2.6 Summary 40 -- 2.7 Further Reading 40 -- References 40 -- 3 PID Control System Design for Electrical Drives and Power Converters 41 -- 3.1 Overview of PID Control Systems Using Pole-assignment Design Techniques 42 -- 3.1.1 PI Controller Design 42 -- 3.1.2 Selecting the Desired Closed-loop Performance 43 -- 3.1.3 Overshoot in Reference Response 45.
3.1.4 PID Controller Design 46 -- 3.1.5 Cascade PID Control Systems 48 -- 3.2 Overview of PID Control of PMSM 49 -- 3.2.1 Bridging the Sensor Measurements to Feedback Signals (See the lower part of Figure 3.6) 50 -- 3.2.2 Bridging the Control Signals to the Inputs to the PMSM (See the top part of Figure 3.6) 51 -- 3.3 PI Controller Design for Torque Control of PMSM 52 -- 3.3.1 Set-point Signals to the Current Control Loops 52 -- 3.3.2 Decoupling of the Current Control Systems 53 -- 3.3.3 PI Current Controller Design 54 -- 3.4 Velocity Control of PMSM 55 -- 3.4.1 Inner-loop Proportional Control of q-axis Current 55 -- 3.4.2 Cascade Feedback Control of Velocity:P Plus PI 57 -- 3.4.3 Simulation Example for P Plus PI Control System 59 -- 3.4.4 Cascade Feedback Control of Velocity:PI Plus PI 61 -- 3.4.5 Simulation Example for PI Plus PI Control System 63 -- 3.5 PID Controller Design for Position Control of PMSM 64 -- 3.6 Overview of PID Control of Induction Motor 65 -- 3.6.1 Bridging the Sensor Measurements to Feedback Signals 67 -- 3.6.2 Bridging the Control Signals to the Inputs to the Induction Motor 67 -- 3.7 PID Controller Design for Induction Motor 68 -- 3.7.1 PI Control of Electromagnetic Torque of Induction Motor 68 -- 3.7.2 Cascade Control of Velocity and Position 70 -- 3.7.3 Slip Estimation 73 -- 3.8 Overview of PID Control of Power Converter 74 -- 3.8.1 Bridging Sensor Measurements to Feedback Signals 75 -- 3.8.2 Bridging the Control Signals to the Inputs of the Power Converter 76 -- 3.9 PI Current and Voltage Controller Design for Power Converter 76 -- 3.9.1 P Control of d-axis Current 76 -- 3.9.2 PI Control of q-axis Current 77 -- 3.9.3 PI Cascade Control of Output Voltage 79 -- 3.9.4 Simulation Example 80 -- 3.9.5 Phase Locked Loop 80 -- 3.10 Summary 82 -- 3.11 Further Reading 83 -- References 83 -- 4 PID Control System Implementation 87 -- 4.1 P and PI Controller Implementation in Current Control Systems 87 -- 4.1.1 Voltage Operational Limits in Current Control Systems 87. 4.1.2 Discretization of Current Controllers 90 -- 4.1.3 Anti-windup Mechanisms 92 -- 4.2 Implementation of Current Controllers for PMSM 93 -- 4.3 Implementation of Current Controllers for Induction Motors 95 -- 4.4 Current Controller Implementation for Power Converter 97 -- 4.4.1 Constraints on the Control Variables 97 -- 4.5 Implementation of Outer-loop PI Control System 98 -- 4.5.1 Constraints in the Outer-loop 98 -- 4.5.2 Over Current Protection for AC Machines 99 -- 4.5.3 Implementation of Outer-loop PI Control of Velocity 100 -- 4.5.4 Over Current Protection for Power Converters 100 -- 4.6 MATLAB Tutorial on Implementation of PI Controller 100 -- 4.7 Summary 102 -- 4.8 Further Reading 103 -- References 103 -- 5 Tuning PID Control Systems with Experimental Validations 105 -- 5.1 Sensitivity Functions in Feedback Control Systems 105 -- 5.1.1 Two-degrees of Freedom Control System Structure 105 -- 5.1.2 Sensitivity Functions 109 -- 5.1.3 Disturbance Rejection and Noise Attenuation 110 -- 5.2 Tuning Current-loop q-axis Proportional Controller (PMSM) 111 -- 5.2.1 Performance Factor and Proportional Gain 112 -- 5.2.2 Complementary Sensitivity Function 112 -- 5.2.3 Sensitivity and Input Sensitivity Functions 114 -- 5.2.4 Effect of PWM Noise on Current Proportional Control System 114 -- 5.2.5 Effect of Current Sensor Noise and Bias 116 -- 5.2.6 Experimental Case Study of Current Sensor Bias Using P Control 118 -- 5.2.7 Experimental Case Study of Current Loop Noise 119 -- 5.3 Tuning Current-loop PI Controller (PMSM) 123 -- 5.4 Performance Robustness in Outer-loop Controllers 128 -- 5.4.1 Sensitivity Functions for Outer-loop Control System 131 -- 5.4.2 Input Sensitivity Functions for the Outer-loop System 135 -- 5.5 Analysis of Time-delay Effects 136 -- 5.5.1 PI Control of q-axis Current 137 -- 5.5.2 P Control of q-axis Current 137 -- 5.6 Tuning Cascade PI Control Systems for Induction Motor 138 -- 5.6.1 Robustness of Cascade PI Control System 140 -- 5.6.2 Robustness Study Using Nyquist Plot 143. 5.7 Tuning PI Control Systems for Power Converter 147 -- 5.7.1 Overview of the Designs 147 -- 5.7.2 Tuning the Current Controllers 149 -- 5.7.3 Tuning Voltage Controller 150 -- 5.7.4 Experimental Evaluations 154 -- 5.8 Tuning P Plus PI Controllers for Power Converter 157 -- 5.8.1 Design and Sensitivity Functions 157 -- 5.8.2 Experimental Results 158 -- 5.9 Robustness of Power Converter Control System Using PI Current Controllers 159 -- 5.9.1 Variation of Inductance Using PI Current Controllers 160 -- 5.9.2 Variation of Capacitance on Closed-loop Performance 163 -- 5.10 Summary 167 -- 5.10.1 Current Controllers 167 -- 5.10.2 Velocity, Position and Voltage Controllers 168 -- 5.10.3 Choice between P Current Control and PI Current Control 169 -- 5.11 Further Reading 169 -- References 169 -- 6 FCS Predictive Control in d - q Reference Frame 171 -- 6.1 States of IGBT Inverter and the Operational Constraints 172 -- 6.2 FCS Predictive Control of PMSM 175 -- 6.3 MATLAB Tutorial on Real-time Implementation of FCS-MPC 177 -- 6.3.1 Simulation Results 179 -- 6.3.2 Experimental Results of FCS Control 181 -- 6.4 Analysis of FCS-MPC System 182 -- 6.4.1 Optimal Control System 182 -- 6.4.2 Feedback Controller Gain 184 -- 6.4.3 Constrained Optimal Control 185 -- 6.5 Overview of FCS-MPC with Integral Action 187 -- 6.6 Derivation of I-FCS Predictive Control Algorithm 191 -- 6.6.1 Optimal Control without Constraints 191 -- 6.6.2 I-FCS Predictive Controller with Constraints 194 -- 6.6.3 Implementation of I-FCS-MPC Algorithm 196 -- 6.7 MATLAB Tutorial on Implementation of I-FCS Predictive Controller 197 -- 6.7.1 Simulation Results 198 -- 6.8 I-FCS Predictive Control of Induction Motor 201 -- 6.8.1 The Control Algorithm for an Induction Motor 202 -- 6.8.2 Simulation Results 204 -- 6.8.3 Experimental Results 205 -- 6.9 I-FCS Predictive Control of Power Converter 209 -- 6.9.1 I-FCS Predictive Control of a Power Converter 209 -- 6.9.2 Simulation Results 211 -- 6.9.3 Experimental Results 214. 6.10 Evaluation of Robustness of I-FCS-MPC via Monte-Carlo Simulations 215 -- 6.10.1 Discussion on Mean Square Errors 216 -- 6.11 Velocity and Position Control of PMSM Using I-FCS-MPC 218 -- 6.11.1 Choice of Sampling Rate for the Outer-loop Control System 219 -- 6.11.2 Velocity and Position Controller Design 223 -- 6.12 Velocity and Position Control of Induction Motor Using I-FCS-MPC 224 -- 6.12.1 I-FCS Cascade Velocity Control of Induction Motor 225 -- 6.12.2 I-FCS-MPC Cascade Position Control of Induction Motor 226 -- 6.12.3 Experimental Evaluation of Velocity Control 228 -- 6.13 Summary 232 -- 6.13.1 Selection of sampling interval 233 -- 6.13.2 Selection of the Integral Gain 233 -- 6.14 Further Reading 234 -- References 234 -- 7 FCS Predictive Control in Reference Frame 237 -- 7.1 FCS Predictive Current Control of PMSM 237 -- 7.1.1 Predictive Control Using One-step-ahead Prediction 238 -- 7.1.2 FCS Current Control in Reference Frame 239 -- 7.1.3 Generating Current Reference Signals in Frame 240 -- 7.2 Resonant FCS Predictive Current Control 241 -- 7.2.1 Control System Configuration 241 -- 7.2.2 Outer-loop Controller Design 242 -- 7.2.3 Resonant FCS Predictive Control System 243 -- 7.3 Resonant FCS Current Control of Induction Motor 247 -- 7.3.1 The Original FCS Current Control of Induction Motor 247 -- 7.3.2 Resonant FCS Predictive Current Control of Induction Motor 250 -- 7.3.3 Experimental Evaluations of Resonant FCS Predictive Control 252 -- 7.4 Resonant FCS Predictive Power Converter Control 255 -- 7.4.1 FCS Predictive Current Control of Power Converter 255 -- 7.4.2 Experimental Results of Resonant FCS Predictive Control 260 -- 7.5 Summary 261 -- 7.6 Further Reading 262 -- References 262 -- 8 Discrete-time Model Predictive Control (DMPC) of Electrical Drives and Power Converter 265 -- 8.1 Linear Discrete-time Model for PMSM 266 -- 8.1.1 Linear Model for PMSM 266 -- 8.1.2 Discretization of the Continuous-time Model 267 -- 8.2 Discrete-time MPC Design with Constraints 268. 8.2.1 Augmented Model 269 -- 8.2.2 Design without Constraints 270 -- 8.2.3 Formulation of the Constraints 272 -- 8.2.4 On-line Solution for Constrained MPC 272 -- 8.3 Experimental Evaluation of DMPC of PMSM 274 -- 8.3.1 The MPC Parameters 274 -- 8.3.2 Constraints 275 -- 8.3.3 Response to Load Disturbances 275 -- 8.3.4 Response to a Staircase Reference 277 -- 8.3.5 Tuning of the MPC controller 278 -- 8.4 Power Converter Control Using DMPC with Experimental Validation 280 -- 8.5 Summary 281 -- 8.6 Further Reading 282 -- References 283 -- 9 Continuous-time Model Predictive Control (CMPC) of Electrical Drives and PowerConverter 285 -- 9.1 Continuous-time MPC Design 286 -- 9.1.1 Augmented Model 286 -- 9.1.2 Description of the Control Trajectories Using Laguerre Functions 287 -- 9.1.3 Continuous-time Predictive Control without Constraints 289 -- 9.1.4 Tuning of CMPC Control System Using Exponential Data Weighting and Prescribed Degree of Stability 292 -- 9.2 CMPC with Nonlinear Constraints 294 -- 9.2.1 Approximation of Nonlinear Constraint Using Four Linear Constraints 294 -- 9.2.2 Approximation of Nonlinear Constraint Using Sixteen Linear Constraints 294 -- 9.2.3 State Feedback Observer 297 -- 9.3 Simulation and Experimental Evaluation of CMPC of Induction Motor 298 -- 9.3.1 Simulation Results 298 -- 9.3.2 Experimental Results 300 -- 9.4 Continuous-time Model Predictive Control of Power Converter 301 -- 9.4.1 Use of Prescribed Degree of Stability in the Design 302 -- 9.4.2 Experimental Results for Rectification Mode 303 -- 9.4.3 Experimental Results for Regeneration Mode 303 -- 9.4.4 Experimental Results for Disturbance Rejection 304 -- 9.5 Gain Scheduled Predictive Controller 305 -- 9.5.1 The Weighting Parameters 305 -- 9.5.2 Gain Scheduled Predictive Control Law 307 -- 9.6 Experimental Results of Gain Scheduled Predictive Control of Induction Motor 309 -- 9.6.1 The First Set of Experimental Results 309 -- 9.6.2 The Second Set of Experimental Results 311 -- 9.6.3 The Third Set of Experimental Results 312. 9.7 Summary 312 -- 9.8 Further Reading 313 -- References 313 -- 10 MATLAB(R)/Simulink(R) Tutorials on Physical Modeling and Test-bed Setup 315 -- 10.1 Building Embedded Functions for Park-Clarke Transformation 315 -- 10.1.1 Park-Clarke Transformation for Current Measurements 316 -- 10.1.2 Inverse Park-Clarke Transformation for Voltage Actuation 317 -- 10.2 Building Simulation Model for PMSM 318 -- 10.3 Building Simulation Model for Induction Motor 320 -- 10.4 Building Simulation Model for Power Converter 325 -- 10.4.1 Embedded MATLAB Function for Phase Locked Loop (PLL) 325 -- 10.4.2 Physical Simulation Model for Grid Connected Voltage Source Converter 328 -- 10.5 PMSM Experimental Setup 332 -- 10.6 Induction Motor Experimental Setup 334 -- 10.6.1 Controller 334 -- 10.6.2 Power Supply 334 -- 10.6.3 Inverter 335 -- 10.6.4 Mechanical Load 335 -- 10.6.5 Induction Motor and Sensors 335 -- 10.7 Grid Connected Power Converter Experimental Setup 335 -- 10.7.1 Controller 335 -- 10.7.2 Inverter 336 -- 10.7.3 Sensors 336 -- 10.8 Summary 337 -- 10.9 Further Reading 337 -- References 337 -- Index 339. |
| Record Nr. | UNINA-9910132301603321 |
Wang Liuping
|
||
| Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
PID and predictive control of electrical drives and power converters using Matlab®/Simulink®/ / Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng
| PID and predictive control of electrical drives and power converters using Matlab®/Simulink®/ / Liuping Wang, Shan Chai, Dae Yoo, Lu Gan and Ki Ng |
| Autore | Wang Liuping |
| Pubbl/distr/stampa | Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2015] |
| Descrizione fisica | 1 online resource (370 p.) |
| Disciplina | 621.46 |
| Soggetto topico |
PID controllers
Electric motors - Electronic control Electric power supplies to apparatus - Automatic control |
| ISBN |
1-118-33947-9
1-118-33945-2 1-118-33946-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
About the Authors xiii -- Preface xv -- Acknowledgment xix -- List of Symbols and Acronyms xxi -- 1 Modeling of AC Drives and Power Converter 1 -- 1.1 Space Phasor Representation 1 -- 1.1.1 Space Vector for Magnetic Motive Force 1 -- 1.1.2 Space Vector Representation of Voltage Equation 4 -- 1.2 Model of Surface Mounted PMSM 5 -- 1.2.1 Representation in Stationary Reference Frame 5 -- 1.2.2 Representation in Synchronous Reference Frame 7 -- 1.2.3 Electromagnetic Torque 8 -- 1.3 Model of Interior Magnets PMSM 10 -- 1.3.1 Complete Model of PMSM 11 -- 1.4 Per Unit Model and PMSM Parameters 11 -- 1.4.1 Per Unit Model and Physical Parameters 11 -- 1.4.2 Experimental Validation of PMSM Model 12 -- 1.5 Modeling of Induction Motor 13 -- 1.5.1 Space Vector Representation of Voltage Equation of Induction Motor 13 -- 1.5.2 Representation in Stationary Reference Frame 17 -- 1.5.3 Representation in Reference Frame 17 -- 1.5.4 Electromagnetic Torque of Induction Motor 19 -- 1.5.5 Model Parameters of Induction Motor and Model Validation 19 -- 1.6 Modeling of Power Converter 21 -- 1.6.1 Space Vector Representation of Voltage Equation for Power Converter 22 -- 1.6.2 Representation in Reference Frame 22 -- 1.6.3 Representation in Reference Frame 23 -- 1.6.4 Energy Balance Equation 24 -- 1.7 Summary 25 -- 1.8 Further Reading 25 -- References 25 -- 2 Control of Semiconductor Switches via PWM Technologies 27 -- 2.1 Topology of IGBT Inverter 28 -- 2.2 Six-step Operating Mode 30 -- 2.3 Carrier Based PWM 31 -- 2.3.1 Sinusoidal PWM 31 -- 2.3.2 Carrier Based PWM with Zero-sequence Injection 32 -- 2.4 Space Vector PWM 35 -- 2.5 Simulation Study of the Effect of PWM 37 -- 2.6 Summary 40 -- 2.7 Further Reading 40 -- References 40 -- 3 PID Control System Design for Electrical Drives and Power Converters 41 -- 3.1 Overview of PID Control Systems Using Pole-assignment Design Techniques 42 -- 3.1.1 PI Controller Design 42 -- 3.1.2 Selecting the Desired Closed-loop Performance 43 -- 3.1.3 Overshoot in Reference Response 45.
3.1.4 PID Controller Design 46 -- 3.1.5 Cascade PID Control Systems 48 -- 3.2 Overview of PID Control of PMSM 49 -- 3.2.1 Bridging the Sensor Measurements to Feedback Signals (See the lower part of Figure 3.6) 50 -- 3.2.2 Bridging the Control Signals to the Inputs to the PMSM (See the top part of Figure 3.6) 51 -- 3.3 PI Controller Design for Torque Control of PMSM 52 -- 3.3.1 Set-point Signals to the Current Control Loops 52 -- 3.3.2 Decoupling of the Current Control Systems 53 -- 3.3.3 PI Current Controller Design 54 -- 3.4 Velocity Control of PMSM 55 -- 3.4.1 Inner-loop Proportional Control of q-axis Current 55 -- 3.4.2 Cascade Feedback Control of Velocity:P Plus PI 57 -- 3.4.3 Simulation Example for P Plus PI Control System 59 -- 3.4.4 Cascade Feedback Control of Velocity:PI Plus PI 61 -- 3.4.5 Simulation Example for PI Plus PI Control System 63 -- 3.5 PID Controller Design for Position Control of PMSM 64 -- 3.6 Overview of PID Control of Induction Motor 65 -- 3.6.1 Bridging the Sensor Measurements to Feedback Signals 67 -- 3.6.2 Bridging the Control Signals to the Inputs to the Induction Motor 67 -- 3.7 PID Controller Design for Induction Motor 68 -- 3.7.1 PI Control of Electromagnetic Torque of Induction Motor 68 -- 3.7.2 Cascade Control of Velocity and Position 70 -- 3.7.3 Slip Estimation 73 -- 3.8 Overview of PID Control of Power Converter 74 -- 3.8.1 Bridging Sensor Measurements to Feedback Signals 75 -- 3.8.2 Bridging the Control Signals to the Inputs of the Power Converter 76 -- 3.9 PI Current and Voltage Controller Design for Power Converter 76 -- 3.9.1 P Control of d-axis Current 76 -- 3.9.2 PI Control of q-axis Current 77 -- 3.9.3 PI Cascade Control of Output Voltage 79 -- 3.9.4 Simulation Example 80 -- 3.9.5 Phase Locked Loop 80 -- 3.10 Summary 82 -- 3.11 Further Reading 83 -- References 83 -- 4 PID Control System Implementation 87 -- 4.1 P and PI Controller Implementation in Current Control Systems 87 -- 4.1.1 Voltage Operational Limits in Current Control Systems 87. 4.1.2 Discretization of Current Controllers 90 -- 4.1.3 Anti-windup Mechanisms 92 -- 4.2 Implementation of Current Controllers for PMSM 93 -- 4.3 Implementation of Current Controllers for Induction Motors 95 -- 4.4 Current Controller Implementation for Power Converter 97 -- 4.4.1 Constraints on the Control Variables 97 -- 4.5 Implementation of Outer-loop PI Control System 98 -- 4.5.1 Constraints in the Outer-loop 98 -- 4.5.2 Over Current Protection for AC Machines 99 -- 4.5.3 Implementation of Outer-loop PI Control of Velocity 100 -- 4.5.4 Over Current Protection for Power Converters 100 -- 4.6 MATLAB Tutorial on Implementation of PI Controller 100 -- 4.7 Summary 102 -- 4.8 Further Reading 103 -- References 103 -- 5 Tuning PID Control Systems with Experimental Validations 105 -- 5.1 Sensitivity Functions in Feedback Control Systems 105 -- 5.1.1 Two-degrees of Freedom Control System Structure 105 -- 5.1.2 Sensitivity Functions 109 -- 5.1.3 Disturbance Rejection and Noise Attenuation 110 -- 5.2 Tuning Current-loop q-axis Proportional Controller (PMSM) 111 -- 5.2.1 Performance Factor and Proportional Gain 112 -- 5.2.2 Complementary Sensitivity Function 112 -- 5.2.3 Sensitivity and Input Sensitivity Functions 114 -- 5.2.4 Effect of PWM Noise on Current Proportional Control System 114 -- 5.2.5 Effect of Current Sensor Noise and Bias 116 -- 5.2.6 Experimental Case Study of Current Sensor Bias Using P Control 118 -- 5.2.7 Experimental Case Study of Current Loop Noise 119 -- 5.3 Tuning Current-loop PI Controller (PMSM) 123 -- 5.4 Performance Robustness in Outer-loop Controllers 128 -- 5.4.1 Sensitivity Functions for Outer-loop Control System 131 -- 5.4.2 Input Sensitivity Functions for the Outer-loop System 135 -- 5.5 Analysis of Time-delay Effects 136 -- 5.5.1 PI Control of q-axis Current 137 -- 5.5.2 P Control of q-axis Current 137 -- 5.6 Tuning Cascade PI Control Systems for Induction Motor 138 -- 5.6.1 Robustness of Cascade PI Control System 140 -- 5.6.2 Robustness Study Using Nyquist Plot 143. 5.7 Tuning PI Control Systems for Power Converter 147 -- 5.7.1 Overview of the Designs 147 -- 5.7.2 Tuning the Current Controllers 149 -- 5.7.3 Tuning Voltage Controller 150 -- 5.7.4 Experimental Evaluations 154 -- 5.8 Tuning P Plus PI Controllers for Power Converter 157 -- 5.8.1 Design and Sensitivity Functions 157 -- 5.8.2 Experimental Results 158 -- 5.9 Robustness of Power Converter Control System Using PI Current Controllers 159 -- 5.9.1 Variation of Inductance Using PI Current Controllers 160 -- 5.9.2 Variation of Capacitance on Closed-loop Performance 163 -- 5.10 Summary 167 -- 5.10.1 Current Controllers 167 -- 5.10.2 Velocity, Position and Voltage Controllers 168 -- 5.10.3 Choice between P Current Control and PI Current Control 169 -- 5.11 Further Reading 169 -- References 169 -- 6 FCS Predictive Control in d - q Reference Frame 171 -- 6.1 States of IGBT Inverter and the Operational Constraints 172 -- 6.2 FCS Predictive Control of PMSM 175 -- 6.3 MATLAB Tutorial on Real-time Implementation of FCS-MPC 177 -- 6.3.1 Simulation Results 179 -- 6.3.2 Experimental Results of FCS Control 181 -- 6.4 Analysis of FCS-MPC System 182 -- 6.4.1 Optimal Control System 182 -- 6.4.2 Feedback Controller Gain 184 -- 6.4.3 Constrained Optimal Control 185 -- 6.5 Overview of FCS-MPC with Integral Action 187 -- 6.6 Derivation of I-FCS Predictive Control Algorithm 191 -- 6.6.1 Optimal Control without Constraints 191 -- 6.6.2 I-FCS Predictive Controller with Constraints 194 -- 6.6.3 Implementation of I-FCS-MPC Algorithm 196 -- 6.7 MATLAB Tutorial on Implementation of I-FCS Predictive Controller 197 -- 6.7.1 Simulation Results 198 -- 6.8 I-FCS Predictive Control of Induction Motor 201 -- 6.8.1 The Control Algorithm for an Induction Motor 202 -- 6.8.2 Simulation Results 204 -- 6.8.3 Experimental Results 205 -- 6.9 I-FCS Predictive Control of Power Converter 209 -- 6.9.1 I-FCS Predictive Control of a Power Converter 209 -- 6.9.2 Simulation Results 211 -- 6.9.3 Experimental Results 214. 6.10 Evaluation of Robustness of I-FCS-MPC via Monte-Carlo Simulations 215 -- 6.10.1 Discussion on Mean Square Errors 216 -- 6.11 Velocity and Position Control of PMSM Using I-FCS-MPC 218 -- 6.11.1 Choice of Sampling Rate for the Outer-loop Control System 219 -- 6.11.2 Velocity and Position Controller Design 223 -- 6.12 Velocity and Position Control of Induction Motor Using I-FCS-MPC 224 -- 6.12.1 I-FCS Cascade Velocity Control of Induction Motor 225 -- 6.12.2 I-FCS-MPC Cascade Position Control of Induction Motor 226 -- 6.12.3 Experimental Evaluation of Velocity Control 228 -- 6.13 Summary 232 -- 6.13.1 Selection of sampling interval 233 -- 6.13.2 Selection of the Integral Gain 233 -- 6.14 Further Reading 234 -- References 234 -- 7 FCS Predictive Control in Reference Frame 237 -- 7.1 FCS Predictive Current Control of PMSM 237 -- 7.1.1 Predictive Control Using One-step-ahead Prediction 238 -- 7.1.2 FCS Current Control in Reference Frame 239 -- 7.1.3 Generating Current Reference Signals in Frame 240 -- 7.2 Resonant FCS Predictive Current Control 241 -- 7.2.1 Control System Configuration 241 -- 7.2.2 Outer-loop Controller Design 242 -- 7.2.3 Resonant FCS Predictive Control System 243 -- 7.3 Resonant FCS Current Control of Induction Motor 247 -- 7.3.1 The Original FCS Current Control of Induction Motor 247 -- 7.3.2 Resonant FCS Predictive Current Control of Induction Motor 250 -- 7.3.3 Experimental Evaluations of Resonant FCS Predictive Control 252 -- 7.4 Resonant FCS Predictive Power Converter Control 255 -- 7.4.1 FCS Predictive Current Control of Power Converter 255 -- 7.4.2 Experimental Results of Resonant FCS Predictive Control 260 -- 7.5 Summary 261 -- 7.6 Further Reading 262 -- References 262 -- 8 Discrete-time Model Predictive Control (DMPC) of Electrical Drives and Power Converter 265 -- 8.1 Linear Discrete-time Model for PMSM 266 -- 8.1.1 Linear Model for PMSM 266 -- 8.1.2 Discretization of the Continuous-time Model 267 -- 8.2 Discrete-time MPC Design with Constraints 268. 8.2.1 Augmented Model 269 -- 8.2.2 Design without Constraints 270 -- 8.2.3 Formulation of the Constraints 272 -- 8.2.4 On-line Solution for Constrained MPC 272 -- 8.3 Experimental Evaluation of DMPC of PMSM 274 -- 8.3.1 The MPC Parameters 274 -- 8.3.2 Constraints 275 -- 8.3.3 Response to Load Disturbances 275 -- 8.3.4 Response to a Staircase Reference 277 -- 8.3.5 Tuning of the MPC controller 278 -- 8.4 Power Converter Control Using DMPC with Experimental Validation 280 -- 8.5 Summary 281 -- 8.6 Further Reading 282 -- References 283 -- 9 Continuous-time Model Predictive Control (CMPC) of Electrical Drives and PowerConverter 285 -- 9.1 Continuous-time MPC Design 286 -- 9.1.1 Augmented Model 286 -- 9.1.2 Description of the Control Trajectories Using Laguerre Functions 287 -- 9.1.3 Continuous-time Predictive Control without Constraints 289 -- 9.1.4 Tuning of CMPC Control System Using Exponential Data Weighting and Prescribed Degree of Stability 292 -- 9.2 CMPC with Nonlinear Constraints 294 -- 9.2.1 Approximation of Nonlinear Constraint Using Four Linear Constraints 294 -- 9.2.2 Approximation of Nonlinear Constraint Using Sixteen Linear Constraints 294 -- 9.2.3 State Feedback Observer 297 -- 9.3 Simulation and Experimental Evaluation of CMPC of Induction Motor 298 -- 9.3.1 Simulation Results 298 -- 9.3.2 Experimental Results 300 -- 9.4 Continuous-time Model Predictive Control of Power Converter 301 -- 9.4.1 Use of Prescribed Degree of Stability in the Design 302 -- 9.4.2 Experimental Results for Rectification Mode 303 -- 9.4.3 Experimental Results for Regeneration Mode 303 -- 9.4.4 Experimental Results for Disturbance Rejection 304 -- 9.5 Gain Scheduled Predictive Controller 305 -- 9.5.1 The Weighting Parameters 305 -- 9.5.2 Gain Scheduled Predictive Control Law 307 -- 9.6 Experimental Results of Gain Scheduled Predictive Control of Induction Motor 309 -- 9.6.1 The First Set of Experimental Results 309 -- 9.6.2 The Second Set of Experimental Results 311 -- 9.6.3 The Third Set of Experimental Results 312. 9.7 Summary 312 -- 9.8 Further Reading 313 -- References 313 -- 10 MATLAB(R)/Simulink(R) Tutorials on Physical Modeling and Test-bed Setup 315 -- 10.1 Building Embedded Functions for Park-Clarke Transformation 315 -- 10.1.1 Park-Clarke Transformation for Current Measurements 316 -- 10.1.2 Inverse Park-Clarke Transformation for Voltage Actuation 317 -- 10.2 Building Simulation Model for PMSM 318 -- 10.3 Building Simulation Model for Induction Motor 320 -- 10.4 Building Simulation Model for Power Converter 325 -- 10.4.1 Embedded MATLAB Function for Phase Locked Loop (PLL) 325 -- 10.4.2 Physical Simulation Model for Grid Connected Voltage Source Converter 328 -- 10.5 PMSM Experimental Setup 332 -- 10.6 Induction Motor Experimental Setup 334 -- 10.6.1 Controller 334 -- 10.6.2 Power Supply 334 -- 10.6.3 Inverter 335 -- 10.6.4 Mechanical Load 335 -- 10.6.5 Induction Motor and Sensors 335 -- 10.7 Grid Connected Power Converter Experimental Setup 335 -- 10.7.1 Controller 335 -- 10.7.2 Inverter 336 -- 10.7.3 Sensors 336 -- 10.8 Summary 337 -- 10.9 Further Reading 337 -- References 337 -- Index 339. |
| Record Nr. | UNINA-9910819424203321 |
Wang Liuping
|
||
| Solaris South Tower, Singapore : , : John Wiley & Sons, Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Power electronic converters [[electronic resource] ] : PWM strategies and current control techniques / / edited by Eric Monmasson
| Power electronic converters [[electronic resource] ] : PWM strategies and current control techniques / / edited by Eric Monmasson |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (xxii, 542 p. ) : ill |
| Disciplina | 621.3815/322 |
| Altri autori (Persone) | MonmassonEric |
| Soggetto topico |
Electric current converters
Electric motors - Electronic control |
| ISBN |
1-118-62119-0
1-118-62260-X 1-299-31551-8 1-118-62284-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Carrier based pulse width modulation for two-level three-phase voltage inverters -- Space vector modulation strategies -- Overmodulation of three-phase voltage inverters -- Computed and optimized pulse width modulation strategies -- Delta-sigma modulation -- Stochastic modulation strategies -- Electromagnetic compatibility of variable speed drives : impact of PWM control strategies -- Multiphase voltage source inverters -- PWM strategies for multilevel converters -- PI current control of a synchronous motor -- Predictive current control for a synchronous motor -- Sliding mode current control for a synchronous motor -- Hybrid current controller with large bandwidth and fixed switching frequency -- Current control using self-oscillating current controllers -- Current and voltage control strategies using resonant correctors: examples of fixed-frequency applications -- Current control strategies for multi-cell converters. |
| Record Nr. | UNINA-9910208834703321 |
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Power electronic converters : PWM strategies and current control techniques / / edited by Eric Monmasson
| Power electronic converters : PWM strategies and current control techniques / / edited by Eric Monmasson |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (xxii, 542 p. ) : ill |
| Disciplina | 621.3815/322 |
| Altri autori (Persone) | MonmassonEric |
| Soggetto topico |
Electric current converters
Electric motors - Electronic control |
| ISBN |
9781118621196
1118621190 9781118622605 111862260X 9781299315518 1299315518 9781118622841 1118622847 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Carrier based pulse width modulation for two-level three-phase voltage inverters -- Space vector modulation strategies -- Overmodulation of three-phase voltage inverters -- Computed and optimized pulse width modulation strategies -- Delta-sigma modulation -- Stochastic modulation strategies -- Electromagnetic compatibility of variable speed drives : impact of PWM control strategies -- Multiphase voltage source inverters -- PWM strategies for multilevel converters -- PI current control of a synchronous motor -- Predictive current control for a synchronous motor -- Sliding mode current control for a synchronous motor -- Hybrid current controller with large bandwidth and fixed switching frequency -- Current control using self-oscillating current controllers -- Current and voltage control strategies using resonant correctors: examples of fixed-frequency applications -- Current control strategies for multi-cell converters. |
| Record Nr. | UNINA-9910827372403321 |
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sliding mode control for synchronous electric drives / / Sergey Ryvkin, Eduardo Palomar Lever
| Sliding mode control for synchronous electric drives / / Sergey Ryvkin, Eduardo Palomar Lever |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , 2012 |
| Descrizione fisica | 1 online resource (200 p.) |
| Disciplina | 621.46 |
| Altri autori (Persone) |
RyvkinSergey E
Palomar LeverEduardo |
| Soggetto topico |
Electric motors, Synchronous - Automatic control
Electric motors - Electronic control Sliding mode control |
| Soggetto genere / forma | Electronic books. |
| ISBN |
0-429-21773-0
1-136-59149-4 0-203-18138-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Problem statement -- 2. Sliding mode in nonlinear dynamic systems -- 3. State vector estimation -- 4. Synchronous drive control design -- 5. Multidimensional switching regularization -- 6. Mechanical coordinates observers -- 7. Digital control -- 8. Practical examples of drive control. |
| Record Nr. | UNINA-9910464591303321 |
| Boca Raton : , : CRC Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sliding mode control for synchronous electric drives / / Sergey Ryvkin, Eduardo Palomar Lever
| Sliding mode control for synchronous electric drives / / Sergey Ryvkin, Eduardo Palomar Lever |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , 2012 |
| Descrizione fisica | 1 online resource (200 p.) |
| Disciplina | 621.46 |
| Altri autori (Persone) |
RyvkinSergey E
Palomar LeverEduardo |
| Soggetto topico |
Electric motors, Synchronous - Automatic control
Electric motors - Electronic control Sliding mode control |
| ISBN |
0-429-21773-0
1-136-59149-4 0-203-18138-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Problem statement -- 2. Sliding mode in nonlinear dynamic systems -- 3. State vector estimation -- 4. Synchronous drive control design -- 5. Multidimensional switching regularization -- 6. Mechanical coordinates observers -- 7. Digital control -- 8. Practical examples of drive control. |
| Record Nr. | UNINA-9910789337603321 |
| Boca Raton : , : CRC Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||