top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2652-2021 : IEEE Guide for DC Inclined Plane Tracking and Erosion Test for Outdoor Insulation Applications / / Institute of Electrical and Electronics Engineers
2652-2021 : IEEE Guide for DC Inclined Plane Tracking and Erosion Test for Outdoor Insulation Applications / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY, USA : , : IEEE, , 2021
Descrizione fisica 1 online resource (22 pages)
Disciplina 621.31920284
Soggetto topico Stray currents
Electric insulators and insulation - Polymers
Inclined planes
ISBN 1-5044-7967-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910500604103321
New York, NY, USA : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2652-2021 : IEEE Guide for DC Inclined Plane Tracking and Erosion Test for Outdoor Insulation Applications / / Institute of Electrical and Electronics Engineers
2652-2021 : IEEE Guide for DC Inclined Plane Tracking and Erosion Test for Outdoor Insulation Applications / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY, USA : , : IEEE, , 2021
Descrizione fisica 1 online resource (22 pages)
Disciplina 621.31920284
Soggetto topico Stray currents
Electric insulators and insulation - Polymers
Inclined planes
ISBN 1-5044-7967-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996575051903316
New York, NY, USA : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka
Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka
Pubbl/distr/stampa Newark : , : Wiley-IEEE Press, , [2022]
Descrizione fisica 1 online resource (446 pages)
Disciplina 621.31920284
Collana IEEE Press.
Soggetto topico Polymeric composites
Electric apparatus and appliances - Materials
Electric insulators and insulation - Polymers
Soggetto genere / forma Electronic books.
ISBN 1-119-71968-2
1-119-71966-6
1-119-71965-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Polymer Composites for Electrical Energy Storage -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Effect of Nanofiller Dimension -- 1.4 Orientation of Nanofillers -- 1.5 Surface Modification of Nanofillers -- 1.6 Polymer Composites with Multiple Nanofillers -- 1.7 Multilayer-structured Polymer Composites -- 1.8 Conclusion -- References -- Chapter 2 Polymer Composites for Thermal Energy Storage -- 2.1 Introduction -- 2.2 Shape-stabilized Polymeric Phase Change Composites -- 2.2.1 Micro/Nanoencapsulated Method -- 2.2.2 Physical Blending -- 2.2.3 Porous Supporting Scaffolds -- 2.2.4 Solid-Solid Composite PCMs -- 2.3 Thermally Conductive Polymeric Phase Change Composites -- 2.3.1 Metals -- 2.3.2 Carbon Materials -- 2.3.3 Ceramics -- 2.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites -- 2.4.1 Electro-to-Heat Conversion -- 2.4.2 Light-to-Heat Conversion -- 2.4.3 Magnetism-to-Heat Conversion -- 2.4.4 Heat-to-Electricity Conversion -- 2.5 Emerging Applications of Polymeric Phase Change Composites -- 2.5.1 Thermal Management of Electronics -- 2.5.2 Smart Textiles -- 2.5.3 Shape Memory Devices -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3 Polymer Composites for High-Temperature Applications -- 3.1 Applications of Polymer Composite Materials in High-Temperature Electrical Insulation -- 3.1.1 High-Temperature-Resistant Electrical Insulating Resin Matrix -- 3.1.2 Modification of Resin Matrix with Reinforcements -- 3.1.3 Modifications in the Thermal Conductivity of Resin Matrix -- 3.2 High-Temperature Applications for Electrical Energy Storage -- 3.2.1 General Considerations for High-Temperature Dielectrics -- 3.2.2 High-Temperature-Resistant Polymer Matrix.
3.2.3 Polymer Composites for High-Temperature Energy Storage Applications -- 3.2.4 Surface Modification of Nanocomposite for High-Temperature Applications -- 3.2.5 Sandwich Structure of Nanoparticles for High-Temperature Applications -- 3.3 of High-Temperature Polymer in Electronic Packaging -- 3.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design -- 3.3.2 High-Temperature-Resistant Low Dielectric Constant Polymer Composite Material -- 3.4 of Polymer Composite Materials in the Field of High-Temperature Wave-Transmitting and Wave-Absorbing Electrical Fields -- 3.4.1 Wave-Transmitting Materials -- 3.4.2 Absorbing Material -- 3.5 Summary -- References -- Chapter 4 Fire-Retardant Polymer Composites for Electrical Engineering -- 4.1 Introduction -- 4.2 Fire-Retardant Cables and Wires -- 4.2.1 Fundamental Overview -- 4.2.2 Understanding of Fire-Retardant Cables and Wires -- 4.3 Fire-Retardant Polymer Composites for Electrical Equipment -- 4.3.1 Fundamental Overview -- 4.3.2 Understanding of Fire-Retardant Polymer Composites for Electrical Equipment -- 4.4 Fire-Retardant Fiber Reinforced Polymer Composites -- 4.4.1 Fundamental Overview -- 4.4.2 Understanding of Fire-Retardant Fiber Reinforced Polymer Composites -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Polymer Composites for Power Cable Insulation -- 5.1 Introduction -- 5.2 Trend in Nanocomposite Materials for Cable Insulation -- 5.2.1 Overview -- 5.2.2 Polymer Materials as Matrix Resin -- 5.2.3 Fillers -- 5.2.4 Nanocomposites -- 5.3 Factors Influencing Properties -- 5.4 Issues in Nanocomposite Insulation Materials Research -- 5.5 Understanding Dielectric and Insulation Phenomena -- 5.5.1 Electromagnetic Understanding -- 5.5.2 Understanding Space Charge Behavior by Q(t) Method -- References.
Chapter 6 Semi-conductive Polymer Composites for Power Cables -- 6.1 Introduction -- 6.1.1 Function of Semi-conductive Composites -- 6.1.2 Development of Semi-conductive Composites -- 6.2 Conductive Mechanism of Semi-conductive Polymer Composites -- 6.2.1 Percolation Theory -- 6.2.2 Tunneling Conduction Theory -- 6.2.3 Mechanism of Positive Temperature Coefficient -- 6.3 Effect of Polymer Matrix on Semi-conductivity -- 6.3.1 Thermoset Polymer Matrix -- 6.3.2 Thermoplastic Polymer Matrix -- 6.3.3 Blended Polymer Matrix -- 6.4 Effect of Conductive Fillers on Semi-conductivity -- 6.4.1 Carbon Black -- 6.4.2 Carbonaceous Fillers with One- and Two-Dimensions -- 6.4.3 Secondary Filler for Carbon Black Filled Composites -- 6.5 Effect of Semi-conductive Composites on Space Charge Injection -- 6.6 Conclusions -- References -- Chapter 7 Polymer Composites for Electric Stress Control -- 7.1 Introduction -- 7.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress -- 7.3 Practical Application of -FGMs to GIS Spacer -- 7.4 Application to Power Apparatus -- References -- Chapter 8 Composite Materials Used in Outdoor Insulation -- 8.1 Introduction -- 8.2 Overview of SIR Materials -- 8.2.1 RTV Coatings -- 8.2.2 Composite Insulators -- 8.2.3 Liquid Silicone Rubber (LSR) -- 8.2.4 Aging Mechanism and Condition Assessment of SIR Materials -- 8.3 New External Insulation Materials -- 8.3.1 Anti-icing Semiconductor Materials -- 8.3.2 Hydrophobic CEP -- 8.4 Summary -- References -- Chapter 9 Polymer Composites for Embedded Capacitors -- 9.1 Introduction -- 9.1.1 Development of Embedded Technology -- 9.1.2 Dielectric Materials for Commercial Embedded Capacitors -- 9.2 Researches on the Polymer-Based Dielectric Nanocomposites -- 9.2.1 Filler Particles -- 9.2.2 Epoxy Matrix -- 9.3 Fabrication Process of Embedded Capacitors.
9.4 Reliability Test of Embedded Capacitor Materials -- 9.5 Conclusions and Perspectives -- References -- Chapter 10 Polymer Composites for Generators and Motors -- 10.1 Introduction -- 10.2 Polymer Composite in High-Voltage Rotating Machines -- 10.3 Ground Wall Insulation -- 10.3.1 Mica/Epoxy Insulation -- 10.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism -- 10.3.3 Insulation Design and V-t Curve -- 10.4 Polymer Nanocomposite for Rotating Machine -- 10.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property -- 10.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine -- 10.5 Stress-Grading System of Rotating Machines -- 10.5.1 Silicon Carbide Particle-Loaded Nonlinear-Resistive Materials -- 10.5.2 End-turn Stress-Grading System of High-Voltage Rotating Machines -- References -- Chapter 11 Polymer Composite Conductors and Lightning Damage -- 11.1 Lightning Environment and Lightning Damage Threat to Composite-Based Aircraft -- 11.1.1 The Lightning Environment -- 11.1.2 Lightning Test Environment of Aircrafts -- 11.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing -- 11.1.4 Application of CFRP Composites in Aircraft -- 11.2 The Dynamic Conductive Characteristics of CFRP -- 11.2.1 A Review of the Research on the Conductivity of CFRP -- 11.2.2 The Testing Methods -- 11.2.3 The Experimental Results of the Dynamic Impedance of CFRP -- 11.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP -- 11.3 The Lightning Strike-Induced Damage of CFRP Strike -- 11.3.1 Introduction of the Lightning Damage of CFRP -- 11.3.2 Single Lightning Strike-Induced Damage -- 11.3.3 Multiple Lightning Strikes-Induced Damage -- 11.4 The Simulation of Lightning Strike-Induced Damage of CFRP.
11.4.1 Overview of Lightning Damage Simulation Researches -- 11.4.2 Establishment of the Coupled Thermal-Electrical Model -- 11.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates -- 11.4.4 Simulated Lightning Damage Results -- References -- Chapter 12 Polymer Composites for Switchgears -- 12.1 Introduction -- 12.2 History of Switchgear -- 12.3 Typical Insulators in Switchgears -- 12.3.1 Epoxy-based Composite Insulators -- 12.3.2 Insulator-Manufacturing Process -- 12.4 Materials for Epoxy-based Composites -- 12.4.1 Epoxy Resins -- 12.4.2 Hardeners -- 12.4.3 Inorganic Fillers and Fibers -- 12.4.4 Silane Coupling Agents -- 12.4.5 Fabrication of Epoxy-based Composites -- 12.5 Properties of Epoxy-based Composites -- 12.5.1 Necessary Properties of Epoxy-based Composites for Switchgears -- 12.5.2 Resistance to Thermal Stresses -- 12.5.3 Resistances to Electrical Stresses -- 12.5.4 Resistances to Ambient Stresses -- 12.5.5 Resistances to Mechanical Stresses -- 12.5.6 International Standards for Evaluation of Composites -- 12.6 Advances of Epoxy-based Composites for Switchgear -- 12.6.1 Nanocomposites -- 12.6.2 High Thermal Conductive Composites -- 12.6.3 Biomass Material-Based Composites -- 12.6.4 Functionally Graded Materials -- 12.6.5 Estimate of Remaining Life of Composites -- 12.7 Conclusion -- References -- Chapter 13 Glass Fiber-Reinforced Polymer Composites for Power Equipment -- 13.1 Overview -- 13.2 Glass Fiber-Reinforced Polymer Composites -- 13.2.1 Fibers -- 13.2.2 Polymers -- 13.2.3 Manufacturing Methods -- 13.2.4 Specifications of Several Kinds of GFRP Materials -- 13.3 Application of Glass Fiber-Reinforced Polymer Composites -- 13.3.1 Laminated Sheets -- 13.3.2 Composite Long Rod Insulators -- 13.3.3 UHV-Insulated Pull Rod for GIS -- 13.3.4 Composite Pole -- 13.3.5 Aluminum Conductor Composite Core in an Overhead Conductor.
13.3.6 Composite Station Post Insulators.
Record Nr. UNINA-9910555131703321
Newark : , : Wiley-IEEE Press, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka
Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka
Pubbl/distr/stampa Newark : , : Wiley-IEEE Press, , [2022]
Descrizione fisica 1 online resource (446 pages)
Disciplina 621.31920284
Collana IEEE Press.
Soggetto topico Polymeric composites
Electric apparatus and appliances - Materials
Electric insulators and insulation - Polymers
ISBN 1-119-71968-2
1-119-71966-6
1-119-71965-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Polymer Composites for Electrical Energy Storage -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Effect of Nanofiller Dimension -- 1.4 Orientation of Nanofillers -- 1.5 Surface Modification of Nanofillers -- 1.6 Polymer Composites with Multiple Nanofillers -- 1.7 Multilayer-structured Polymer Composites -- 1.8 Conclusion -- References -- Chapter 2 Polymer Composites for Thermal Energy Storage -- 2.1 Introduction -- 2.2 Shape-stabilized Polymeric Phase Change Composites -- 2.2.1 Micro/Nanoencapsulated Method -- 2.2.2 Physical Blending -- 2.2.3 Porous Supporting Scaffolds -- 2.2.4 Solid-Solid Composite PCMs -- 2.3 Thermally Conductive Polymeric Phase Change Composites -- 2.3.1 Metals -- 2.3.2 Carbon Materials -- 2.3.3 Ceramics -- 2.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites -- 2.4.1 Electro-to-Heat Conversion -- 2.4.2 Light-to-Heat Conversion -- 2.4.3 Magnetism-to-Heat Conversion -- 2.4.4 Heat-to-Electricity Conversion -- 2.5 Emerging Applications of Polymeric Phase Change Composites -- 2.5.1 Thermal Management of Electronics -- 2.5.2 Smart Textiles -- 2.5.3 Shape Memory Devices -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3 Polymer Composites for High-Temperature Applications -- 3.1 Applications of Polymer Composite Materials in High-Temperature Electrical Insulation -- 3.1.1 High-Temperature-Resistant Electrical Insulating Resin Matrix -- 3.1.2 Modification of Resin Matrix with Reinforcements -- 3.1.3 Modifications in the Thermal Conductivity of Resin Matrix -- 3.2 High-Temperature Applications for Electrical Energy Storage -- 3.2.1 General Considerations for High-Temperature Dielectrics -- 3.2.2 High-Temperature-Resistant Polymer Matrix.
3.2.3 Polymer Composites for High-Temperature Energy Storage Applications -- 3.2.4 Surface Modification of Nanocomposite for High-Temperature Applications -- 3.2.5 Sandwich Structure of Nanoparticles for High-Temperature Applications -- 3.3 of High-Temperature Polymer in Electronic Packaging -- 3.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design -- 3.3.2 High-Temperature-Resistant Low Dielectric Constant Polymer Composite Material -- 3.4 of Polymer Composite Materials in the Field of High-Temperature Wave-Transmitting and Wave-Absorbing Electrical Fields -- 3.4.1 Wave-Transmitting Materials -- 3.4.2 Absorbing Material -- 3.5 Summary -- References -- Chapter 4 Fire-Retardant Polymer Composites for Electrical Engineering -- 4.1 Introduction -- 4.2 Fire-Retardant Cables and Wires -- 4.2.1 Fundamental Overview -- 4.2.2 Understanding of Fire-Retardant Cables and Wires -- 4.3 Fire-Retardant Polymer Composites for Electrical Equipment -- 4.3.1 Fundamental Overview -- 4.3.2 Understanding of Fire-Retardant Polymer Composites for Electrical Equipment -- 4.4 Fire-Retardant Fiber Reinforced Polymer Composites -- 4.4.1 Fundamental Overview -- 4.4.2 Understanding of Fire-Retardant Fiber Reinforced Polymer Composites -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Polymer Composites for Power Cable Insulation -- 5.1 Introduction -- 5.2 Trend in Nanocomposite Materials for Cable Insulation -- 5.2.1 Overview -- 5.2.2 Polymer Materials as Matrix Resin -- 5.2.3 Fillers -- 5.2.4 Nanocomposites -- 5.3 Factors Influencing Properties -- 5.4 Issues in Nanocomposite Insulation Materials Research -- 5.5 Understanding Dielectric and Insulation Phenomena -- 5.5.1 Electromagnetic Understanding -- 5.5.2 Understanding Space Charge Behavior by Q(t) Method -- References.
Chapter 6 Semi-conductive Polymer Composites for Power Cables -- 6.1 Introduction -- 6.1.1 Function of Semi-conductive Composites -- 6.1.2 Development of Semi-conductive Composites -- 6.2 Conductive Mechanism of Semi-conductive Polymer Composites -- 6.2.1 Percolation Theory -- 6.2.2 Tunneling Conduction Theory -- 6.2.3 Mechanism of Positive Temperature Coefficient -- 6.3 Effect of Polymer Matrix on Semi-conductivity -- 6.3.1 Thermoset Polymer Matrix -- 6.3.2 Thermoplastic Polymer Matrix -- 6.3.3 Blended Polymer Matrix -- 6.4 Effect of Conductive Fillers on Semi-conductivity -- 6.4.1 Carbon Black -- 6.4.2 Carbonaceous Fillers with One- and Two-Dimensions -- 6.4.3 Secondary Filler for Carbon Black Filled Composites -- 6.5 Effect of Semi-conductive Composites on Space Charge Injection -- 6.6 Conclusions -- References -- Chapter 7 Polymer Composites for Electric Stress Control -- 7.1 Introduction -- 7.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress -- 7.3 Practical Application of -FGMs to GIS Spacer -- 7.4 Application to Power Apparatus -- References -- Chapter 8 Composite Materials Used in Outdoor Insulation -- 8.1 Introduction -- 8.2 Overview of SIR Materials -- 8.2.1 RTV Coatings -- 8.2.2 Composite Insulators -- 8.2.3 Liquid Silicone Rubber (LSR) -- 8.2.4 Aging Mechanism and Condition Assessment of SIR Materials -- 8.3 New External Insulation Materials -- 8.3.1 Anti-icing Semiconductor Materials -- 8.3.2 Hydrophobic CEP -- 8.4 Summary -- References -- Chapter 9 Polymer Composites for Embedded Capacitors -- 9.1 Introduction -- 9.1.1 Development of Embedded Technology -- 9.1.2 Dielectric Materials for Commercial Embedded Capacitors -- 9.2 Researches on the Polymer-Based Dielectric Nanocomposites -- 9.2.1 Filler Particles -- 9.2.2 Epoxy Matrix -- 9.3 Fabrication Process of Embedded Capacitors.
9.4 Reliability Test of Embedded Capacitor Materials -- 9.5 Conclusions and Perspectives -- References -- Chapter 10 Polymer Composites for Generators and Motors -- 10.1 Introduction -- 10.2 Polymer Composite in High-Voltage Rotating Machines -- 10.3 Ground Wall Insulation -- 10.3.1 Mica/Epoxy Insulation -- 10.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism -- 10.3.3 Insulation Design and V-t Curve -- 10.4 Polymer Nanocomposite for Rotating Machine -- 10.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property -- 10.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine -- 10.5 Stress-Grading System of Rotating Machines -- 10.5.1 Silicon Carbide Particle-Loaded Nonlinear-Resistive Materials -- 10.5.2 End-turn Stress-Grading System of High-Voltage Rotating Machines -- References -- Chapter 11 Polymer Composite Conductors and Lightning Damage -- 11.1 Lightning Environment and Lightning Damage Threat to Composite-Based Aircraft -- 11.1.1 The Lightning Environment -- 11.1.2 Lightning Test Environment of Aircrafts -- 11.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing -- 11.1.4 Application of CFRP Composites in Aircraft -- 11.2 The Dynamic Conductive Characteristics of CFRP -- 11.2.1 A Review of the Research on the Conductivity of CFRP -- 11.2.2 The Testing Methods -- 11.2.3 The Experimental Results of the Dynamic Impedance of CFRP -- 11.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP -- 11.3 The Lightning Strike-Induced Damage of CFRP Strike -- 11.3.1 Introduction of the Lightning Damage of CFRP -- 11.3.2 Single Lightning Strike-Induced Damage -- 11.3.3 Multiple Lightning Strikes-Induced Damage -- 11.4 The Simulation of Lightning Strike-Induced Damage of CFRP.
11.4.1 Overview of Lightning Damage Simulation Researches -- 11.4.2 Establishment of the Coupled Thermal-Electrical Model -- 11.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates -- 11.4.4 Simulated Lightning Damage Results -- References -- Chapter 12 Polymer Composites for Switchgears -- 12.1 Introduction -- 12.2 History of Switchgear -- 12.3 Typical Insulators in Switchgears -- 12.3.1 Epoxy-based Composite Insulators -- 12.3.2 Insulator-Manufacturing Process -- 12.4 Materials for Epoxy-based Composites -- 12.4.1 Epoxy Resins -- 12.4.2 Hardeners -- 12.4.3 Inorganic Fillers and Fibers -- 12.4.4 Silane Coupling Agents -- 12.4.5 Fabrication of Epoxy-based Composites -- 12.5 Properties of Epoxy-based Composites -- 12.5.1 Necessary Properties of Epoxy-based Composites for Switchgears -- 12.5.2 Resistance to Thermal Stresses -- 12.5.3 Resistances to Electrical Stresses -- 12.5.4 Resistances to Ambient Stresses -- 12.5.5 Resistances to Mechanical Stresses -- 12.5.6 International Standards for Evaluation of Composites -- 12.6 Advances of Epoxy-based Composites for Switchgear -- 12.6.1 Nanocomposites -- 12.6.2 High Thermal Conductive Composites -- 12.6.3 Biomass Material-Based Composites -- 12.6.4 Functionally Graded Materials -- 12.6.5 Estimate of Remaining Life of Composites -- 12.7 Conclusion -- References -- Chapter 13 Glass Fiber-Reinforced Polymer Composites for Power Equipment -- 13.1 Overview -- 13.2 Glass Fiber-Reinforced Polymer Composites -- 13.2.1 Fibers -- 13.2.2 Polymers -- 13.2.3 Manufacturing Methods -- 13.2.4 Specifications of Several Kinds of GFRP Materials -- 13.3 Application of Glass Fiber-Reinforced Polymer Composites -- 13.3.1 Laminated Sheets -- 13.3.2 Composite Long Rod Insulators -- 13.3.3 UHV-Insulated Pull Rod for GIS -- 13.3.4 Composite Pole -- 13.3.5 Aluminum Conductor Composite Core in an Overhead Conductor.
13.3.6 Composite Station Post Insulators.
Record Nr. UNINA-9910830637703321
Newark : , : Wiley-IEEE Press, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymers for energy storage and conversion [[electronic resource] /] / edited by Vikas Mittal
Polymers for energy storage and conversion [[electronic resource] /] / edited by Vikas Mittal
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc.
Descrizione fisica 1 online resource (272 p.)
Disciplina 541/.372
Altri autori (Persone) MittalVikas
Collana Polymer Science and Plastics Engineering
Soggetto topico Conducting polymers
Polyelectrolytes
Electric insulators and insulation - Polymers
Polymers
Polymers - Electric properties
Electric batteries
ISBN 1-118-73408-4
1-118-73416-5
1-118-73420-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; List of Contributors; 1 High Performance Polymer Hydrogel Based Materials for Fuel Cells; 1.1 Introduction; 1.2 Hydrogel Electrolyte; 1.3 Poly(vinyl alcohol) Hydrogel; 1.3.1 Chitosan-based Hydrogel in Fuel Cells; 1.3.2 Chitosan Membrane for Polymer Electrolyte Membrane Fuel Cell; 1.3.3 Chitosan Membrane for Alkaline Polymer Electrolyte Fuel Cell; 1.3.4 Chitosan for Fuel Cell Electrode; Summary; References; 2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries; 2.1 Introduction; 2.1.1 Polymer Electrolytes
2.1.2 Role of Polymers in Electrolyte 2.1.3 Polymers; 2.1.4 Advantages of Polymer Electrolytes in Battery; 2.1.5 Poly Vinyl Acetate (PVAc); 2.1.6 PVAc Based Polymer Electrolytes; 2.1.7 Surface and Structural Analysis; Conclusion; References; 3 Lithium Polymer Batteries Based on Ionic Liquids; 3.1 Lithium Batteries; 3.1.1 Introduction; 3.1.2 Lithium Polymer Batteries; 3.2 Lithium Polymer Batteries Containing Ionic Liquids; 3.2.1 Ionic Liquids; 3.2.2 Ionic Liquid-Based Polymer Electrolytes; 3.2.3 Ionic Liquid-Based, Lithium Polymer Battery Performance; Glossary; References
4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics 4.1 Introduction; 4.2 Molecular Layer Deposition; 4.3 Concept of Solar Cells with Organic Quantum Dots; 4.4 Polymer Multiple Quantum Dots; 4.4.1 Fabrication Process and Structures; 4.4.2 Structural Confirmation of Polymer MQDs; 4.4.3 Photocurrent Spectra; 4.4.4 MLD on TiO2 Layer; 4.5 Molecular Multiple Quantum Dots; 4.5.1 Fabrication Process and Structures; 4.5.2 Structural Confirmation of Molecular MQDs; 4.5.3 Photocurrent Spectra; 4.6 Waveguide-Type Solar Cells; 4.6.1 Proposed Structures
4.6.2 Photocurrent Enhancement by Guided Lights 4.6.3 Film-Based Integrated Solar Cells; 4.7 Summary; References; 5 Solvent Effects in Polymer Based Organic Photovoltaics; 5.1 Introduction; 5.2 Solar Cell Device Structure and Preparation; 5.3 Spin-Coating of Active Layer; 5.4 Influence of Solvent on Morphology; 5.4.1 Crystallization Process and Cluster Formation; 5.4.2 Lateral Structures; 5.4.3 Vertical Material Composition; 5.4.4 Mesoscopic Morphology; 5.5 Residual Solvent; 5.5.1 Absolute Solvent Content in Homopolymer Films; 5.5.2 Lateral Solvent Distribution; 5.6 Summary; Acknowledgment
References 6 Polymer-Inorganic Hybrid Solar Cells; 6.1 Introduction; 6.1.1 Hybrid Solar Cell; 6.1.2 Semiconducting Conjugated Polymers; 6.1.3 Inorganic Semiconductors; 6.1.4 Solar Cell Device Characterization; 6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites; 6.2.1 Inorganic Semiconductor in a Bilayer Structure; 6.2.2 Inorganic Semiconductor as a Blend with Conjugated Polymer; 6.2.3 Inorganic Metal Oxide as Charge Transport Layer; 6.3 Conclusion; References; 7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells; 7.1 Introduction
7.2 Optical Properties of Semiconducting Polymers
Record Nr. UNINA-9910141574103321
Hoboken, N.J., : John Wiley & Sons, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Polymers for energy storage and conversion / / edited by Vikas Mittal
Polymers for energy storage and conversion / / edited by Vikas Mittal
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, Inc.
Descrizione fisica 1 online resource (272 p.)
Disciplina 541/.372
Altri autori (Persone) MittalVikas
Collana Polymer Science and Plastics Engineering
Soggetto topico Conducting polymers
Polyelectrolytes
Electric insulators and insulation - Polymers
Polymers
Polymers - Electric properties
Electric batteries
ISBN 1-118-73408-4
1-118-73416-5
1-118-73420-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright Page; Contents; Preface; List of Contributors; 1 High Performance Polymer Hydrogel Based Materials for Fuel Cells; 1.1 Introduction; 1.2 Hydrogel Electrolyte; 1.3 Poly(vinyl alcohol) Hydrogel; 1.3.1 Chitosan-based Hydrogel in Fuel Cells; 1.3.2 Chitosan Membrane for Polymer Electrolyte Membrane Fuel Cell; 1.3.3 Chitosan Membrane for Alkaline Polymer Electrolyte Fuel Cell; 1.3.4 Chitosan for Fuel Cell Electrode; Summary; References; 2 PVAc Based Polymer Blend Electrolytes for Lithium Batteries; 2.1 Introduction; 2.1.1 Polymer Electrolytes
2.1.2 Role of Polymers in Electrolyte 2.1.3 Polymers; 2.1.4 Advantages of Polymer Electrolytes in Battery; 2.1.5 Poly Vinyl Acetate (PVAc); 2.1.6 PVAc Based Polymer Electrolytes; 2.1.7 Surface and Structural Analysis; Conclusion; References; 3 Lithium Polymer Batteries Based on Ionic Liquids; 3.1 Lithium Batteries; 3.1.1 Introduction; 3.1.2 Lithium Polymer Batteries; 3.2 Lithium Polymer Batteries Containing Ionic Liquids; 3.2.1 Ionic Liquids; 3.2.2 Ionic Liquid-Based Polymer Electrolytes; 3.2.3 Ionic Liquid-Based, Lithium Polymer Battery Performance; Glossary; References
4 Organic Quantum Dots Grown by Molecular Layer Deposition for Photovoltaics 4.1 Introduction; 4.2 Molecular Layer Deposition; 4.3 Concept of Solar Cells with Organic Quantum Dots; 4.4 Polymer Multiple Quantum Dots; 4.4.1 Fabrication Process and Structures; 4.4.2 Structural Confirmation of Polymer MQDs; 4.4.3 Photocurrent Spectra; 4.4.4 MLD on TiO2 Layer; 4.5 Molecular Multiple Quantum Dots; 4.5.1 Fabrication Process and Structures; 4.5.2 Structural Confirmation of Molecular MQDs; 4.5.3 Photocurrent Spectra; 4.6 Waveguide-Type Solar Cells; 4.6.1 Proposed Structures
4.6.2 Photocurrent Enhancement by Guided Lights 4.6.3 Film-Based Integrated Solar Cells; 4.7 Summary; References; 5 Solvent Effects in Polymer Based Organic Photovoltaics; 5.1 Introduction; 5.2 Solar Cell Device Structure and Preparation; 5.3 Spin-Coating of Active Layer; 5.4 Influence of Solvent on Morphology; 5.4.1 Crystallization Process and Cluster Formation; 5.4.2 Lateral Structures; 5.4.3 Vertical Material Composition; 5.4.4 Mesoscopic Morphology; 5.5 Residual Solvent; 5.5.1 Absolute Solvent Content in Homopolymer Films; 5.5.2 Lateral Solvent Distribution; 5.6 Summary; Acknowledgment
References 6 Polymer-Inorganic Hybrid Solar Cells; 6.1 Introduction; 6.1.1 Hybrid Solar Cell; 6.1.2 Semiconducting Conjugated Polymers; 6.1.3 Inorganic Semiconductors; 6.1.4 Solar Cell Device Characterization; 6.2 Hybrid Conjugated Polymer-Inorganic Semiconductor Composites; 6.2.1 Inorganic Semiconductor in a Bilayer Structure; 6.2.2 Inorganic Semiconductor as a Blend with Conjugated Polymer; 6.2.3 Inorganic Metal Oxide as Charge Transport Layer; 6.3 Conclusion; References; 7 Semiconducting Polymer-based Bulk Heterojunction Solar Cells; 7.1 Introduction
7.2 Optical Properties of Semiconducting Polymers
Record Nr. UNINA-9910827319003321
Hoboken, N.J., : John Wiley & Sons, Inc.
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui