Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka |
Pubbl/distr/stampa | Newark : , : Wiley-IEEE Press, , [2022] |
Descrizione fisica | 1 online resource (446 pages) |
Disciplina | 621.31920284 |
Collana | IEEE Press. |
Soggetto topico |
Polymeric composites
Electric apparatus and appliances - Materials Electric insulators and insulation - Polymers |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-71968-2
1-119-71966-6 1-119-71965-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Polymer Composites for Electrical Energy Storage -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Effect of Nanofiller Dimension -- 1.4 Orientation of Nanofillers -- 1.5 Surface Modification of Nanofillers -- 1.6 Polymer Composites with Multiple Nanofillers -- 1.7 Multilayer-structured Polymer Composites -- 1.8 Conclusion -- References -- Chapter 2 Polymer Composites for Thermal Energy Storage -- 2.1 Introduction -- 2.2 Shape-stabilized Polymeric Phase Change Composites -- 2.2.1 Micro/Nanoencapsulated Method -- 2.2.2 Physical Blending -- 2.2.3 Porous Supporting Scaffolds -- 2.2.4 Solid-Solid Composite PCMs -- 2.3 Thermally Conductive Polymeric Phase Change Composites -- 2.3.1 Metals -- 2.3.2 Carbon Materials -- 2.3.3 Ceramics -- 2.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites -- 2.4.1 Electro-to-Heat Conversion -- 2.4.2 Light-to-Heat Conversion -- 2.4.3 Magnetism-to-Heat Conversion -- 2.4.4 Heat-to-Electricity Conversion -- 2.5 Emerging Applications of Polymeric Phase Change Composites -- 2.5.1 Thermal Management of Electronics -- 2.5.2 Smart Textiles -- 2.5.3 Shape Memory Devices -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3 Polymer Composites for High-Temperature Applications -- 3.1 Applications of Polymer Composite Materials in High-Temperature Electrical Insulation -- 3.1.1 High-Temperature-Resistant Electrical Insulating Resin Matrix -- 3.1.2 Modification of Resin Matrix with Reinforcements -- 3.1.3 Modifications in the Thermal Conductivity of Resin Matrix -- 3.2 High-Temperature Applications for Electrical Energy Storage -- 3.2.1 General Considerations for High-Temperature Dielectrics -- 3.2.2 High-Temperature-Resistant Polymer Matrix.
3.2.3 Polymer Composites for High-Temperature Energy Storage Applications -- 3.2.4 Surface Modification of Nanocomposite for High-Temperature Applications -- 3.2.5 Sandwich Structure of Nanoparticles for High-Temperature Applications -- 3.3 of High-Temperature Polymer in Electronic Packaging -- 3.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design -- 3.3.2 High-Temperature-Resistant Low Dielectric Constant Polymer Composite Material -- 3.4 of Polymer Composite Materials in the Field of High-Temperature Wave-Transmitting and Wave-Absorbing Electrical Fields -- 3.4.1 Wave-Transmitting Materials -- 3.4.2 Absorbing Material -- 3.5 Summary -- References -- Chapter 4 Fire-Retardant Polymer Composites for Electrical Engineering -- 4.1 Introduction -- 4.2 Fire-Retardant Cables and Wires -- 4.2.1 Fundamental Overview -- 4.2.2 Understanding of Fire-Retardant Cables and Wires -- 4.3 Fire-Retardant Polymer Composites for Electrical Equipment -- 4.3.1 Fundamental Overview -- 4.3.2 Understanding of Fire-Retardant Polymer Composites for Electrical Equipment -- 4.4 Fire-Retardant Fiber Reinforced Polymer Composites -- 4.4.1 Fundamental Overview -- 4.4.2 Understanding of Fire-Retardant Fiber Reinforced Polymer Composites -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Polymer Composites for Power Cable Insulation -- 5.1 Introduction -- 5.2 Trend in Nanocomposite Materials for Cable Insulation -- 5.2.1 Overview -- 5.2.2 Polymer Materials as Matrix Resin -- 5.2.3 Fillers -- 5.2.4 Nanocomposites -- 5.3 Factors Influencing Properties -- 5.4 Issues in Nanocomposite Insulation Materials Research -- 5.5 Understanding Dielectric and Insulation Phenomena -- 5.5.1 Electromagnetic Understanding -- 5.5.2 Understanding Space Charge Behavior by Q(t) Method -- References. Chapter 6 Semi-conductive Polymer Composites for Power Cables -- 6.1 Introduction -- 6.1.1 Function of Semi-conductive Composites -- 6.1.2 Development of Semi-conductive Composites -- 6.2 Conductive Mechanism of Semi-conductive Polymer Composites -- 6.2.1 Percolation Theory -- 6.2.2 Tunneling Conduction Theory -- 6.2.3 Mechanism of Positive Temperature Coefficient -- 6.3 Effect of Polymer Matrix on Semi-conductivity -- 6.3.1 Thermoset Polymer Matrix -- 6.3.2 Thermoplastic Polymer Matrix -- 6.3.3 Blended Polymer Matrix -- 6.4 Effect of Conductive Fillers on Semi-conductivity -- 6.4.1 Carbon Black -- 6.4.2 Carbonaceous Fillers with One- and Two-Dimensions -- 6.4.3 Secondary Filler for Carbon Black Filled Composites -- 6.5 Effect of Semi-conductive Composites on Space Charge Injection -- 6.6 Conclusions -- References -- Chapter 7 Polymer Composites for Electric Stress Control -- 7.1 Introduction -- 7.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress -- 7.3 Practical Application of -FGMs to GIS Spacer -- 7.4 Application to Power Apparatus -- References -- Chapter 8 Composite Materials Used in Outdoor Insulation -- 8.1 Introduction -- 8.2 Overview of SIR Materials -- 8.2.1 RTV Coatings -- 8.2.2 Composite Insulators -- 8.2.3 Liquid Silicone Rubber (LSR) -- 8.2.4 Aging Mechanism and Condition Assessment of SIR Materials -- 8.3 New External Insulation Materials -- 8.3.1 Anti-icing Semiconductor Materials -- 8.3.2 Hydrophobic CEP -- 8.4 Summary -- References -- Chapter 9 Polymer Composites for Embedded Capacitors -- 9.1 Introduction -- 9.1.1 Development of Embedded Technology -- 9.1.2 Dielectric Materials for Commercial Embedded Capacitors -- 9.2 Researches on the Polymer-Based Dielectric Nanocomposites -- 9.2.1 Filler Particles -- 9.2.2 Epoxy Matrix -- 9.3 Fabrication Process of Embedded Capacitors. 9.4 Reliability Test of Embedded Capacitor Materials -- 9.5 Conclusions and Perspectives -- References -- Chapter 10 Polymer Composites for Generators and Motors -- 10.1 Introduction -- 10.2 Polymer Composite in High-Voltage Rotating Machines -- 10.3 Ground Wall Insulation -- 10.3.1 Mica/Epoxy Insulation -- 10.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism -- 10.3.3 Insulation Design and V-t Curve -- 10.4 Polymer Nanocomposite for Rotating Machine -- 10.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property -- 10.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine -- 10.5 Stress-Grading System of Rotating Machines -- 10.5.1 Silicon Carbide Particle-Loaded Nonlinear-Resistive Materials -- 10.5.2 End-turn Stress-Grading System of High-Voltage Rotating Machines -- References -- Chapter 11 Polymer Composite Conductors and Lightning Damage -- 11.1 Lightning Environment and Lightning Damage Threat to Composite-Based Aircraft -- 11.1.1 The Lightning Environment -- 11.1.2 Lightning Test Environment of Aircrafts -- 11.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing -- 11.1.4 Application of CFRP Composites in Aircraft -- 11.2 The Dynamic Conductive Characteristics of CFRP -- 11.2.1 A Review of the Research on the Conductivity of CFRP -- 11.2.2 The Testing Methods -- 11.2.3 The Experimental Results of the Dynamic Impedance of CFRP -- 11.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP -- 11.3 The Lightning Strike-Induced Damage of CFRP Strike -- 11.3.1 Introduction of the Lightning Damage of CFRP -- 11.3.2 Single Lightning Strike-Induced Damage -- 11.3.3 Multiple Lightning Strikes-Induced Damage -- 11.4 The Simulation of Lightning Strike-Induced Damage of CFRP. 11.4.1 Overview of Lightning Damage Simulation Researches -- 11.4.2 Establishment of the Coupled Thermal-Electrical Model -- 11.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates -- 11.4.4 Simulated Lightning Damage Results -- References -- Chapter 12 Polymer Composites for Switchgears -- 12.1 Introduction -- 12.2 History of Switchgear -- 12.3 Typical Insulators in Switchgears -- 12.3.1 Epoxy-based Composite Insulators -- 12.3.2 Insulator-Manufacturing Process -- 12.4 Materials for Epoxy-based Composites -- 12.4.1 Epoxy Resins -- 12.4.2 Hardeners -- 12.4.3 Inorganic Fillers and Fibers -- 12.4.4 Silane Coupling Agents -- 12.4.5 Fabrication of Epoxy-based Composites -- 12.5 Properties of Epoxy-based Composites -- 12.5.1 Necessary Properties of Epoxy-based Composites for Switchgears -- 12.5.2 Resistance to Thermal Stresses -- 12.5.3 Resistances to Electrical Stresses -- 12.5.4 Resistances to Ambient Stresses -- 12.5.5 Resistances to Mechanical Stresses -- 12.5.6 International Standards for Evaluation of Composites -- 12.6 Advances of Epoxy-based Composites for Switchgear -- 12.6.1 Nanocomposites -- 12.6.2 High Thermal Conductive Composites -- 12.6.3 Biomass Material-Based Composites -- 12.6.4 Functionally Graded Materials -- 12.6.5 Estimate of Remaining Life of Composites -- 12.7 Conclusion -- References -- Chapter 13 Glass Fiber-Reinforced Polymer Composites for Power Equipment -- 13.1 Overview -- 13.2 Glass Fiber-Reinforced Polymer Composites -- 13.2.1 Fibers -- 13.2.2 Polymers -- 13.2.3 Manufacturing Methods -- 13.2.4 Specifications of Several Kinds of GFRP Materials -- 13.3 Application of Glass Fiber-Reinforced Polymer Composites -- 13.3.1 Laminated Sheets -- 13.3.2 Composite Long Rod Insulators -- 13.3.3 UHV-Insulated Pull Rod for GIS -- 13.3.4 Composite Pole -- 13.3.5 Aluminum Conductor Composite Core in an Overhead Conductor. 13.3.6 Composite Station Post Insulators. |
Record Nr. | UNINA-9910555131703321 |
Newark : , : Wiley-IEEE Press, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Polymer composites for electrical engineering / / editors, Xingyi Huang, Toshikatsu Tanaka |
Pubbl/distr/stampa | Newark : , : Wiley-IEEE Press, , [2022] |
Descrizione fisica | 1 online resource (446 pages) |
Disciplina | 621.31920284 |
Collana | IEEE Press. |
Soggetto topico |
Polymeric composites
Electric apparatus and appliances - Materials Electric insulators and insulation - Polymers |
ISBN |
1-119-71968-2
1-119-71966-6 1-119-71965-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Chapter 1 Polymer Composites for Electrical Energy Storage -- 1.1 Introduction -- 1.2 General Considerations -- 1.3 Effect of Nanofiller Dimension -- 1.4 Orientation of Nanofillers -- 1.5 Surface Modification of Nanofillers -- 1.6 Polymer Composites with Multiple Nanofillers -- 1.7 Multilayer-structured Polymer Composites -- 1.8 Conclusion -- References -- Chapter 2 Polymer Composites for Thermal Energy Storage -- 2.1 Introduction -- 2.2 Shape-stabilized Polymeric Phase Change Composites -- 2.2.1 Micro/Nanoencapsulated Method -- 2.2.2 Physical Blending -- 2.2.3 Porous Supporting Scaffolds -- 2.2.4 Solid-Solid Composite PCMs -- 2.3 Thermally Conductive Polymeric Phase Change Composites -- 2.3.1 Metals -- 2.3.2 Carbon Materials -- 2.3.3 Ceramics -- 2.4 Energy Conversion and Storage Based on Polymeric Phase Change Composites -- 2.4.1 Electro-to-Heat Conversion -- 2.4.2 Light-to-Heat Conversion -- 2.4.3 Magnetism-to-Heat Conversion -- 2.4.4 Heat-to-Electricity Conversion -- 2.5 Emerging Applications of Polymeric Phase Change Composites -- 2.5.1 Thermal Management of Electronics -- 2.5.2 Smart Textiles -- 2.5.3 Shape Memory Devices -- 2.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 3 Polymer Composites for High-Temperature Applications -- 3.1 Applications of Polymer Composite Materials in High-Temperature Electrical Insulation -- 3.1.1 High-Temperature-Resistant Electrical Insulating Resin Matrix -- 3.1.2 Modification of Resin Matrix with Reinforcements -- 3.1.3 Modifications in the Thermal Conductivity of Resin Matrix -- 3.2 High-Temperature Applications for Electrical Energy Storage -- 3.2.1 General Considerations for High-Temperature Dielectrics -- 3.2.2 High-Temperature-Resistant Polymer Matrix.
3.2.3 Polymer Composites for High-Temperature Energy Storage Applications -- 3.2.4 Surface Modification of Nanocomposite for High-Temperature Applications -- 3.2.5 Sandwich Structure of Nanoparticles for High-Temperature Applications -- 3.3 of High-Temperature Polymer in Electronic Packaging -- 3.3.1 Synthesis of Low Dielectric Constant Polymer Materials Through Molecular Structure Design -- 3.3.2 High-Temperature-Resistant Low Dielectric Constant Polymer Composite Material -- 3.4 of Polymer Composite Materials in the Field of High-Temperature Wave-Transmitting and Wave-Absorbing Electrical Fields -- 3.4.1 Wave-Transmitting Materials -- 3.4.2 Absorbing Material -- 3.5 Summary -- References -- Chapter 4 Fire-Retardant Polymer Composites for Electrical Engineering -- 4.1 Introduction -- 4.2 Fire-Retardant Cables and Wires -- 4.2.1 Fundamental Overview -- 4.2.2 Understanding of Fire-Retardant Cables and Wires -- 4.3 Fire-Retardant Polymer Composites for Electrical Equipment -- 4.3.1 Fundamental Overview -- 4.3.2 Understanding of Fire-Retardant Polymer Composites for Electrical Equipment -- 4.4 Fire-Retardant Fiber Reinforced Polymer Composites -- 4.4.1 Fundamental Overview -- 4.4.2 Understanding of Fire-Retardant Fiber Reinforced Polymer Composites -- 4.5 Conclusion and Outlook -- References -- Chapter 5 Polymer Composites for Power Cable Insulation -- 5.1 Introduction -- 5.2 Trend in Nanocomposite Materials for Cable Insulation -- 5.2.1 Overview -- 5.2.2 Polymer Materials as Matrix Resin -- 5.2.3 Fillers -- 5.2.4 Nanocomposites -- 5.3 Factors Influencing Properties -- 5.4 Issues in Nanocomposite Insulation Materials Research -- 5.5 Understanding Dielectric and Insulation Phenomena -- 5.5.1 Electromagnetic Understanding -- 5.5.2 Understanding Space Charge Behavior by Q(t) Method -- References. Chapter 6 Semi-conductive Polymer Composites for Power Cables -- 6.1 Introduction -- 6.1.1 Function of Semi-conductive Composites -- 6.1.2 Development of Semi-conductive Composites -- 6.2 Conductive Mechanism of Semi-conductive Polymer Composites -- 6.2.1 Percolation Theory -- 6.2.2 Tunneling Conduction Theory -- 6.2.3 Mechanism of Positive Temperature Coefficient -- 6.3 Effect of Polymer Matrix on Semi-conductivity -- 6.3.1 Thermoset Polymer Matrix -- 6.3.2 Thermoplastic Polymer Matrix -- 6.3.3 Blended Polymer Matrix -- 6.4 Effect of Conductive Fillers on Semi-conductivity -- 6.4.1 Carbon Black -- 6.4.2 Carbonaceous Fillers with One- and Two-Dimensions -- 6.4.3 Secondary Filler for Carbon Black Filled Composites -- 6.5 Effect of Semi-conductive Composites on Space Charge Injection -- 6.6 Conclusions -- References -- Chapter 7 Polymer Composites for Electric Stress Control -- 7.1 Introduction -- 7.2 Functionally Graded Solid Insulators and Their Effect on Reducing Electric Field Stress -- 7.3 Practical Application of -FGMs to GIS Spacer -- 7.4 Application to Power Apparatus -- References -- Chapter 8 Composite Materials Used in Outdoor Insulation -- 8.1 Introduction -- 8.2 Overview of SIR Materials -- 8.2.1 RTV Coatings -- 8.2.2 Composite Insulators -- 8.2.3 Liquid Silicone Rubber (LSR) -- 8.2.4 Aging Mechanism and Condition Assessment of SIR Materials -- 8.3 New External Insulation Materials -- 8.3.1 Anti-icing Semiconductor Materials -- 8.3.2 Hydrophobic CEP -- 8.4 Summary -- References -- Chapter 9 Polymer Composites for Embedded Capacitors -- 9.1 Introduction -- 9.1.1 Development of Embedded Technology -- 9.1.2 Dielectric Materials for Commercial Embedded Capacitors -- 9.2 Researches on the Polymer-Based Dielectric Nanocomposites -- 9.2.1 Filler Particles -- 9.2.2 Epoxy Matrix -- 9.3 Fabrication Process of Embedded Capacitors. 9.4 Reliability Test of Embedded Capacitor Materials -- 9.5 Conclusions and Perspectives -- References -- Chapter 10 Polymer Composites for Generators and Motors -- 10.1 Introduction -- 10.2 Polymer Composite in High-Voltage Rotating Machines -- 10.3 Ground Wall Insulation -- 10.3.1 Mica/Epoxy Insulation -- 10.3.2 Electrical Defect in the Insulation of Rotating Machines and Degradation Mechanism -- 10.3.3 Insulation Design and V-t Curve -- 10.4 Polymer Nanocomposite for Rotating Machine -- 10.4.1 Partial Discharge Resistance and a Treeing Lifetime of Nanocomposite as Material Property -- 10.4.2 Breakdown Lifetime Properties of Realistic Insulation Defect in Rotating Machine -- 10.5 Stress-Grading System of Rotating Machines -- 10.5.1 Silicon Carbide Particle-Loaded Nonlinear-Resistive Materials -- 10.5.2 End-turn Stress-Grading System of High-Voltage Rotating Machines -- References -- Chapter 11 Polymer Composite Conductors and Lightning Damage -- 11.1 Lightning Environment and Lightning Damage Threat to Composite-Based Aircraft -- 11.1.1 The Lightning Environment -- 11.1.2 Lightning Test Environment of Aircrafts -- 11.1.3 Waveform Combination in Different Lightning Zones for Lightning Direct Effect Testing -- 11.1.4 Application of CFRP Composites in Aircraft -- 11.2 The Dynamic Conductive Characteristics of CFRP -- 11.2.1 A Review of the Research on the Conductivity of CFRP -- 11.2.2 The Testing Methods -- 11.2.3 The Experimental Results of the Dynamic Impedance of CFRP -- 11.2.4 The Discussion of the Dynamic Conductive Characteristics of CFRP -- 11.3 The Lightning Strike-Induced Damage of CFRP Strike -- 11.3.1 Introduction of the Lightning Damage of CFRP -- 11.3.2 Single Lightning Strike-Induced Damage -- 11.3.3 Multiple Lightning Strikes-Induced Damage -- 11.4 The Simulation of Lightning Strike-Induced Damage of CFRP. 11.4.1 Overview of Lightning Damage Simulation Researches -- 11.4.2 Establishment of the Coupled Thermal-Electrical Model -- 11.4.3 Simulation Physical Fields of Lightning Current on CFRP Laminates -- 11.4.4 Simulated Lightning Damage Results -- References -- Chapter 12 Polymer Composites for Switchgears -- 12.1 Introduction -- 12.2 History of Switchgear -- 12.3 Typical Insulators in Switchgears -- 12.3.1 Epoxy-based Composite Insulators -- 12.3.2 Insulator-Manufacturing Process -- 12.4 Materials for Epoxy-based Composites -- 12.4.1 Epoxy Resins -- 12.4.2 Hardeners -- 12.4.3 Inorganic Fillers and Fibers -- 12.4.4 Silane Coupling Agents -- 12.4.5 Fabrication of Epoxy-based Composites -- 12.5 Properties of Epoxy-based Composites -- 12.5.1 Necessary Properties of Epoxy-based Composites for Switchgears -- 12.5.2 Resistance to Thermal Stresses -- 12.5.3 Resistances to Electrical Stresses -- 12.5.4 Resistances to Ambient Stresses -- 12.5.5 Resistances to Mechanical Stresses -- 12.5.6 International Standards for Evaluation of Composites -- 12.6 Advances of Epoxy-based Composites for Switchgear -- 12.6.1 Nanocomposites -- 12.6.2 High Thermal Conductive Composites -- 12.6.3 Biomass Material-Based Composites -- 12.6.4 Functionally Graded Materials -- 12.6.5 Estimate of Remaining Life of Composites -- 12.7 Conclusion -- References -- Chapter 13 Glass Fiber-Reinforced Polymer Composites for Power Equipment -- 13.1 Overview -- 13.2 Glass Fiber-Reinforced Polymer Composites -- 13.2.1 Fibers -- 13.2.2 Polymers -- 13.2.3 Manufacturing Methods -- 13.2.4 Specifications of Several Kinds of GFRP Materials -- 13.3 Application of Glass Fiber-Reinforced Polymer Composites -- 13.3.1 Laminated Sheets -- 13.3.2 Composite Long Rod Insulators -- 13.3.3 UHV-Insulated Pull Rod for GIS -- 13.3.4 Composite Pole -- 13.3.5 Aluminum Conductor Composite Core in an Overhead Conductor. 13.3.6 Composite Station Post Insulators. |
Record Nr. | UNINA-9910830637703321 |
Newark : , : Wiley-IEEE Press, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Self-doped conductiong polymers [[electronic resource] /] / Michael S. Freund and Bhavana A. Deore |
Autore | Freund Michael S |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2007 |
Descrizione fisica | 1 online resource (340 p.) |
Disciplina |
547.7
547.70457 547/.70457 |
Altri autori (Persone) | DeoreBhavana |
Soggetto topico |
Conducting polymers
Doped semiconductors Polymerization Electric apparatus and appliances - Materials |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-34575-3
9786612345753 0-470-06172-3 0-470-06173-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Self-Doped Conducting Polymers; Contents; About the Authors; Preface; 1 Introduction; 1.1 Conducting Polymers; 1.1.1 History of Conjugated Conducting Polymers; 1.1.2 Concept of Doping in Intrinsically Conducting Polymers; 1.1.3 Conduction Mechanism; 1.1.4 Synthesis; 1.1.5 Processability; 1.2 Self-Doped Conducting Polymers; 1.3 Types of Self-Doped Polymers; 1.4 Doping Mechanism in Self-Doped Polymers; 1.4.1 p-Type Doping; 1.4.2 n-Type Doping; 1.4.3 Auto Doping; 1.5 Effect of Substituents on Properties of Polymers; 1.5.1 Solubility; 1.5.2 DC Conductivity; 1.5.3 Molecular Weight
1.5.4 Redox Properties1.5.5 Electronic and Spectroscopic Properties; 1.5.6 Mechanical and Thermal Properties; 1.6 Applications of Self-Doped Polymers; 1.6.1 Molecular Level Processing; 1.6.2 Transistors; 1.6.3 Biosensors; 1.6.4 e-Beam Lithography; 1.6.5 Electrochromic Devices; 1.6.6 Ion Exchangers; 1.6.7 Rechargeable Batteries; 1.6.8 Dip-Pen Nanolithography; References; 2 Self-Doped Derivatives of Polyaniline; 2.1 Introduction; 2.2 Chemical Synthesis of Sulfonic Acid Derivatives; 2.2.1 Post-Polymerization Modification; 2.2.2 Polymerization of Monomers 2.3 Electrochemical Synthesis of Sulfonic Acid Derivatives2.3.1 Aqueous Media; 2.3.2 Non-Aqueous Media; 2.4 Enzymatic Synthesis of Sulfonic Acid Derivatives; 2.5 Properties of Sulfonic Acid Derivatives; 2.5.1 Solubility; 2.5.2 Conductivity; 2.5.3 pH Dependent Redox Behavior; 2.5.4 Electronic and Spectroscopic Properties; 2.5.5 Molecular Weight; 2.5.6 Thermal Stability; 2.5.7 Morphology; 2.6 Synthesis and Characterization of Carboxylic Acid Derivatives; 2.6.1 Chemical Synthesis; 2.6.2 Electrochemical Synthesis; 2.7 Synthesis and Characterization of Phosphonic Acid Derivatives 2.8 Self-Doped Polyaniline NanostructuresReferences; 3 Boronic Acid Substituted Self-Doped Polyaniline; 3.1 Introduction; 3.2 Synthesis; 3.2.1 Electrochemical Synthesis; 3.2.2 Chemical Synthesis; 3.3 Properties of Self-Doped PABA; 3.3.1 pH Dependent Redox Behavior; 3.3.2 Spectroscopy; 3.3.3 Molecular Weight; 3.4 Self-Crosslinked Self-Doped Polyaniline; 3.4.1 Introduction; 3.4.2 Synthesis and Characterization; 3.4.3 Mechanical Properties; 3.4.4 11B NMR; 3.4.5 Thermal Properties; 3.4.6 Temperature Dependent Conductivity; 3.5 Applications; 3.5.1 Saccharide Sensor; 3.5.2 Nucleotide Sensors 3.5.3 Amine Sensors3.5.4 Molecular Level Processing for Controlled Release of RNA; References; 4 Self-Doped Polythiophenes; 4.1 Sulfonic Acid Derivatives; 4.1.1 Electrochemical Polymerization; 4.1.2 Chemical Polymerization; 4.1.3 Post Polymerization Modification; 4.2 Carboxylic Acid Derivatives; 4.3 Phosphonic Acid Derivatives; References; 5 Miscellaneous Self-Doped Polymers; 5.1 Self-Doped Polypyrrole; 5.1.1 Electrochemical Polymerization; 5.1.2 Chemical Polymerization; 5.1.3 Polycondensation; 5.2 Carboxylic Acid Derivatives; 5.3 Self-Doped Poly(3,6-(carbaz-9-yl)propanesulfonate) 5.4 Self-Doped Poly(p-phenylene)s |
Record Nr. | UNINA-9910143588803321 |
Freund Michael S | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Self-doped conductiong polymers [[electronic resource] /] / Michael S. Freund and Bhavana A. Deore |
Autore | Freund Michael S |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2007 |
Descrizione fisica | 1 online resource (340 p.) |
Disciplina |
547.7
547.70457 547/.70457 |
Altri autori (Persone) | DeoreBhavana |
Soggetto topico |
Conducting polymers
Doped semiconductors Polymerization Electric apparatus and appliances - Materials |
ISBN |
1-282-34575-3
9786612345753 0-470-06172-3 0-470-06173-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Self-Doped Conducting Polymers; Contents; About the Authors; Preface; 1 Introduction; 1.1 Conducting Polymers; 1.1.1 History of Conjugated Conducting Polymers; 1.1.2 Concept of Doping in Intrinsically Conducting Polymers; 1.1.3 Conduction Mechanism; 1.1.4 Synthesis; 1.1.5 Processability; 1.2 Self-Doped Conducting Polymers; 1.3 Types of Self-Doped Polymers; 1.4 Doping Mechanism in Self-Doped Polymers; 1.4.1 p-Type Doping; 1.4.2 n-Type Doping; 1.4.3 Auto Doping; 1.5 Effect of Substituents on Properties of Polymers; 1.5.1 Solubility; 1.5.2 DC Conductivity; 1.5.3 Molecular Weight
1.5.4 Redox Properties1.5.5 Electronic and Spectroscopic Properties; 1.5.6 Mechanical and Thermal Properties; 1.6 Applications of Self-Doped Polymers; 1.6.1 Molecular Level Processing; 1.6.2 Transistors; 1.6.3 Biosensors; 1.6.4 e-Beam Lithography; 1.6.5 Electrochromic Devices; 1.6.6 Ion Exchangers; 1.6.7 Rechargeable Batteries; 1.6.8 Dip-Pen Nanolithography; References; 2 Self-Doped Derivatives of Polyaniline; 2.1 Introduction; 2.2 Chemical Synthesis of Sulfonic Acid Derivatives; 2.2.1 Post-Polymerization Modification; 2.2.2 Polymerization of Monomers 2.3 Electrochemical Synthesis of Sulfonic Acid Derivatives2.3.1 Aqueous Media; 2.3.2 Non-Aqueous Media; 2.4 Enzymatic Synthesis of Sulfonic Acid Derivatives; 2.5 Properties of Sulfonic Acid Derivatives; 2.5.1 Solubility; 2.5.2 Conductivity; 2.5.3 pH Dependent Redox Behavior; 2.5.4 Electronic and Spectroscopic Properties; 2.5.5 Molecular Weight; 2.5.6 Thermal Stability; 2.5.7 Morphology; 2.6 Synthesis and Characterization of Carboxylic Acid Derivatives; 2.6.1 Chemical Synthesis; 2.6.2 Electrochemical Synthesis; 2.7 Synthesis and Characterization of Phosphonic Acid Derivatives 2.8 Self-Doped Polyaniline NanostructuresReferences; 3 Boronic Acid Substituted Self-Doped Polyaniline; 3.1 Introduction; 3.2 Synthesis; 3.2.1 Electrochemical Synthesis; 3.2.2 Chemical Synthesis; 3.3 Properties of Self-Doped PABA; 3.3.1 pH Dependent Redox Behavior; 3.3.2 Spectroscopy; 3.3.3 Molecular Weight; 3.4 Self-Crosslinked Self-Doped Polyaniline; 3.4.1 Introduction; 3.4.2 Synthesis and Characterization; 3.4.3 Mechanical Properties; 3.4.4 11B NMR; 3.4.5 Thermal Properties; 3.4.6 Temperature Dependent Conductivity; 3.5 Applications; 3.5.1 Saccharide Sensor; 3.5.2 Nucleotide Sensors 3.5.3 Amine Sensors3.5.4 Molecular Level Processing for Controlled Release of RNA; References; 4 Self-Doped Polythiophenes; 4.1 Sulfonic Acid Derivatives; 4.1.1 Electrochemical Polymerization; 4.1.2 Chemical Polymerization; 4.1.3 Post Polymerization Modification; 4.2 Carboxylic Acid Derivatives; 4.3 Phosphonic Acid Derivatives; References; 5 Miscellaneous Self-Doped Polymers; 5.1 Self-Doped Polypyrrole; 5.1.1 Electrochemical Polymerization; 5.1.2 Chemical Polymerization; 5.1.3 Polycondensation; 5.2 Carboxylic Acid Derivatives; 5.3 Self-Doped Poly(3,6-(carbaz-9-yl)propanesulfonate) 5.4 Self-Doped Poly(p-phenylene)s |
Record Nr. | UNINA-9910830619903321 |
Freund Michael S | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Self-doped conductiong polymers / / Michael S. Freund and Bhavana A. Deore |
Autore | Freund Michael S |
Pubbl/distr/stampa | Chichester, England ; ; Hoboken, NJ, : Wiley, c2007 |
Descrizione fisica | 1 online resource (340 p.) |
Disciplina |
547.7
547.70457 547/.70457 |
Altri autori (Persone) | DeoreBhavana |
Soggetto topico |
Conducting polymers
Doped semiconductors Polymerization Electric apparatus and appliances - Materials |
ISBN |
1-282-34575-3
9786612345753 0-470-06172-3 0-470-06173-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Self-Doped Conducting Polymers; Contents; About the Authors; Preface; 1 Introduction; 1.1 Conducting Polymers; 1.1.1 History of Conjugated Conducting Polymers; 1.1.2 Concept of Doping in Intrinsically Conducting Polymers; 1.1.3 Conduction Mechanism; 1.1.4 Synthesis; 1.1.5 Processability; 1.2 Self-Doped Conducting Polymers; 1.3 Types of Self-Doped Polymers; 1.4 Doping Mechanism in Self-Doped Polymers; 1.4.1 p-Type Doping; 1.4.2 n-Type Doping; 1.4.3 Auto Doping; 1.5 Effect of Substituents on Properties of Polymers; 1.5.1 Solubility; 1.5.2 DC Conductivity; 1.5.3 Molecular Weight
1.5.4 Redox Properties1.5.5 Electronic and Spectroscopic Properties; 1.5.6 Mechanical and Thermal Properties; 1.6 Applications of Self-Doped Polymers; 1.6.1 Molecular Level Processing; 1.6.2 Transistors; 1.6.3 Biosensors; 1.6.4 e-Beam Lithography; 1.6.5 Electrochromic Devices; 1.6.6 Ion Exchangers; 1.6.7 Rechargeable Batteries; 1.6.8 Dip-Pen Nanolithography; References; 2 Self-Doped Derivatives of Polyaniline; 2.1 Introduction; 2.2 Chemical Synthesis of Sulfonic Acid Derivatives; 2.2.1 Post-Polymerization Modification; 2.2.2 Polymerization of Monomers 2.3 Electrochemical Synthesis of Sulfonic Acid Derivatives2.3.1 Aqueous Media; 2.3.2 Non-Aqueous Media; 2.4 Enzymatic Synthesis of Sulfonic Acid Derivatives; 2.5 Properties of Sulfonic Acid Derivatives; 2.5.1 Solubility; 2.5.2 Conductivity; 2.5.3 pH Dependent Redox Behavior; 2.5.4 Electronic and Spectroscopic Properties; 2.5.5 Molecular Weight; 2.5.6 Thermal Stability; 2.5.7 Morphology; 2.6 Synthesis and Characterization of Carboxylic Acid Derivatives; 2.6.1 Chemical Synthesis; 2.6.2 Electrochemical Synthesis; 2.7 Synthesis and Characterization of Phosphonic Acid Derivatives 2.8 Self-Doped Polyaniline NanostructuresReferences; 3 Boronic Acid Substituted Self-Doped Polyaniline; 3.1 Introduction; 3.2 Synthesis; 3.2.1 Electrochemical Synthesis; 3.2.2 Chemical Synthesis; 3.3 Properties of Self-Doped PABA; 3.3.1 pH Dependent Redox Behavior; 3.3.2 Spectroscopy; 3.3.3 Molecular Weight; 3.4 Self-Crosslinked Self-Doped Polyaniline; 3.4.1 Introduction; 3.4.2 Synthesis and Characterization; 3.4.3 Mechanical Properties; 3.4.4 11B NMR; 3.4.5 Thermal Properties; 3.4.6 Temperature Dependent Conductivity; 3.5 Applications; 3.5.1 Saccharide Sensor; 3.5.2 Nucleotide Sensors 3.5.3 Amine Sensors3.5.4 Molecular Level Processing for Controlled Release of RNA; References; 4 Self-Doped Polythiophenes; 4.1 Sulfonic Acid Derivatives; 4.1.1 Electrochemical Polymerization; 4.1.2 Chemical Polymerization; 4.1.3 Post Polymerization Modification; 4.2 Carboxylic Acid Derivatives; 4.3 Phosphonic Acid Derivatives; References; 5 Miscellaneous Self-Doped Polymers; 5.1 Self-Doped Polypyrrole; 5.1.1 Electrochemical Polymerization; 5.1.2 Chemical Polymerization; 5.1.3 Polycondensation; 5.2 Carboxylic Acid Derivatives; 5.3 Self-Doped Poly(3,6-(carbaz-9-yl)propanesulfonate) 5.4 Self-Doped Poly(p-phenylene)s |
Record Nr. | UNINA-9910877442103321 |
Freund Michael S | ||
Chichester, England ; ; Hoboken, NJ, : Wiley, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|