LED packaging for lighting applications [[electronic resource] ] : design, manufacturing, and testing / / Sheng Liu, Xiaobing Luo |
Autore | Liu S (Sheng), <1963-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (376 p.) |
Disciplina | 621.3815/22 |
Altri autori (Persone) | LuoXiaobing <1974-> |
Soggetto topico |
Light emitting diodes - Design and construction
Light emitting diodes - Computer simulation Electronic packaging Electric lighting - Equipment and supplies |
ISBN |
0-470-82840-4
1-283-20357-X 9786613203571 0-470-82785-8 0-470-82784-X |
Classificazione | TEC008010 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LED Packaging for Lighting Applications: Design, Manufacturing and Testing; Contents; Foreword By Magnus George Craford; Foreword By C. P. Wong; Foreword By B. J. Lee; Preface; Acknowledgments; About the Authors; 1 Introduction; 1.1 Historical Evolution of Lighting Technology; 1.2 Development of LEDs; 1.3 Basic Physics of LEDs; 1.3.1 Materials; 1.3.2 Electrical and Optical Properties; 1.3.3 Mechanical and Thermal Properties; 1.4 Industrial Chain of LED; 1.4.1 LED Upstream Industry; 1.4.2 LED Midstream Industry; 1.4.3 LED Downstream Industry; 1.5 Summary; References
2 Fundamentals and Development Trends of High Power LED Packaging2.1 Brief Introduction to Electronic Packaging; 2.1.1 About Electronic Packaging and Its Evolution; 2.1.2 Wafer Level Packaging, More than Moore, and SiP; 2.2 LED Chips; 2.2.1 Current Spreading Efficiency; 2.2.2 Internal Quantum Efficiency; 2.2.3 High Light Extraction Efficiency; 2.3 Types and Functions of LED Packaging; 2.3.1 Low Power LED Packaging; 2.3.2 High Power LED Packaging; 2.4 Key Factors and System Design of High Power LED Packaging; 2.5 Development Trends and Roadmap; 2.5.1 Technology Needs; 2.5.2 Packaging Types 2.6 SummaryReferences; 3 Optical Design of High Power LED Packaging Module; 3.1 Properties of LED Light; 3.1.1 Light Frequency and Wavelength; 3.1.2 Spectral Distribution; 3.1.3 Flux of Light; 3.1.4 Lumen Efficiency; 3.1.5 Luminous Intensity, Illuminance and Luminance; 3.1.6 Color Temperature, Correlated Color Temperature and Color Rendering Index; 3.1.7 White Light LED; 3.2 Key Components and Packaging Processes for Optical Design; 3.2.1 Chip Types and Bonding Process; 3.2.2 Phosphor Materials and Phosphor Coating Processes; 3.2.3 Lens and Molding Process; 3.3 Light Extraction 3.4 Optical Modeling and Simulation3.4.1 Chip Modeling; 3.4.2 Phosphor Modeling; 3.5 Phosphor for White LED Packaging; 3.5.1 Phosphor Location for White LED Packaging; 3.5.2 Phosphor Thickness and Concentration for White LED Packaging; 3.5.3 Phosphor for Spatial Color Distribution; 3.6 Collaborative Design; 3.6.1 Co-design of Surface Micro-Structures of LED Chips and Packages; 3.6.2 Application Specific LED Packages; 3.7 Summary; References; 4 Thermal Management of High Power LED Packaging Module; 4.1 Basic Concepts of Heat Transfer; 4.1.1 Conduction Heat Transfer 4.1.2 Convection Heat Transfer4.1.3 Thermal Radiation; 4.1.4 Thermal Resistance; 4.2 Thermal Resistance Analysis of Typical LED Packaging; 4.3 Various LED Packages for Decreasing Thermal Resistance; 4.3.1 Development of LED Packaging; 4.3.2 Thermal Resistance Decrease for LED Packaging; 4.3.3 SiP/COB LED Chip Packaging Process; 4.4 Summary; References; 5 Reliability Engineering of High Power LED Packaging; 5.1 Concept of Design for Reliability (DfR) and Reliability Engineering; 5.1.1 Fundamentals of Reliability; 5.1.2 Life Distribution; 5.1.3 Accelerated Models; 5.1.4 Applied Mechanics 5.2 High Power LED Packaging Reliability Test |
Record Nr. | UNINA-9910137855403321 |
Liu S (Sheng), <1963-> | ||
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LED packaging for lighting applications [[electronic resource] ] : design, manufacturing, and testing / / Sheng Liu, Xiaobing Luo |
Autore | Liu S (Sheng), <1963-> |
Pubbl/distr/stampa | Hoboken, N.J., : Wiley, 2011 |
Descrizione fisica | 1 online resource (376 p.) |
Disciplina | 621.3815/22 |
Altri autori (Persone) | LuoXiaobing <1974-> |
Soggetto topico |
Light emitting diodes - Design and construction
Light emitting diodes - Computer simulation Electronic packaging Electric lighting - Equipment and supplies |
ISBN |
0-470-82840-4
1-283-20357-X 9786613203571 0-470-82785-8 0-470-82784-X |
Classificazione | TEC008010 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LED Packaging for Lighting Applications: Design, Manufacturing and Testing; Contents; Foreword By Magnus George Craford; Foreword By C. P. Wong; Foreword By B. J. Lee; Preface; Acknowledgments; About the Authors; 1 Introduction; 1.1 Historical Evolution of Lighting Technology; 1.2 Development of LEDs; 1.3 Basic Physics of LEDs; 1.3.1 Materials; 1.3.2 Electrical and Optical Properties; 1.3.3 Mechanical and Thermal Properties; 1.4 Industrial Chain of LED; 1.4.1 LED Upstream Industry; 1.4.2 LED Midstream Industry; 1.4.3 LED Downstream Industry; 1.5 Summary; References
2 Fundamentals and Development Trends of High Power LED Packaging2.1 Brief Introduction to Electronic Packaging; 2.1.1 About Electronic Packaging and Its Evolution; 2.1.2 Wafer Level Packaging, More than Moore, and SiP; 2.2 LED Chips; 2.2.1 Current Spreading Efficiency; 2.2.2 Internal Quantum Efficiency; 2.2.3 High Light Extraction Efficiency; 2.3 Types and Functions of LED Packaging; 2.3.1 Low Power LED Packaging; 2.3.2 High Power LED Packaging; 2.4 Key Factors and System Design of High Power LED Packaging; 2.5 Development Trends and Roadmap; 2.5.1 Technology Needs; 2.5.2 Packaging Types 2.6 SummaryReferences; 3 Optical Design of High Power LED Packaging Module; 3.1 Properties of LED Light; 3.1.1 Light Frequency and Wavelength; 3.1.2 Spectral Distribution; 3.1.3 Flux of Light; 3.1.4 Lumen Efficiency; 3.1.5 Luminous Intensity, Illuminance and Luminance; 3.1.6 Color Temperature, Correlated Color Temperature and Color Rendering Index; 3.1.7 White Light LED; 3.2 Key Components and Packaging Processes for Optical Design; 3.2.1 Chip Types and Bonding Process; 3.2.2 Phosphor Materials and Phosphor Coating Processes; 3.2.3 Lens and Molding Process; 3.3 Light Extraction 3.4 Optical Modeling and Simulation3.4.1 Chip Modeling; 3.4.2 Phosphor Modeling; 3.5 Phosphor for White LED Packaging; 3.5.1 Phosphor Location for White LED Packaging; 3.5.2 Phosphor Thickness and Concentration for White LED Packaging; 3.5.3 Phosphor for Spatial Color Distribution; 3.6 Collaborative Design; 3.6.1 Co-design of Surface Micro-Structures of LED Chips and Packages; 3.6.2 Application Specific LED Packages; 3.7 Summary; References; 4 Thermal Management of High Power LED Packaging Module; 4.1 Basic Concepts of Heat Transfer; 4.1.1 Conduction Heat Transfer 4.1.2 Convection Heat Transfer4.1.3 Thermal Radiation; 4.1.4 Thermal Resistance; 4.2 Thermal Resistance Analysis of Typical LED Packaging; 4.3 Various LED Packages for Decreasing Thermal Resistance; 4.3.1 Development of LED Packaging; 4.3.2 Thermal Resistance Decrease for LED Packaging; 4.3.3 SiP/COB LED Chip Packaging Process; 4.4 Summary; References; 5 Reliability Engineering of High Power LED Packaging; 5.1 Concept of Design for Reliability (DfR) and Reliability Engineering; 5.1.1 Fundamentals of Reliability; 5.1.2 Life Distribution; 5.1.3 Accelerated Models; 5.1.4 Applied Mechanics 5.2 High Power LED Packaging Reliability Test |
Record Nr. | UNINA-9910817220603321 |
Liu S (Sheng), <1963-> | ||
Hoboken, N.J., : Wiley, 2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LEDs for lighting applications [[electronic resource] /] / edited by Patrick Mottier |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina |
621.3815/22
621.381522 |
Altri autori (Persone) | MottierPatrick |
Collana | ISTE |
Soggetto topico |
Light emitting diodes
Electric lighting - Equipment and supplies |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-68721-2
9786612687211 1-118-21168-5 0-470-61201-0 0-470-61029-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LEDs for Lighting Applications; Table of Contents; Foreword; Introduction; Chapter 1. Light-Emitting Diodes: Principles and Challenges; 1.1. History of a revolution in the world of the light sources; 1.2. LEDs and lighting; 1.3. Principle of operation, color, efficiency, lifetime and quality of LEDs; 1.3.1. White light production from LEDS: principles and challenges; 1.3.2. Lifetime; 1.3.3. Quality of LEDs; 1.4. Challenges facing LEDs; 1.5. Bibliography; Chapter 2. Substrates for III-Nitride-based Electroluminescent Diodes; 2.1. Introduction
2.2. Crystal structure and epitaxial relation with 6H-SiC and Al2O32.3. Defects and constraints due to heteroepitaxy; 2.3.1. Dislocations; 2.3.2. Disorientation of the substrate; 2.3.3. Epitaxial stress; 2.3.4. Thermal stress; 2.4. MOVPE growth of GaN on sapphire; 2.4.1. GaN growth; 2.4.2. Standard 2D epitaxy; 2.4.3. 3D epitaxial growth; 2.4.4. Epitaxial lateral overgrow (ELO 1S); 2.4.5. Anisotropic growth; 2.4.6. Two stage ELO GaN growth (ELO 2S); 2.4.7. GaN growth using pendeo-epitaxy; 2.4.8. Nano epitaxy; 2.5. Bulk nitride substrates 2.5.1. HNPS (high nitrogen pressure solution method) for the fabrication of crystalline GaN2.5.2. Ammonothermal synthesis of GaN; 2.5.3. Halide vapor phase epitaxy (HVPE) of GaN; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. III-Nitride High-Brightness Light-Emitting Diodes; 3.1. Introduction; 3.2. p-n junction in GaN; 3.3. Active region: InGaN/GaN quantum well; 3.3.1. Growth and structure; 3.3.2. Optical properties; 3.4. Radiative efficiency; 3.5. Conclusion and prospects; 3.6. Bibliography; Chapter 4. Diode Processing; 4.1. Introduction; 4.2. Orders of magnitude; 4.3. Diode configurations 4.3.1. Conventional chip (CC)4.3.2. Flip chip (FC); 4.3.3. Vertical thin film (VTF); 4.3.4. Thin film flip chip (TFFC); 4.4. Light extraction at wafer level; 4.5. Diode processing, etching, contact deposition; 4.5.1. N-type contacts; 4.5.2. P-type contacts; 4.6. Etching; 4.7. Substrate removal; 4.8. Potential evolutions; 4.9. Bibliography; Chapter 5. Packaging; 5.1. Introduction; 5.2. Different packaging processes; 5.2.1. Historical background; 5.2.2. From the wafer to the chip; 5.2.3. Components with connection pins; 5.2.4. SMT leadform components; 5.2.5. SMT "leadless" components 5.2.6. Other technologies5.2.7. Conclusion; 5.3. Thermal management; 5.3.1. Motivations; 5.3.2. Heat dissipation modes; 5.3.3. Thermal dissipation in LEDs; 5.3.4. Comparison of different packaging processes; 5.3.5. Conclusion; 5.4. Light extraction in LEDs; 5.4.1. Lateral light extraction in LEDs; 5.4.2. Vertical light extraction through a lens; 5.4.3. Lens/encapsulant materials; 5.4.4. Lenses and encapsulant implementation; 5.5. LED component characteristics; 5.5.1. Thermal and electrical characteristics; 5.5.2. Optical characteristics; 5.5.3. Binning; 5.5.4. Reliability 5.6. Conclusion and trends |
Record Nr. | UNINA-9910139494603321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LEDs for lighting applications [[electronic resource] /] / edited by Patrick Mottier |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina |
621.3815/22
621.381522 |
Altri autori (Persone) | MottierPatrick |
Collana | ISTE |
Soggetto topico |
Light emitting diodes
Electric lighting - Equipment and supplies |
ISBN |
1-282-68721-2
9786612687211 1-118-21168-5 0-470-61201-0 0-470-61029-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LEDs for Lighting Applications; Table of Contents; Foreword; Introduction; Chapter 1. Light-Emitting Diodes: Principles and Challenges; 1.1. History of a revolution in the world of the light sources; 1.2. LEDs and lighting; 1.3. Principle of operation, color, efficiency, lifetime and quality of LEDs; 1.3.1. White light production from LEDS: principles and challenges; 1.3.2. Lifetime; 1.3.3. Quality of LEDs; 1.4. Challenges facing LEDs; 1.5. Bibliography; Chapter 2. Substrates for III-Nitride-based Electroluminescent Diodes; 2.1. Introduction
2.2. Crystal structure and epitaxial relation with 6H-SiC and Al2O32.3. Defects and constraints due to heteroepitaxy; 2.3.1. Dislocations; 2.3.2. Disorientation of the substrate; 2.3.3. Epitaxial stress; 2.3.4. Thermal stress; 2.4. MOVPE growth of GaN on sapphire; 2.4.1. GaN growth; 2.4.2. Standard 2D epitaxy; 2.4.3. 3D epitaxial growth; 2.4.4. Epitaxial lateral overgrow (ELO 1S); 2.4.5. Anisotropic growth; 2.4.6. Two stage ELO GaN growth (ELO 2S); 2.4.7. GaN growth using pendeo-epitaxy; 2.4.8. Nano epitaxy; 2.5. Bulk nitride substrates 2.5.1. HNPS (high nitrogen pressure solution method) for the fabrication of crystalline GaN2.5.2. Ammonothermal synthesis of GaN; 2.5.3. Halide vapor phase epitaxy (HVPE) of GaN; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. III-Nitride High-Brightness Light-Emitting Diodes; 3.1. Introduction; 3.2. p-n junction in GaN; 3.3. Active region: InGaN/GaN quantum well; 3.3.1. Growth and structure; 3.3.2. Optical properties; 3.4. Radiative efficiency; 3.5. Conclusion and prospects; 3.6. Bibliography; Chapter 4. Diode Processing; 4.1. Introduction; 4.2. Orders of magnitude; 4.3. Diode configurations 4.3.1. Conventional chip (CC)4.3.2. Flip chip (FC); 4.3.3. Vertical thin film (VTF); 4.3.4. Thin film flip chip (TFFC); 4.4. Light extraction at wafer level; 4.5. Diode processing, etching, contact deposition; 4.5.1. N-type contacts; 4.5.2. P-type contacts; 4.6. Etching; 4.7. Substrate removal; 4.8. Potential evolutions; 4.9. Bibliography; Chapter 5. Packaging; 5.1. Introduction; 5.2. Different packaging processes; 5.2.1. Historical background; 5.2.2. From the wafer to the chip; 5.2.3. Components with connection pins; 5.2.4. SMT leadform components; 5.2.5. SMT "leadless" components 5.2.6. Other technologies5.2.7. Conclusion; 5.3. Thermal management; 5.3.1. Motivations; 5.3.2. Heat dissipation modes; 5.3.3. Thermal dissipation in LEDs; 5.3.4. Comparison of different packaging processes; 5.3.5. Conclusion; 5.4. Light extraction in LEDs; 5.4.1. Lateral light extraction in LEDs; 5.4.2. Vertical light extraction through a lens; 5.4.3. Lens/encapsulant materials; 5.4.4. Lenses and encapsulant implementation; 5.5. LED component characteristics; 5.5.1. Thermal and electrical characteristics; 5.5.2. Optical characteristics; 5.5.3. Binning; 5.5.4. Reliability 5.6. Conclusion and trends |
Record Nr. | UNINA-9910830215703321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
LEDs for lighting applications / / edited by Patrick Mottier |
Pubbl/distr/stampa | London, : ISTE |
Descrizione fisica | 1 online resource (298 p.) |
Disciplina |
621.3815/22
621.381522 |
Altri autori (Persone) | MottierPatrick |
Collana | ISTE |
Soggetto topico |
Light emitting diodes
Electric lighting - Equipment and supplies |
ISBN |
1-282-68721-2
9786612687211 1-118-21168-5 0-470-61201-0 0-470-61029-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
LEDs for Lighting Applications; Table of Contents; Foreword; Introduction; Chapter 1. Light-Emitting Diodes: Principles and Challenges; 1.1. History of a revolution in the world of the light sources; 1.2. LEDs and lighting; 1.3. Principle of operation, color, efficiency, lifetime and quality of LEDs; 1.3.1. White light production from LEDS: principles and challenges; 1.3.2. Lifetime; 1.3.3. Quality of LEDs; 1.4. Challenges facing LEDs; 1.5. Bibliography; Chapter 2. Substrates for III-Nitride-based Electroluminescent Diodes; 2.1. Introduction
2.2. Crystal structure and epitaxial relation with 6H-SiC and Al2O32.3. Defects and constraints due to heteroepitaxy; 2.3.1. Dislocations; 2.3.2. Disorientation of the substrate; 2.3.3. Epitaxial stress; 2.3.4. Thermal stress; 2.4. MOVPE growth of GaN on sapphire; 2.4.1. GaN growth; 2.4.2. Standard 2D epitaxy; 2.4.3. 3D epitaxial growth; 2.4.4. Epitaxial lateral overgrow (ELO 1S); 2.4.5. Anisotropic growth; 2.4.6. Two stage ELO GaN growth (ELO 2S); 2.4.7. GaN growth using pendeo-epitaxy; 2.4.8. Nano epitaxy; 2.5. Bulk nitride substrates 2.5.1. HNPS (high nitrogen pressure solution method) for the fabrication of crystalline GaN2.5.2. Ammonothermal synthesis of GaN; 2.5.3. Halide vapor phase epitaxy (HVPE) of GaN; 2.6. Conclusion; 2.7. Bibliography; Chapter 3. III-Nitride High-Brightness Light-Emitting Diodes; 3.1. Introduction; 3.2. p-n junction in GaN; 3.3. Active region: InGaN/GaN quantum well; 3.3.1. Growth and structure; 3.3.2. Optical properties; 3.4. Radiative efficiency; 3.5. Conclusion and prospects; 3.6. Bibliography; Chapter 4. Diode Processing; 4.1. Introduction; 4.2. Orders of magnitude; 4.3. Diode configurations 4.3.1. Conventional chip (CC)4.3.2. Flip chip (FC); 4.3.3. Vertical thin film (VTF); 4.3.4. Thin film flip chip (TFFC); 4.4. Light extraction at wafer level; 4.5. Diode processing, etching, contact deposition; 4.5.1. N-type contacts; 4.5.2. P-type contacts; 4.6. Etching; 4.7. Substrate removal; 4.8. Potential evolutions; 4.9. Bibliography; Chapter 5. Packaging; 5.1. Introduction; 5.2. Different packaging processes; 5.2.1. Historical background; 5.2.2. From the wafer to the chip; 5.2.3. Components with connection pins; 5.2.4. SMT leadform components; 5.2.5. SMT "leadless" components 5.2.6. Other technologies5.2.7. Conclusion; 5.3. Thermal management; 5.3.1. Motivations; 5.3.2. Heat dissipation modes; 5.3.3. Thermal dissipation in LEDs; 5.3.4. Comparison of different packaging processes; 5.3.5. Conclusion; 5.4. Light extraction in LEDs; 5.4.1. Lateral light extraction in LEDs; 5.4.2. Vertical light extraction through a lens; 5.4.3. Lens/encapsulant materials; 5.4.4. Lenses and encapsulant implementation; 5.5. LED component characteristics; 5.5.1. Thermal and electrical characteristics; 5.5.2. Optical characteristics; 5.5.3. Binning; 5.5.4. Reliability 5.6. Conclusion and trends |
Record Nr. | UNINA-9910876947103321 |
London, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|