The algebraic eigenvalue problem / by J. H. Wilkinson |
Autore | Wilkinson, J. H. |
Pubbl/distr/stampa | Oxford : Clarendon Press, c1965 |
Descrizione fisica | xviii, 662 p. ; 24 cm. |
Disciplina | 519.4 |
Soggetto topico |
Eigenvalues
Eigenvectors |
Classificazione | AMS 65F15 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000657669707536 |
Wilkinson, J. H. | ||
Oxford : Clarendon Press, c1965 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analysis of some acoustics-jet flow interaction problems / / Pao-Liu Chow, principal investigator |
Autore | Chow P. L (Pao Liu), <1936-> |
Pubbl/distr/stampa | Hampton, VA : , : National Aeronautics and Space Administration, Langley Research Center, , January 31, 1984 |
Descrizione fisica | 1 online resource (2 unnumbered pages, 21 pages, 1 unnumbered page) : illustrations |
Collana | NASA-CR |
Soggetto topico |
Perturbation theory
Asymptotic methods Eigenvalues Inviscid flow Tomography Wave propagation |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910702689303321 |
Chow P. L (Pao Liu), <1936-> | ||
Hampton, VA : , : National Aeronautics and Space Administration, Langley Research Center, , January 31, 1984 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Antieigenvalue analysis [[electronic resource] ] : with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization / / Karl Gustafson |
Autore | Gustafson Karl |
Pubbl/distr/stampa | Singapore, : World Scientific Pub. Co., 2012 |
Descrizione fisica | 1 online resource (259 p.) |
Disciplina | 519 |
Soggetto topico |
Eigenvalues
Mathematical analysis Numerical analysis Wavelets (Mathematics) Statistics Quantum theory |
Soggetto genere / forma | Electronic books. |
ISBN |
1-280-66966-7
9786613646590 981-4366-29-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Introduction; Perspective; 1.1 A Recent Referee Speaks; 1.2 The Original Motivation; 1.3 The Essential Entities; 1.4 Simple Examples and a Picture; 1.5 Applications to-Date; 1.6 Organization of this Book; Commentary; 1.7 Exercises; 2. The Original Motivation: Operator Semigroups; Perspective; 2.1 Abstract Initial Value Problems; 2.2 The Hille-Yosida-Phillips-Lumer Theorem; 2.3 The Rellich-Kato-Nelson-Gustafson Theorem; 2.4 The Multiplicative Perturbation Theorem; 2.5 When are Positive Operator Products Positive?; 2.6 Nonnegative Contraction Semigroups; Commentary
2.7 Exercises3. The Essentials of Antieigenvalue Theory; Perspective; 3.1 Convexity Properties of Norm Geometry; 3.2 The Min-Max Theorem; 3.3 The Euler Equation; 3.4 Higher Antieigenvalues and Antieigenvectors; 3.5 The Triangle Inequality; 3.6 Extended Operator Trigonometry; Commentary; 3.7 Exercises; 4. Applications in Numerical Analysis; Perspective; 4.1 Gradient Descent: Kantorovich Bound is Trigonometric; 4.2 Minimum Residual Ax = b Solvers; 4.3 Richardson Relaxation Schemes (e.g. SOR); 4.4 Very Rich Trigonometry Underlies ADI; 4.5 Domain Decomposition Multilevel Schemes 4.6 Preconditioning and Condition NumbersCommentary; 4.7 Exercises; 5. Applications in Wavelets, Control, Scattering; Perspective; 5.1 The Time Operator of Wavelets; 5.2 Frame Operator Trigonometry; 5.3 Wavelet Reconstruction is Trigonometric; 5.4 New Basis Trigonometry; 5.5 Trigonometry of Lyapunov Stability; 5.6 Multiplicative Perturbation and Irreversibility; Commentary; 5.7 Exercises; 6. The Trigonometry of Matrix Statistics; Perspective; 6.1 Statistical Efficiency; 6.2 The Euler Equation versus the Inefficiency Equation; 6.3 Canonical Correlations and Rayleigh Quotients 6.4 Other Statistics Inequalities6.5 Prediction Theory: Association Measures; 6.6 Antieigenmatrices; Commentary; 6.7 Exercises; 7. Quantum Trigonometry; Perspective; 7.1 Bell-Wigner-CHSH Inequalities; 7.2 Trigonometric Quantum Spin Identities; 7.3 Quantum Computing: Phase Issues; 7.4 Penrose Twistors; 7.5 Elementary Particles; 7.6 Trigonometry of Quantum States; Commentary; 7.7 Exercises; 8. Financial Instruments; Perspective; 8.1 Some Remarks on Mathematical Finance; 8.2 Quantos: Currency Options; 8.3 Multi-Asset Pricing: Spread Options; 8.4 Portfolio Rebalancing 8.5 American Options with Random Volatility8.6 Risk Measures for Incomplete Markets; Commentary; 8.7 Exercises; 9. Other Directions; Perspective; 9.1 Operators; 9.2 Angles; 9.3 Optimization; 9.4 Equalities; 9.5 Geometry; 9.6 Applications; Commentary; 9.7 Exercises; Appendix A Linear Algebra; A.1 Matrix Analysis; A.2 Operator Theory; Appendix B Hints and Answers to Exercises; Chapter 1.; Chapter 2.; Chapter 3.; Chapter 4.; Chapter 5.; Chapter 6.; Chapter 7.; Chapter 8.; Chapter 9.; Bibliography; Index |
Record Nr. | UNINA-9910452096603321 |
Gustafson Karl | ||
Singapore, : World Scientific Pub. Co., 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Antieigenvalue analysis [[electronic resource] ] : with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization / / Karl Gustafson |
Autore | Gustafson Karl |
Pubbl/distr/stampa | Singapore, : World Scientific Pub. Co., 2012 |
Descrizione fisica | 1 online resource (259 p.) |
Disciplina | 519 |
Soggetto topico |
Eigenvalues
Mathematical analysis Numerical analysis Wavelets (Mathematics) Statistics Quantum theory |
ISBN |
1-280-66966-7
9786613646590 981-4366-29-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Introduction; Perspective; 1.1 A Recent Referee Speaks; 1.2 The Original Motivation; 1.3 The Essential Entities; 1.4 Simple Examples and a Picture; 1.5 Applications to-Date; 1.6 Organization of this Book; Commentary; 1.7 Exercises; 2. The Original Motivation: Operator Semigroups; Perspective; 2.1 Abstract Initial Value Problems; 2.2 The Hille-Yosida-Phillips-Lumer Theorem; 2.3 The Rellich-Kato-Nelson-Gustafson Theorem; 2.4 The Multiplicative Perturbation Theorem; 2.5 When are Positive Operator Products Positive?; 2.6 Nonnegative Contraction Semigroups; Commentary
2.7 Exercises3. The Essentials of Antieigenvalue Theory; Perspective; 3.1 Convexity Properties of Norm Geometry; 3.2 The Min-Max Theorem; 3.3 The Euler Equation; 3.4 Higher Antieigenvalues and Antieigenvectors; 3.5 The Triangle Inequality; 3.6 Extended Operator Trigonometry; Commentary; 3.7 Exercises; 4. Applications in Numerical Analysis; Perspective; 4.1 Gradient Descent: Kantorovich Bound is Trigonometric; 4.2 Minimum Residual Ax = b Solvers; 4.3 Richardson Relaxation Schemes (e.g. SOR); 4.4 Very Rich Trigonometry Underlies ADI; 4.5 Domain Decomposition Multilevel Schemes 4.6 Preconditioning and Condition NumbersCommentary; 4.7 Exercises; 5. Applications in Wavelets, Control, Scattering; Perspective; 5.1 The Time Operator of Wavelets; 5.2 Frame Operator Trigonometry; 5.3 Wavelet Reconstruction is Trigonometric; 5.4 New Basis Trigonometry; 5.5 Trigonometry of Lyapunov Stability; 5.6 Multiplicative Perturbation and Irreversibility; Commentary; 5.7 Exercises; 6. The Trigonometry of Matrix Statistics; Perspective; 6.1 Statistical Efficiency; 6.2 The Euler Equation versus the Inefficiency Equation; 6.3 Canonical Correlations and Rayleigh Quotients 6.4 Other Statistics Inequalities6.5 Prediction Theory: Association Measures; 6.6 Antieigenmatrices; Commentary; 6.7 Exercises; 7. Quantum Trigonometry; Perspective; 7.1 Bell-Wigner-CHSH Inequalities; 7.2 Trigonometric Quantum Spin Identities; 7.3 Quantum Computing: Phase Issues; 7.4 Penrose Twistors; 7.5 Elementary Particles; 7.6 Trigonometry of Quantum States; Commentary; 7.7 Exercises; 8. Financial Instruments; Perspective; 8.1 Some Remarks on Mathematical Finance; 8.2 Quantos: Currency Options; 8.3 Multi-Asset Pricing: Spread Options; 8.4 Portfolio Rebalancing 8.5 American Options with Random Volatility8.6 Risk Measures for Incomplete Markets; Commentary; 8.7 Exercises; 9. Other Directions; Perspective; 9.1 Operators; 9.2 Angles; 9.3 Optimization; 9.4 Equalities; 9.5 Geometry; 9.6 Applications; Commentary; 9.7 Exercises; Appendix A Linear Algebra; A.1 Matrix Analysis; A.2 Operator Theory; Appendix B Hints and Answers to Exercises; Chapter 1.; Chapter 2.; Chapter 3.; Chapter 4.; Chapter 5.; Chapter 6.; Chapter 7.; Chapter 8.; Chapter 9.; Bibliography; Index |
Record Nr. | UNINA-9910779008403321 |
Gustafson Karl | ||
Singapore, : World Scientific Pub. Co., 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Antieigenvalue analysis : with applications to numerical analysis, wavelets, statistics, quantum mechanics, finance and optimization / / Karl Gustafson |
Autore | Gustafson Karl |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore, : World Scientific Pub. Co., 2012 |
Descrizione fisica | 1 online resource (259 p.) |
Disciplina | 519 |
Soggetto topico |
Eigenvalues
Mathematical analysis Numerical analysis Wavelets (Mathematics) Statistics Quantum theory |
ISBN |
1-280-66966-7
9786613646590 981-4366-29-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; 1. Introduction; Perspective; 1.1 A Recent Referee Speaks; 1.2 The Original Motivation; 1.3 The Essential Entities; 1.4 Simple Examples and a Picture; 1.5 Applications to-Date; 1.6 Organization of this Book; Commentary; 1.7 Exercises; 2. The Original Motivation: Operator Semigroups; Perspective; 2.1 Abstract Initial Value Problems; 2.2 The Hille-Yosida-Phillips-Lumer Theorem; 2.3 The Rellich-Kato-Nelson-Gustafson Theorem; 2.4 The Multiplicative Perturbation Theorem; 2.5 When are Positive Operator Products Positive?; 2.6 Nonnegative Contraction Semigroups; Commentary
2.7 Exercises3. The Essentials of Antieigenvalue Theory; Perspective; 3.1 Convexity Properties of Norm Geometry; 3.2 The Min-Max Theorem; 3.3 The Euler Equation; 3.4 Higher Antieigenvalues and Antieigenvectors; 3.5 The Triangle Inequality; 3.6 Extended Operator Trigonometry; Commentary; 3.7 Exercises; 4. Applications in Numerical Analysis; Perspective; 4.1 Gradient Descent: Kantorovich Bound is Trigonometric; 4.2 Minimum Residual Ax = b Solvers; 4.3 Richardson Relaxation Schemes (e.g. SOR); 4.4 Very Rich Trigonometry Underlies ADI; 4.5 Domain Decomposition Multilevel Schemes 4.6 Preconditioning and Condition NumbersCommentary; 4.7 Exercises; 5. Applications in Wavelets, Control, Scattering; Perspective; 5.1 The Time Operator of Wavelets; 5.2 Frame Operator Trigonometry; 5.3 Wavelet Reconstruction is Trigonometric; 5.4 New Basis Trigonometry; 5.5 Trigonometry of Lyapunov Stability; 5.6 Multiplicative Perturbation and Irreversibility; Commentary; 5.7 Exercises; 6. The Trigonometry of Matrix Statistics; Perspective; 6.1 Statistical Efficiency; 6.2 The Euler Equation versus the Inefficiency Equation; 6.3 Canonical Correlations and Rayleigh Quotients 6.4 Other Statistics Inequalities6.5 Prediction Theory: Association Measures; 6.6 Antieigenmatrices; Commentary; 6.7 Exercises; 7. Quantum Trigonometry; Perspective; 7.1 Bell-Wigner-CHSH Inequalities; 7.2 Trigonometric Quantum Spin Identities; 7.3 Quantum Computing: Phase Issues; 7.4 Penrose Twistors; 7.5 Elementary Particles; 7.6 Trigonometry of Quantum States; Commentary; 7.7 Exercises; 8. Financial Instruments; Perspective; 8.1 Some Remarks on Mathematical Finance; 8.2 Quantos: Currency Options; 8.3 Multi-Asset Pricing: Spread Options; 8.4 Portfolio Rebalancing 8.5 American Options with Random Volatility8.6 Risk Measures for Incomplete Markets; Commentary; 8.7 Exercises; 9. Other Directions; Perspective; 9.1 Operators; 9.2 Angles; 9.3 Optimization; 9.4 Equalities; 9.5 Geometry; 9.6 Applications; Commentary; 9.7 Exercises; Appendix A Linear Algebra; A.1 Matrix Analysis; A.2 Operator Theory; Appendix B Hints and Answers to Exercises; Chapter 1.; Chapter 2.; Chapter 3.; Chapter 4.; Chapter 5.; Chapter 6.; Chapter 7.; Chapter 8.; Chapter 9.; Bibliography; Index |
Record Nr. | UNINA-9910823683803321 |
Gustafson Karl | ||
Singapore, : World Scientific Pub. Co., 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Approssimazione numerica degli autovalori di una matrice : metodo ed applicazioni. Tesi di laurea / laureanda Marina Schinaia ; relat. Liana Guercia, Ivonne Sgura |
Autore | Schinaia, Marina |
Pubbl/distr/stampa | Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1999-00 |
Altri autori (Persone) |
Guercia, Liana
Sgura, Ivonne |
Soggetto topico | Eigenvalues |
Classificazione |
AMS 65F15
AMS 65H99 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | ita |
Record Nr. | UNISALENTO-991000691989707536 |
Schinaia, Marina | ||
Lecce : Università degli studi. Facoltà di Scienze. Corso di laurea in Matematica, a.a. 1999-00 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
The asymptotic distribution of eigenvalues of partial differential operators / Yu. Safarov, D. Vassiliev |
Autore | Safarov, Yu. |
Pubbl/distr/stampa | Providence, R.I. : American Mathematical Society, c1997 |
Descrizione fisica | xiii, 354 p. : ill. ; 26 cm. |
Disciplina | 515.7242 |
Altri autori (Persone) | Vassilev, D. |
Collana | Translations of mathematical monographs, 0065-9282 ; 155 |
Soggetto topico |
Asymptotic distribution theory
Eigenvalues Partial differential operators Theory of distributions |
ISBN | 0821845772 |
Classificazione |
AMS 35J55
AMS 35P20 AMS 58G25 QA329.42.S24 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000703159707536 |
Safarov, Yu. | ||
Providence, R.I. : American Mathematical Society, c1997 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
A comparison of methods for computing the eigenvalues and eigenvectors of a matrix / by I. Galligani |
Autore | Galligani, Ilio |
Pubbl/distr/stampa | Lecce : Scuola estiva di Informatica del CNR, 1968 |
Descrizione fisica | 101 p. ; 29 cm. |
Disciplina | 519.4 |
Soggetto topico |
Eigenvalues
Eigenvectors |
Classificazione | AMS 65F15 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000763199707536 |
Galligani, Ilio | ||
Lecce : Scuola estiva di Informatica del CNR, 1968 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Computational methods for matrix eigenproblems / A. R. Gourlay, G. A. Watson |
Autore | Gourlay, A. R. |
Pubbl/distr/stampa | London : J. Wiley & Sons, c1973 |
Descrizione fisica | xi, 132 p. ; 24 cm |
Disciplina | 519.4 |
Altri autori (Persone) | Watson, G. A. |
Soggetto topico |
Eigenvalues
Eigenvectors Matrices |
ISBN | 0471319155 |
Classificazione | AMS 65F15 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000775069707536 |
Gourlay, A. R. | ||
London : J. Wiley & Sons, c1973 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Diagonally implicit Runge-Kutta methods for ordinary differential equations, a review / / Christopher A. Kennedy, Mark H. Carpenter |
Autore | Kennedy Chris (Chris A.) |
Pubbl/distr/stampa | Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , March 2016 |
Descrizione fisica | 1 online resource (156 pages) |
Collana | NASA/TM |
Soggetto topico |
Differential equations
Eigenvalues Numerical analysis Numerical integration Runge-Kutta method |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910707241603321 |
Kennedy Chris (Chris A.) | ||
Hampton, Virginia : , : National Aeronautics and Space Administration, Langley Research Center, , March 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|