Control of power electronic converters and systems . Volume I / / edited by Frede Blaabjerg
| Control of power electronic converters and systems . Volume I / / edited by Frede Blaabjerg |
| Pubbl/distr/stampa | London, England : , : Academic Press, , 2018 |
| Descrizione fisica | 1 online resource (394 pages) : illustrations (some color), tables, graphs |
| Disciplina | 621.313 |
| Soggetto topico |
Electric current converters
Electric current converters - Automatic control |
| ISBN |
0-12-805436-0
0-12-805245-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583385003321 |
| London, England : , : Academic Press, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Coordination and optimization of grid-tied power converters : from pulse width modulation perspective / / Feng Gao, Tao Xu
| Coordination and optimization of grid-tied power converters : from pulse width modulation perspective / / Feng Gao, Tao Xu |
| Autore | Gao Feng |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (222 pages) |
| Disciplina | 621.313 |
| Collana | Power Systems |
| Soggetto topico |
Electric current converters - Automatic control
Electric power transmission |
| ISBN |
981-16-7446-9
981-16-7445-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Preface -- Acknowledgements -- Contents -- Abbreviations -- 1 Introduction -- 1.1 Power-Converter-Dominated Modern Power Systems -- 1.2 Renewable Generation Systems -- 1.2.1 Photovoltaic Generation Systems -- 1.2.2 Wind Generation Systems -- 1.3 Battery Energy Storage Systems -- 1.4 DC Charging Piles for Electric Vehicles -- 1.5 Summary -- Reference -- 2 Topologies and Control Schemes of Grid-Tied Power Converters -- 2.1 Topology and Modulation of Grid-Tied Power Converters -- 2.1.1 Single-Phase Voltage Source Converters -- 2.1.2 Three-Phase Two-Level Voltage Source Converter -- 2.1.3 Three-Phase Multilevel Voltage Source Converters -- 2.2 Leakage Current Attenuation of PV Inverters -- 2.2.1 Leakage Current Minimization Principle -- 2.2.2 Methods of Leakage Current Flowing Path Breaking -- 2.2.3 Methods of Common Mode Voltage Attenuation -- 2.2.4 Internal Circulation Method -- 2.3 AC Filters of Grid-Tied Power Converter -- 2.4 Typical Control Schemes of Grid-Tied Power Converters -- 2.4.1 Dual-Loop Controller -- 2.4.2 Phase Locked Loops -- 2.5 Summary -- References -- 3 Coordination Principles of Pulse Width Modulation -- 3.1 Analysis of PWM Carriers with Random Phase Shift Angles -- 3.1.1 Nonideal PWM Frequency Deviation -- 3.1.2 Random Accumulation of Total Current Harmonics -- 3.1.3 Random Circulating Leakage Currents of Multiple PV Inverters -- 3.2 Basic Principles of Multiple PWM Coordination -- 3.3 Summary -- Reference -- 4 PWM Carrier Synchronization Techniques -- 4.1 Centralized Mode -- 4.2 Master-Slave Mode -- 4.2.1 High-Bandwidth Communication Based Carrier Synchronization -- 4.2.2 Low-Bandwidth Communication Based Carrier Synchronization -- 4.3 Distributed Mode -- 4.3.1 Independent Analog Signal Transfer Method -- 4.3.2 Virtual Oscillation Based Coordination Method.
4.3.3 Grid-Voltage Zero-Crossing Based Carrier Synchronization Method -- 4.3.4 Phase Locked Loop Based Carrier Synchronization (PLL-CS) -- 4.4 Comparison -- 4.5 Summary -- References -- 5 Open-Loop Optimization Schemes -- 5.1 Basic Principle of Open-Loop Optimization Operation -- 5.2 Optimization Models -- 5.2.1 Optimization Model for Single-Objective -- 5.2.2 Optimization Model for Multi-objectives -- 5.3 Optimization Solution -- 5.3.1 Single-Objective Optimization Solution -- 5.3.2 Multi-objectives Optimization Solution -- 5.4 Improved Online Optimization Method -- 5.4.1 Calculation of φM,PWMb -- 5.4.2 Calculation of fsyn,min -- 5.4.3 Verification -- 5.5 Summary -- References -- 6 Closed-Loop Correction Strategies -- 6.1 Basic Principles of Closed-Loop Correction Strategies -- 6.2 Closed-Loop Correction Strategy for Single-Objective Optimization -- 6.2.1 Performance Analysis of Open-Loop Scheme with Inaccurate Parameters -- 6.2.2 Principle and Realization of Closed-Loop Correction -- 6.2.3 Experimental Verifications -- 6.3 Closed-Loop Correction Strategy for Multi-objectives Optimization -- 6.3.1 Limitation of Open-Loop Schemes for Circulating Leakage Current Attenuation -- 6.3.2 Closed-Loop Correction Strategy -- 6.3.3 Experimental Verifications -- 6.4 Summary -- References -- 7 Analysis and Optimized Design of Grid-Tied Power Converters -- 7.1 Basic Principles and Main Procedures of Optimized Design -- 7.2 Realization Details -- 7.3 Analysis of the Worst Operating Condition -- 7.3.1 Analysis of the Worst Operating Combination -- 7.3.2 Analysis of the Worst Synchronization Fluctuation -- 7.4 Optimized Design of AC Filter and Switching Frequency -- 7.4.1 Parameters Selection -- 7.4.2 Experimental Verifications -- 7.5 Summary -- References -- 8 Practical Demonstration of PWM Coordination and Optimization Methods in Battery Energy Storage Systems. 8.1 System Configuration -- 8.2 Problem Description -- 8.3 Precise Model -- 8.4 Open-Loop Optimization -- 8.5 PLL-Based Carrier Synchronization -- 8.6 Performance Evaluation -- 8.7 Summary -- References. |
| Record Nr. | UNINA-9910743390903321 |
Gao Feng
|
||
| Singapore : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Design, control, and application of modular multilevel converters for HVDC transmission systems / / Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu
| Design, control, and application of modular multilevel converters for HVDC transmission systems / / Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu |
| Autore | Sharifabadi Kamran <1963-> |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : Wiley & Sons, , 2016 |
| Descrizione fisica | xxiii, 386 s : ill |
| Disciplina | 621.31/7 |
| Soggetto topico |
Convertidors de corrent elèctric
Energia elèctrica - Transmissió - Corrent continu Electric power transmission - Direct current - Equipment and supplies Electric current converters - Automatic control Electric current converters - Design and construction |
| ISBN |
9781118851555
1-118-85154-4 1-118-85152-8 1-118-85155-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
-- Preface xiii -- Acknowledgements xv -- About the Companion Website xvii -- Nomenclature xix -- Introduction 1 -- 1 Introduction to Modular Multilevel Converters 7 -- 1.1 Introduction 7 -- 1.2 The Two-Level Voltage Source Converter 9 -- 1.2.1 Topology and Basic Function 9 -- 1.2.2 Steady-State Operation 12 -- 1.3 Benefits of Multilevel Converters 15 -- 1.4 Early Multilevel Converters 17 -- 1.4.1 Diode Clamped Converters 17 -- 1.4.2 Flying Capacitor Converters 20 -- 1.5 Cascaded Multilevel Converters 23 -- 1.5.1 Submodules and Submodule Strings 23 -- 1.5.2 Modular Multilevel Converter with Half-Bridge Submodules 28 -- 1.5.3 Other Cascaded Converter Topologies 43 -- 1.6 Summary 57 -- References 58 -- 2 Main-Circuit Design 60 -- 2.1 Introduction 60 -- 2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 61 -- 2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors 61 -- 2.2.2 Basic Conduction Properties of Power Semiconductor Devices 64 -- 2.2.3 P-N Junctions for Blocking 65 -- 2.2.4 Conduction Properties and the Need for Carrier Injection 67 -- 2.2.5 Switching Properties 72 -- 2.2.6 Packaging 73 -- 2.2.7 Reliability of Power Semiconductor Devices 80 -- 2.2.8 Silicon Carbide Power Devices 84 -- 2.3 Medium-Voltage Capacitors for Submodules 92 -- 2.3.1 Design and Fabrication 93 -- 2.3.2 Self-Healing and Reliability 95 -- 2.4 Arm Inductors 96 -- 2.5 Submodule Configurations 98 -- 2.5.1 Existing Half-Bridge Submodule Realizations 99 -- 2.5.2 Clamped Single-Submodule 104 -- 2.5.3 Clamped Double-Submodule 105 -- 2.5.4 Unipolar-Voltage Full-Bridge Submodule 106 -- 2.5.5 Five-Level Cross-Connected Submodule 107 -- 2.5.6 Three-Level Cross-Connected Submodule 107 -- 2.5.7 Double Submodule 108 -- 2.5.8 Semi-Full-Bridge Submodule 109 -- 2.5.9 Soft-Switching Submodules 110 -- 2.6 Choice of Main-Circuit Parameters 112 -- 2.6.1 Main Input Data 112 -- 2.6.2 Choice of Power Semiconductor Devices 114 -- 2.6.3 Choice of the Number of Submodules 115.
2.6.4 Choice of Submodule Capacitance 117 -- 2.6.5 Choice of Arm Inductance 117 -- 2.7 Handling of Redundant and Faulty Submodules 118 -- 2.7.1 Method 1 118 -- 2.7.2 Method 2 119 -- 2.7.3 Comparison of Method 1 and Method 2 120 -- 2.7.4 Handling of Redundancy Using IGBT Stacks 121 -- 2.8 Auxiliary Power Supplies for Submodules 121 -- 2.8.1 Using the Submodule Capacitor as Power Source 121 -- 2.8.2 Power Supplies with High-Voltage Inputs 123 -- 2.8.3 The Tapped-Inductor Buck Converter 125 -- 2.9 Start-Up Procedures 126 -- 2.10 Summary 126 -- References 127 -- 3 Dynamics and Control 133 -- 3.1 Introduction 133 -- 3.2 Fundamentals 134 -- 3.2.1 Arms 135 -- 3.2.2 Submodules 135 -- 3.2.3 AC Bus 136 -- 3.2.4 DC Bus 136 -- 3.2.5 Currents 136 -- 3.3 Converter Operating Principle and Averaged Dynamic Model 137 -- 3.3.1 Dynamic Relations for the Currents 137 -- 3.3.2 Selection of the Mean Sum Capacitor Voltages 137 -- 3.3.3 Averaging Principle 138 -- 3.3.4 Ideal Selection of the Insertion Indices 140 -- 3.3.5 Sum-Capacitor-Voltage Ripples 141 -- 3.3.6 Maximum Output Voltage 144 -- 3.3.7 DC-Bus Dynamics 146 -- 3.3.8 Time Delays 148 -- 3.4 Per-Phase Output-Current Control 148 -- 3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller 149 -- 3.4.2 Resonant Filters and Generalized Integrators 150 -- 3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller 152 -- 3.4.4 Parameter Selection for a PR Current Controller 153 -- 3.4.5 Output-Current Controller Design 157 -- 3.5 Arm-Balancing (Internal) Control 161 -- 3.5.1 Circulating-Current Control 163 -- 3.5.2 Direct Voltage Control 163 -- 3.5.3 Closed-Loop Voltage Control 166 -- 3.5.4 Open-Loop Voltage Control 168 -- 3.5.5 Hybrid Voltage Control 172 -- 3.6 Three-Phase Systems 175 -- 3.6.1 Balanced Three-Phase Systems 175 -- 3.6.2 Imbalanced Three-Phase Systems 175 -- 3.6.3 Instantaneous Active Power 176 -- 3.6.4 Wye (Y) and Delta (̧Æ) Connections 177 -- 3.6.5 Harmonics 177 -- 3.6.6 Space Vectors 178 -- 3.6.7 Instantaneous Power 182. 3.6.8 Selection of the Space-Vector Scaling Constant 184 -- 3.7 Vector Output-Current Control 184 -- 3.7.1 PR (PI) Controller 186 -- 3.7.2 Reference-Vector Saturation 188 -- 3.7.3 Transformations 188 -- 3.7.4 Zero-Sequence Injection 190 -- 3.8 Higher-Level Control 192 -- 3.8.1 Phase-Locked Loop 193 -- 3.8.2 Open-Loop Active- and Reactive-Power Control 197 -- 3.8.3 DC-Bus-Voltage Control 198 -- 3.8.4 Power-Synchronization Control 200 -- 3.9 Control Architectures 207 -- 3.9.1 Communication Network 209 -- 3.9.2 Fault-Tolerant Communication Networks 211 -- 3.10 Summary 212 -- References 212 -- 4 Control under Unbalanced Grid Conditions 214 -- 4.1 Introduction 214 -- 4.2 Grid Requirements 214 -- 4.3 Shortcomings of Conventional Vector Control 215 -- 4.3.1 PLL with Notch Filter 216 -- 4.4 Positive/Negative-Sequence Extraction 219 -- 4.4.1 DDSRF-PNSE 219 -- 4.4.2 DSOGI-PNSE 221 -- 4.5 Injection Reference Strategy 223 -- 4.5.1 PSI with PSI-LVRT Compliance 225 -- 4.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance 226 -- 4.6 Component-Based Vector Output-Current Control 226 -- 4.6.1 DDSRF-PNSE-Based Control 226 -- 4.6.2 DSOGI-PNSE-Based Control 227 -- 4.7 Summary 228 -- References 231 -- 5 Modulation and Submodule Energy Balancing 232 -- 5.1 Introduction 232 -- 5.2 Fundamentals of Pulse-Width Modulation 233 -- 5.2.1 Basic Concepts 233 -- 5.2.2 Performance of Modulation Methods 234 -- 5.2.3 Reference Third-Harmonic Injection in Three-Phase Systems 235 -- 5.3 Carrier-Based Modulation Methods 236 -- 5.3.1 Two-Level Carrier-Based Modulation 236 -- 5.3.2 Analysis by Fourier Series Expansion 237 -- 5.3.3 Polyphase Systems 242 -- 5.4 Multilevel Carrier-Based Modulation 243 -- 5.4.1 Phase-Shifted Carriers 243 -- 5.4.2 Level-Shifted Carriers 250 -- 5.5 Nearest-Level Control 252 -- 5.6 Submodule Energy Balancing Methods 256 -- 5.6.1 Submodule Sorting 256 -- 5.6.2 Predictive Sorting 259 -- 5.6.3 Tolerance Band Methods 263 -- 5.6.4 Individual Submodule-Capacitor-Voltage Control 269. 5.7 Summary 270 -- References 271 -- 6 Modeling and Simulation 272 -- 6.1 Introduction 272 -- 6.2 Leg-Level Averaged (LLA) Model 274 -- 6.3 Arm-Level Averaged (ALA) Model 275 -- 6.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK) 276 -- 6.4 Submodule-Level Averaged (SLA) Model 278 -- 6.4.1 Vectorized Simulation Models 279 -- 6.5 Submodule-Level Switched (SLS) Model 280 -- 6.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation 281 -- 6.6 Summary 281 -- References 282 -- 7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application 283 -- 7.1 Introduction 283 -- 7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes 284 -- 7.2.1 UK's Regulatory Framework for Offshore Transmission Assets 285 -- 7.2.2 Germany's Regulatory Framework for Offshore Transmission Assets 286 -- 7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals 286 -- 7.4 Components of an Offshore MMC-HVDC Converter 287 -- 7.4.1 Offshore HVDC Converter Transformer 289 -- 7.4.2 Phase Reactors and DC Pole Reactors 290 -- 7.4.3 Converter Valve Hall 292 -- 7.4.4 Control and Protection Systems 293 -- 7.4.5 AC and DC Switchyards 293 -- 7.4.6 Auxiliary Systems 293 -- 7.5 Offshore Platform Concepts 294 -- 7.5.1 Accommodation Offshore 295 -- 7.6 Onshore HVDC Converter 295 -- 7.6.1 Onshore DC Choppers/Dynamic Brakers 296 -- 7.6.2 Inrush Current Limiter Resistors 297 -- 7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP 298 -- 7.7.1 Conceptual and Feasibility Studies with Steady-State Load Flow 299 -- 7.7.2 Short-Circuit Analysis 301 -- 7.7.3 Dynamic System Performance Analysis 301 -- 7.7.4 Transient Stability Analysis 301 -- 7.7.5 Harmonic Analysis 302 -- 7.7.6 Ferroresonance 302 -- 7.8 Summary 303 -- References 303 -- 8 MMC-HVDC Standards and Commissioning Procedures 305 -- 8.1 Introduction 305 -- 8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology 306. 8.2.1 Hierarchy of Available and Applicable Codes, Standards and Best Practice Recommendations for MMC-HVDC Projects 309 -- 8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests 309 -- 8.3.1 Pre-Commissioning 311 -- 8.3.2 Offsite Commissioning Tests or Factory Acceptance Tests 312 -- 8.3.3 Onsite Testing and Site Acceptance Tests 313 -- 8.3.4 Onsite Energizing Tests 314 -- 8.4 Summary 317 -- References 317 -- 9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 318 -- 9.1 Introduction 318 -- 9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 319 -- 9.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency 321 -- 9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 322 -- 9.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer 323 -- 9.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325 -- 9.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325 -- 9.5 MMC-HVDC Component Failures 327 -- 9.5.1 Submodule Semiconductor Failures 327 -- 9.5.2 Submodule Capacitor Failure 328 -- 9.5.3 Phase Reactor Failure 329 -- 9.5.4 Converter Transformer Failure 329 -- 9.6 MMC-HVDC Protection Systems 329 -- 9.6.1 AC-Side Protections 331 -- 9.6.2 DC-Side Protections 331 -- 9.6.3 DC-Bus Undervoltage, Overvoltage Protection 331 -- 9.6.4 DC-Bus Voltage Unbalance Protection 332 -- 9.6.5 DC-Bus Overcurrent Protection 332 -- 9.6.6 DC Bus Differential Protection 332 -- 9.6.7 Valve and Submodule Protection 332 -- 9.6.8 Transformer Protection 333 -- 9.6.9 Primary Converter AC Breaker Failure Protection 333 -- 9.7 Summary 333 -- References 334 -- 10 MMC-HVDC Transmission Technology and MTDC Networks 336 -- 10.1 Introduction 336 -- 10.2 LCC-HVDC Transmission Technology 336 -- 10.3 Two-Level VSC-HVDC Transmission Technology 338 -- 10.3.1 Comparison of VSC-HVDC vs. LCC-HVDC Technology 338. 10.4 Modular Multilevel HVDC Transmission Technology 339 -- 10.4.1 Monopolar Asymmetric MMC-HVDC Scheme Configuration 340 -- 10.4.2 Symmetrical Monopole MMC-HVDC Scheme Configuration 340 -- 10.4.3 Bipolar HVDC Scheme Configuration 341 -- 10.4.4 Homopolar HVDC Scheme Configuration 342 -- 10.4.5 Back-to-Back HVDC Scheme Configuration 342 -- 10.5 The European HVDC Projects and MTDC Network Perspectives 343 -- 10.5.1 The North Sea Countries Offshore Grid Initiative (NSCOGI) 343 -- 10.5.2 Large Integration of Offshore Wind Farms and Creation of the Offshore DC Grid 344 -- 10.6 Multi-Terminal HVDC Configurations 345 -- 10.6.1 Series-Connected MTDC Network 346 -- 10.6.2 Parallel-Connected MTDC Network 346 -- 10.6.3 Meshed MTDC Networks 347 -- 10.7 DC Load Flow Control in MTDC Networks 348 -- 10.8 DC Grid Control Strategies 349 -- 10.8.1 Dynamic Voltage Control and Power Balancing in MTDC Networks 350 -- 10.8.2 Power and Voltage Droop Control Strategy 351 -- 10.8.3 Voltage Margin Control Method 352 -- 10.8.4 Dead-Band Droop Control 352 -- 10.8.5 Centralized and Distributed Voltage Control Strategies 354 -- 10.9 DC Fault Detection and Protection in MTDC Networks 355 -- 10.10 Fault-Detection Methods in MTDC 357 -- 10.10.1 Overcurrent and Voltage Detection Methods 357 -- 10.10.2 Distance Relay Protection 359 -- 10.10.3 Differential Line Protection 359 -- 10.10.4 Voltage Derivative Detection 359 -- 10.10.5 Traveling Wave Based Detection 360 -- 10.10.6 Frequency Domain Based Detection 361 -- 10.10.7 Wavelet Based Fault Detection 361 -- 10.11 DC Circuit Breaker Technologies 362 -- 10.11.1 DC Circuit Breaker with MOVs in Series with the DC Line 364 -- 10.11.2 DC Breakers with MOVs in Parallel with the DC Line 366 -- 10.12 Fault-Current Limiters 367 -- 10.12.1 Fault Current Limiting Reactors 367 -- 10.12.2 Solid-State Fault-Current Limiters 368 -- 10.12.3 Superconducting Fault-Current Limiters 369 -- 10.13 The Influence of Grounding Strategy on Fault Currents 369 -- 10.14 DC Supergrids of the Future 370. 10.15 Summary 371 -- References 371 -- Index 373. |
| Record Nr. | UNINA-9910134875803321 |
Sharifabadi Kamran <1963->
|
||
| Chichester, West Sussex, United Kingdom : , : Wiley & Sons, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Digital control of high-frequency switched-mode power converters / / Luca Corradini, Dragan Maksimovic, Paolo Mattavelli, Regan Zane
| Digital control of high-frequency switched-mode power converters / / Luca Corradini, Dragan Maksimovic, Paolo Mattavelli, Regan Zane |
| Autore | Corradini Luca |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (402 p.) |
| Disciplina | 621.381044 |
| Altri autori (Persone) |
MaksimoviâcDragan <1961->
MattavelliPaolo ZaneRegan |
| Collana | IEEE press series on power engineering |
| Soggetto topico |
Electric current converters - Automatic control
Switching power supplies - Automatic control Digital control systems |
| ISBN |
1-119-02539-7
1-119-02537-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
PREFACE ix -- INTRODUCTION 1 -- CHAPTER 1 CONTINUOUS-TIME AVERAGED MODELING OF DC-DC CONVERTERS 13 -- 1.1 Pulse Width Modulated Converters 14 -- 1.2 Converters in Steady State 16 -- 1.2.1 Boost Converter Example 17 -- 1.2.2 Estimation of the Switching Ripple 19 -- 1.2.3 Voltage Conversion Ratios of Basic Converters 20 -- 1.3 Converter Dynamics and Control 21 -- 1.3.1 Converter Averaging and Linearization 22 -- 1.3.2 Modeling of the Pulse Width Modulator 24 -- 1.3.3 The System Loop Gain 25 -- 1.3.4 Averaged Small-Signal Models of Basic Converters 26 -- 1.4 State-Space Averaging 28 -- 1.4.1 Converter Steady-State Operating Point 28 -- 1.4.2 Averaged Small-Signal State-Space Model 29 -- 1.4.3 Boost Converter Example 30 -- 1.5 Design Examples 32 -- 1.5.1 Voltage-Mode Control of a Synchronous Buck Converter 32 -- 1.5.2 Average Current-Mode Control of a Boost Converter 42 -- 1.6 Duty Ratio d[k] Versus d(t) 48 -- 1.7 Summary of Key Points 50 -- CHAPTER 2 THE DIGITAL CONTROL LOOP 51 -- 2.1 Case Study: Digital Voltage-Mode Control 52 -- 2.2 A/D Conversion 53 -- 2.2.1 Sampling Rate 53 -- 2.2.2 Amplitude Quantization 56 -- 2.3 The Digital Compensator 58 -- 2.4 Digital Pulse Width Modulation 63 -- 2.5 Loop Delays 65 -- 2.5.1 Control Delays 65 -- 2.5.2 Modulation Delay 66 -- 2.5.3 Total Loop Delay 70 -- 2.6 Use of Averaged Models in Digital Control Design 71 -- 2.6.1 Limitations of Averaged Modeling 71 -- 2.6.2 Averaged Modeling of a Digitally Controlled Converter 74 -- 2.7 Summary of Key Points 78 -- CHAPTER 3 DISCRETE-TIME MODELING 79 -- 3.1 Discrete-Time Small-Signal Modeling 80 -- 3.1.1 A Preliminary Example: A Switched Inductor 82 -- 3.1.2 The General Case 85 -- 3.1.3 Discrete-Time Models for Basic Types of PWM Modulation 87 -- 3.2 Discrete-Time Modeling Examples 88 -- 3.2.1 Synchronous Buck Converter 90 -- 3.2.2 Boost Converter 97 -- 3.3 Discrete-Time Modeling of Time-Invariant Topologies 102 -- 3.3.1 Equivalence to Discrete-Time Modeling 106 -- 3.3.2 Relationship with the Modified Z-Transform 108.
3.3.3 Calculation of Tu(z) 108 -- 3.3.4 Buck Converter Example Revisited 112 -- 3.4 Matlab(R) Discrete-Time Modeling of Basic Converters 112 -- 3.5 Summary of Key Points 117 -- CHAPTER 4 DIGITAL CONTROL 119 -- 4.1 System-Level Compensator Design 119 -- 4.1.1 Direct-Digital Design Using the Bilinear Transform Method 120 -- 4.1.2 Digital PID Compensators in the z- and the p-Domains 123 -- 4.2 Design Examples 126 -- 4.2.1 Digital Voltage-Mode Control of a Synchronous Buck Converter 126 -- 4.2.2 Digital Current-Mode Control of a Boost Converter 134 -- 4.2.3 Multiloop Control of a Synchronous Buck Converter 136 -- 4.2.4 Boost Power Factor Corrector 141 -- 4.3 Other Converter Transfer Functions 154 -- 4.4 Actuator Saturation and Integral Anti-Windup Provisions 160 -- 4.5 Summary of Key Points 165 -- CHAPTER 5 AMPLITUDE QUANTIZATION 167 -- 5.1 System Quantizations 167 -- 5.1.1 A/D Converter 167 -- 5.1.2 DPWM Quantization 169 -- 5.2 Steady-State Solution 172 -- 5.3 No-Limit-Cycling Conditions 175 -- 5.3.1 DPWM versus A/D Resolution 175 -- 5.3.2 Integral Gain 178 -- 5.3.3 Dynamic Quantization Effects 181 -- 5.4 DPWM and A/D Implementation Techniques 182 -- 5.4.1 DPWM Hardware Implementation Techniques 182 -- 5.4.2 Effective DPWM Resolution Improvements via ΣΔ Modulation 186 -- 5.4.3 A/D Converters 187 -- 5.5 Summary of Key Points 190 -- CHAPTER 6 COMPENSATOR IMPLEMENTATION 191 -- 6.1 PID Compensator Realizations 194 -- 6.2 Coefficient Scaling and Quantization 197 -- 6.2.1 Coefficients Scaling 198 -- 6.2.2 Coefficients Quantization 200 -- 6.3 Voltage-Mode Control Example: Coefficients Quantization 203 -- 6.3.1 Parallel Structure 204 -- 6.3.2 Direct Structure 206 -- 6.3.3 Cascade Structure 208 -- 6.4 Fixed-Point Controller Implementation 213 -- 6.4.1 Effective Dynamic Range and Hardware Dynamic Range 214 -- 6.4.2 Upper Bound of a Signal and the L1-Norm 216 -- 6.5 Voltage-Mode Converter Example: Fixed-Point Implementation 218 -- 6.5.1 Parallel Realization 220 -- 6.5.2 Direct Realization 225. 6.5.3 Cascade Realization 229 -- 6.5.4 Linear versus Quantized System Response 233 -- 6.6 HDL Implementation of the Controller 234 -- 6.6.1 VHDL Example 235 -- 6.6.2 Verilog Example 237 -- 6.7 Summary of Key Points 239 -- CHAPTER 7 DIGITAL AUTOTUNING 241 -- 7.1 Introduction to Digital Autotuning 242 -- 7.2 Programmable PID Structures 243 -- 7.3 Autotuning VIA Injection of a Digital Perturbation 247 -- 7.3.1 Theory of Operation 249 -- 7.3.2 Implementation of a PD Autotuner 253 -- 7.3.3 Simulation Example 255 -- 7.3.4 Small-Signal Analysis of the PD Autotuning Loop 261 -- 7.4 Digital Autotuning Based on Relay Feedback 265 -- 7.4.1 Theory of Operation 266 -- 7.4.2 Implementation of a Digital Relay Feedback Autotuner 267 -- 7.4.3 Simulation Example 271 -- 7.5 Implementation Issues 272 -- 7.6 Summary of Key Points 275 -- APPENDIX A DISCRETE-TIME LINEAR SYSTEMS AND THE Z-TRANSFORM 277 -- A.1 Difference Equations 277 -- A.1.1 Forced Response 278 -- A.1.2 Free Response 279 -- A.1.3 Impulse Response and System Modes 281 -- A.1.4 Asymptotic Behavior of the Modes 282 -- A.1.5 Further Examples 283 -- A.2 Z-Transform 284 -- A.2.1 Definition 284 -- A.2.2 Properties 285 -- A.3 The Transfer Function 287 -- A.3.1 Stability 287 -- A.3.2 Frequency Response 288 -- A.4 State-Space Representation 288 -- APPENDIX B FIXED-POINT ARITHMETIC AND HDL CODING 291 -- B.1 Rounding Operation and Round-Off Error 291 -- B.2 Floating-Point versus Fixed-Point Arithmetic Systems 293 -- B.3 Binary Two's Complement (B2C) Fixed-Point Representation 294 -- B.4 Signal Notation 296 -- B.5 Manipulation of B2C Quantities and HDL Examples 297 -- B.5.1 Sign Extension 298 -- B.5.2 Alignment 299 -- B.5.3 Sign Reversal 301 -- B.5.4 LSB and MSB Truncation 302 -- B.5.5 Addition and Subtraction 304 -- B.5.6 Multiplication 305 -- B.5.7 Overflow Detection and Saturated Arithmetic 307 -- APPENDIX C SMALL-SIGNAL PHASE LAG OF UNIFORMLY SAMPLED PULSE WIDTH MODULATORS 313 -- C.1 Trailing-Edge Modulators 313 -- C.2 Leading-Edge Modulators 317. C.3 Symmetrical Modulators 318 -- REFERENCES 321 -- INDEX 335. |
| Record Nr. | UNINA-9910208952703321 |
Corradini Luca
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Digital control of high-frequency switched-mode power converters / / Luca Corradini, Dragan Maksimovic, Paolo Mattavelli, Regan Zane
| Digital control of high-frequency switched-mode power converters / / Luca Corradini, Dragan Maksimovic, Paolo Mattavelli, Regan Zane |
| Autore | Corradini Luca |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] |
| Descrizione fisica | 1 online resource (402 p.) |
| Disciplina | 621.381044 |
| Altri autori (Persone) |
MaksimoviâcDragan <1961->
MattavelliPaolo ZaneRegan |
| Collana | IEEE press series on power engineering |
| Soggetto topico |
Electric current converters - Automatic control
Switching power supplies - Automatic control Digital control systems |
| ISBN |
1-119-02539-7
1-119-02537-0 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
PREFACE ix -- INTRODUCTION 1 -- CHAPTER 1 CONTINUOUS-TIME AVERAGED MODELING OF DC-DC CONVERTERS 13 -- 1.1 Pulse Width Modulated Converters 14 -- 1.2 Converters in Steady State 16 -- 1.2.1 Boost Converter Example 17 -- 1.2.2 Estimation of the Switching Ripple 19 -- 1.2.3 Voltage Conversion Ratios of Basic Converters 20 -- 1.3 Converter Dynamics and Control 21 -- 1.3.1 Converter Averaging and Linearization 22 -- 1.3.2 Modeling of the Pulse Width Modulator 24 -- 1.3.3 The System Loop Gain 25 -- 1.3.4 Averaged Small-Signal Models of Basic Converters 26 -- 1.4 State-Space Averaging 28 -- 1.4.1 Converter Steady-State Operating Point 28 -- 1.4.2 Averaged Small-Signal State-Space Model 29 -- 1.4.3 Boost Converter Example 30 -- 1.5 Design Examples 32 -- 1.5.1 Voltage-Mode Control of a Synchronous Buck Converter 32 -- 1.5.2 Average Current-Mode Control of a Boost Converter 42 -- 1.6 Duty Ratio d[k] Versus d(t) 48 -- 1.7 Summary of Key Points 50 -- CHAPTER 2 THE DIGITAL CONTROL LOOP 51 -- 2.1 Case Study: Digital Voltage-Mode Control 52 -- 2.2 A/D Conversion 53 -- 2.2.1 Sampling Rate 53 -- 2.2.2 Amplitude Quantization 56 -- 2.3 The Digital Compensator 58 -- 2.4 Digital Pulse Width Modulation 63 -- 2.5 Loop Delays 65 -- 2.5.1 Control Delays 65 -- 2.5.2 Modulation Delay 66 -- 2.5.3 Total Loop Delay 70 -- 2.6 Use of Averaged Models in Digital Control Design 71 -- 2.6.1 Limitations of Averaged Modeling 71 -- 2.6.2 Averaged Modeling of a Digitally Controlled Converter 74 -- 2.7 Summary of Key Points 78 -- CHAPTER 3 DISCRETE-TIME MODELING 79 -- 3.1 Discrete-Time Small-Signal Modeling 80 -- 3.1.1 A Preliminary Example: A Switched Inductor 82 -- 3.1.2 The General Case 85 -- 3.1.3 Discrete-Time Models for Basic Types of PWM Modulation 87 -- 3.2 Discrete-Time Modeling Examples 88 -- 3.2.1 Synchronous Buck Converter 90 -- 3.2.2 Boost Converter 97 -- 3.3 Discrete-Time Modeling of Time-Invariant Topologies 102 -- 3.3.1 Equivalence to Discrete-Time Modeling 106 -- 3.3.2 Relationship with the Modified Z-Transform 108.
3.3.3 Calculation of Tu(z) 108 -- 3.3.4 Buck Converter Example Revisited 112 -- 3.4 Matlab(R) Discrete-Time Modeling of Basic Converters 112 -- 3.5 Summary of Key Points 117 -- CHAPTER 4 DIGITAL CONTROL 119 -- 4.1 System-Level Compensator Design 119 -- 4.1.1 Direct-Digital Design Using the Bilinear Transform Method 120 -- 4.1.2 Digital PID Compensators in the z- and the p-Domains 123 -- 4.2 Design Examples 126 -- 4.2.1 Digital Voltage-Mode Control of a Synchronous Buck Converter 126 -- 4.2.2 Digital Current-Mode Control of a Boost Converter 134 -- 4.2.3 Multiloop Control of a Synchronous Buck Converter 136 -- 4.2.4 Boost Power Factor Corrector 141 -- 4.3 Other Converter Transfer Functions 154 -- 4.4 Actuator Saturation and Integral Anti-Windup Provisions 160 -- 4.5 Summary of Key Points 165 -- CHAPTER 5 AMPLITUDE QUANTIZATION 167 -- 5.1 System Quantizations 167 -- 5.1.1 A/D Converter 167 -- 5.1.2 DPWM Quantization 169 -- 5.2 Steady-State Solution 172 -- 5.3 No-Limit-Cycling Conditions 175 -- 5.3.1 DPWM versus A/D Resolution 175 -- 5.3.2 Integral Gain 178 -- 5.3.3 Dynamic Quantization Effects 181 -- 5.4 DPWM and A/D Implementation Techniques 182 -- 5.4.1 DPWM Hardware Implementation Techniques 182 -- 5.4.2 Effective DPWM Resolution Improvements via ΣΔ Modulation 186 -- 5.4.3 A/D Converters 187 -- 5.5 Summary of Key Points 190 -- CHAPTER 6 COMPENSATOR IMPLEMENTATION 191 -- 6.1 PID Compensator Realizations 194 -- 6.2 Coefficient Scaling and Quantization 197 -- 6.2.1 Coefficients Scaling 198 -- 6.2.2 Coefficients Quantization 200 -- 6.3 Voltage-Mode Control Example: Coefficients Quantization 203 -- 6.3.1 Parallel Structure 204 -- 6.3.2 Direct Structure 206 -- 6.3.3 Cascade Structure 208 -- 6.4 Fixed-Point Controller Implementation 213 -- 6.4.1 Effective Dynamic Range and Hardware Dynamic Range 214 -- 6.4.2 Upper Bound of a Signal and the L1-Norm 216 -- 6.5 Voltage-Mode Converter Example: Fixed-Point Implementation 218 -- 6.5.1 Parallel Realization 220 -- 6.5.2 Direct Realization 225. 6.5.3 Cascade Realization 229 -- 6.5.4 Linear versus Quantized System Response 233 -- 6.6 HDL Implementation of the Controller 234 -- 6.6.1 VHDL Example 235 -- 6.6.2 Verilog Example 237 -- 6.7 Summary of Key Points 239 -- CHAPTER 7 DIGITAL AUTOTUNING 241 -- 7.1 Introduction to Digital Autotuning 242 -- 7.2 Programmable PID Structures 243 -- 7.3 Autotuning VIA Injection of a Digital Perturbation 247 -- 7.3.1 Theory of Operation 249 -- 7.3.2 Implementation of a PD Autotuner 253 -- 7.3.3 Simulation Example 255 -- 7.3.4 Small-Signal Analysis of the PD Autotuning Loop 261 -- 7.4 Digital Autotuning Based on Relay Feedback 265 -- 7.4.1 Theory of Operation 266 -- 7.4.2 Implementation of a Digital Relay Feedback Autotuner 267 -- 7.4.3 Simulation Example 271 -- 7.5 Implementation Issues 272 -- 7.6 Summary of Key Points 275 -- APPENDIX A DISCRETE-TIME LINEAR SYSTEMS AND THE Z-TRANSFORM 277 -- A.1 Difference Equations 277 -- A.1.1 Forced Response 278 -- A.1.2 Free Response 279 -- A.1.3 Impulse Response and System Modes 281 -- A.1.4 Asymptotic Behavior of the Modes 282 -- A.1.5 Further Examples 283 -- A.2 Z-Transform 284 -- A.2.1 Definition 284 -- A.2.2 Properties 285 -- A.3 The Transfer Function 287 -- A.3.1 Stability 287 -- A.3.2 Frequency Response 288 -- A.4 State-Space Representation 288 -- APPENDIX B FIXED-POINT ARITHMETIC AND HDL CODING 291 -- B.1 Rounding Operation and Round-Off Error 291 -- B.2 Floating-Point versus Fixed-Point Arithmetic Systems 293 -- B.3 Binary Two's Complement (B2C) Fixed-Point Representation 294 -- B.4 Signal Notation 296 -- B.5 Manipulation of B2C Quantities and HDL Examples 297 -- B.5.1 Sign Extension 298 -- B.5.2 Alignment 299 -- B.5.3 Sign Reversal 301 -- B.5.4 LSB and MSB Truncation 302 -- B.5.5 Addition and Subtraction 304 -- B.5.6 Multiplication 305 -- B.5.7 Overflow Detection and Saturated Arithmetic 307 -- APPENDIX C SMALL-SIGNAL PHASE LAG OF UNIFORMLY SAMPLED PULSE WIDTH MODULATORS 313 -- C.1 Trailing-Edge Modulators 313 -- C.2 Leading-Edge Modulators 317. C.3 Symmetrical Modulators 318 -- REFERENCES 321 -- INDEX 335. |
| Record Nr. | UNINA-9910830805003321 |
Corradini Luca
|
||
| Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2015] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Model predictive control of high power converters and industrial drives / / Tobias Geyer
| Model predictive control of high power converters and industrial drives / / Tobias Geyer |
| Autore | Geyer Tobias <1975-> |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Incorporated, , 2017 |
| Descrizione fisica | 1 online resource (576 pages) : color illustrations |
| Disciplina | 621.46 |
| Soggetto topico |
Electric motors - Automatic control
Electric driving - Automatic control Electric current converters - Automatic control Power electronics Predictive control |
| ISBN |
1-5231-1478-9
1-119-01088-8 1-119-01086-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910166637803321 |
Geyer Tobias <1975->
|
||
| Chichester, West Sussex, United Kingdom : , : John Wiley & Sons, Incorporated, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Predictive control of power converters and electrical drives / / Jose Rodriguez Perez and Patricio Cortes
| Predictive control of power converters and electrical drives / / Jose Rodriguez Perez and Patricio Cortes |
| Autore | Rodriguez Perez Jose |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Chichester, West Sussex ; ; Hoboken, N.J., : John Wiley & Sons, Ltd., 2012 |
| Descrizione fisica | 1 online resource (250 p.) |
| Disciplina | 621.3815/322 |
| Altri autori (Persone) | EstayPatricio Cortes |
| Collana | Wiley - IEEE |
| Soggetto topico |
Electric driving - Automatic control
Electric current converters - Automatic control Predictive control |
| ISBN |
9786613618412
9781119942641 1119942640 9781280588587 1280588586 9781119941446 111994144X 9781119941453 1119941458 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Matter -- Introduction. Introduction -- Classical Control Methods for Power Converters and Drives -- Model Predictive Control -- Model Predictive Control Applied to Power Converters. Predictive Control of a Three-Phase Inverter -- Predictive Control of a Three-Phase Neutral-Point Clamped Inverter -- Control of an Active Front-End Rectifier -- Control of a Matrix Converter -- Model Predictive Control Applied to Motor Drives. Predictive Control of Induction Machines -- Predictive Control of Permanent Magnet Synchronous Motors -- Design and Implementation Issues of Model Predictive Control. Cost Function Selection -- Weighting Factor Design -- Delay Compensation -- Effect of Model Parameter Errors -- Appendix A: Predictive Control Simulation ₆ Three-Phase Inverter -- Appendix B: Predictive Control Simulation ₆ Torque Control of an Induction Machine Fed by a Two-Level Voltage Source Inverter -- Appendix C: Predictive Control Simulation ₆ Matrix Converter -- Index. |
| Record Nr. | UNINA-9910811411103321 |
Rodriguez Perez Jose
|
||
| Chichester, West Sussex ; ; Hoboken, N.J., : John Wiley & Sons, Ltd., 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Predictive control of power converters and electrical drives / / Jose Rodríguez Pérez, Patricio Cortes Estay
| Predictive control of power converters and electrical drives / / Jose Rodríguez Pérez, Patricio Cortes Estay |
| Autore | Rodríguez Pérez José |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , 2012 |
| Descrizione fisica | 1 online resource (250 p.) |
| Disciplina | 621.3815/322 |
| Altri autori (Persone) | EstayPatricio Cortes |
| Collana | Wiley - IEEE |
| Soggetto topico |
Electric driving - Automatic control
Electric current converters - Automatic control Predictive control |
| ISBN |
1-119-94264-0
1-280-58858-6 9786613618412 1-119-94144-X 1-119-94145-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Matter -- Introduction. Introduction -- Classical Control Methods for Power Converters and Drives -- Model Predictive Control -- Model Predictive Control Applied to Power Converters. Predictive Control of a Three-Phase Inverter -- Predictive Control of a Three-Phase Neutral-Point Clamped Inverter -- Control of an Active Front-End Rectifier -- Control of a Matrix Converter -- Model Predictive Control Applied to Motor Drives. Predictive Control of Induction Machines -- Predictive Control of Permanent Magnet Synchronous Motors -- Design and Implementation Issues of Model Predictive Control. Cost Function Selection -- Weighting Factor Design -- Delay Compensation -- Effect of Model Parameter Errors -- Appendix A: Predictive Control Simulation ₆ Three-Phase Inverter -- Appendix B: Predictive Control Simulation ₆ Torque Control of an Induction Machine Fed by a Two-Level Voltage Source Inverter -- Appendix C: Predictive Control Simulation ₆ Matrix Converter -- Index. |
| Record Nr. | UNINA-9910141321203321 |
Rodríguez Pérez José
|
||
| Hoboken, New Jersey : , : Wiley, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||