top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Augmenting crop productivity in stress environment / / Shamim Akhtar Ansari, Mohammad Israil Ansari, and Azamal Husen
Augmenting crop productivity in stress environment / / Shamim Akhtar Ansari, Mohammad Israil Ansari, and Azamal Husen
Autore Ansari Shamim Akhtar
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (402 pages)
Disciplina 632.1
Soggetto topico Crops - Effect of stress on
Crops - Physiology
Conreu
Efecte de l'estrès sobre les plantes
Fisiologia vegetal
Soggetto genere / forma Llibres electrònics
ISBN 981-16-6361-0
981-16-6360-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743231403321
Ansari Shamim Akhtar  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Harsh environment and plant resilience : molecular and functional aspects / / Azamal Husen, editor
Harsh environment and plant resilience : molecular and functional aspects / / Azamal Husen, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (548 pages)
Disciplina 571.742
Soggetto topico Plants - Effect of stress on - Molecular aspects
Efecte de l'estrès sobre les plantes
Fisiologia vegetal
Biologia molecular vegetal
Soggetto genere / forma Llibres electrònics
ISBN 3-030-65912-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910483580403321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Hydrogen sulfide and plant acclimation to abiotic stresses / / M. Nasir Khan [and three others], editors
Hydrogen sulfide and plant acclimation to abiotic stresses / / M. Nasir Khan [and three others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (241 pages)
Disciplina 582.019214
Collana Plant in Challenging Environments
Soggetto topico Plants - Effect of hydrogen sulfide on
Plants - Effect of stress on
Efecte de l'estrès sobre les plantes
Àcid sulfúric
Soggetto genere / forma Llibres electrònics
ISBN 3-030-73678-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495173003321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Induced genotoxicity and oxidative stress in plants / / edited by Zeba Khan, Mohd Yunus Khalil Ansari, Durre Shahwar
Induced genotoxicity and oxidative stress in plants / / edited by Zeba Khan, Mohd Yunus Khalil Ansari, Durre Shahwar
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (X, 227 p. 38 illus., 29 illus. in color.)
Disciplina 581
Soggetto topico Botany
Plant physiology
Botanical chemistry
Estrès oxidatiu
Efecte de l'estrès sobre les plantes
Soggetto genere / forma Llibres electrònics
ISBN 981-16-2074-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Induced genotoxicity and oxidative stress in plants: An overview -- Chapter 2. Genotoxicity and DNA damage induced by herbicides and toxins in plants -- Chapter 3. Role of physical agents in inducing genotoxicity and oxidative stress in plants -- Chapter 4. Plant Responses to Induced Genotoxicity and Oxidative Stress by Chemicals -- 5. Metal induced genotoxicity and oxidative stress in plants, assessment methods and role of various factors in genotoxicity regulation -- Chapter 6. Mechanisms of genotoxicity and oxidative stress induced by engineered nanoparticles in plants -- Chapter 7. Oxidative stress and genotoxicity induced by industrial wastes and effluents in plants -- Chapter 8. Mechanism & Molecular Response of induced Genotoxicity & Oxidative Stress in Plants.
Record Nr. UNINA-9910495231303321
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Nanobiotechnology : mitigation of abiotic stress in plants / / edited by Jameel M. Al-Khayri, Mohammad Israil Ansari, and Akhilesh Kumar Singh
Nanobiotechnology : mitigation of abiotic stress in plants / / edited by Jameel M. Al-Khayri, Mohammad Israil Ansari, and Akhilesh Kumar Singh
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (595 pages)
Disciplina 581.788
Soggetto topico Plants - Effect of stress on - Technological innovations
Crops - Effect of stress on - Technological innovations
Efecte de l'estrès sobre les plantes
Cultius (Biologia)
Ultraestructura (Biologia)
Soggetto genere / forma Llibres electrònics
ISBN 3-030-73606-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Editors and Contributors -- 1 Abiotic Stress in Plants: Socio-Economic Consequences and Crops Responses -- 1.1 Introduction -- 1.2 Socio-Economic Consequences of Abiotic Stress on Crop Production -- 1.3 Crops Response to Abiotic Stress -- 1.3.1 Growth and Productivity -- 1.3.2 Germination and Early Seedling Stages -- 1.3.3 Vegetative and Reproductive Stages -- 1.4 Crop Water Relations -- 1.4.1 Water Stress -- 1.4.2 Extreme Temperatures -- 1.4.3 Salinity -- 1.4.4 Heavy Metal -- 1.5 The Effect of Abiotic Stressors on Photosynthesis Pigments and Apparatus -- 1.5.1 Water Stress -- 1.5.2 Extreme Temperatures -- 1.5.3 Salinity -- 1.5.4 Heavy Metals -- 1.6 Conclusion and Future Prospects -- References -- 2 Plant Abiotic Stress Tolerance Mechanisms -- 2.1 Introduction -- 2.1.1 Morphological Flexibility Conferring Abiotic Stress Tolerance -- 2.2 Positive Physiological Modification to Tackle Abiotic Stress -- 2.2.1 Antioxidants -- 2.2.2 Osmotic Adjustment -- 2.2.3 Molecular Strategies -- 2.3 Conclusion and Future Perspective -- References -- 3 Biotechnology Strategies to Combat Plant Abiotic Stress -- 3.1 Introduction -- 3.2 Genetic Engineering Strategies for Resistance to Abiotic Stresses -- 3.2.1 Metabolite Engineering for Improving Abiotic Stress Tolerance -- 3.2.2 Genetic Engineering of Stress Responsive Genes and Transcription Factors -- 3.3 Tissue Culture Techniques -- 3.3.1 Somaclonal Variation and In Vitro Mutagenesis -- 3.3.2 In Vitro Selection for Abiotic Stress Tolerant Plants -- 3.4 Gene Editing Tools for Improving Stress Resistance in Plants -- 3.4.1 Zinc Finger Nucleases (ZFNs) -- 3.4.2 Transcription Activator-Like Effector Nucleases (TALENs) -- 3.4.3 Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9) -- 3.5 Conclusion and Prospects -- References.
4 Nanomaterials Fundamentals: Classification, Synthesis and Characterization -- 4.1 Introduction -- 4.2 Nanomaterials -- 4.3 Classification of Nanomaterials -- 4.4 Quantum Effects -- 4.5 Unique Properties of Nanomaterials -- 4.5.1 Physical Properties -- 4.5.2 Optical Properties -- 4.5.3 Chemical Properties -- 4.5.4 Electrical Properties -- 4.5.5 Magnetic Properties -- 4.5.6 Mechanical Properties -- 4.6 Synthesis Methods of Nanomaterials -- 4.6.1 Physical Methods for Synthesis Nanomaterials -- 4.6.2 Chemical Methods for Synthesis Nanomaterials -- 4.6.3 Green Methods for Synthesis Nanomaterials -- 4.7 Characterization of Nanoparticles -- 4.7.1 X-Ray Diffraction (XRD) -- 4.7.2 Transmission Electron Microscopy (TEM) -- 4.7.3 Scanning Electron Microscope (SEM) -- 4.7.4 Energy Dispersion Spectroscopy -- 4.7.5 Fourier Transform Infrared (FTIR) Spectrometer -- 4.7.6 Ultraviolet-Visible (UV/Vis) Spectroscopy -- 4.8 Conclusion and Prospects -- References -- 5 Nanotechnology in Agriculture -- 5.1 Introduction -- 5.2 Approaches for Synthesis of NPs -- 5.3 Classification and Examples of NPs -- 5.3.1 Nano Silver -- 5.3.2 Nano Alumino-Silicate -- 5.3.3 Titanium Dioxide NPs (nTio2) -- 5.3.4 Carbon NPs -- 5.3.5 Magnetic NPs -- 5.4 Biogenic/Green NPs -- 5.5 Application of Nanotechnology in Agriculture -- 5.5.1 Role of Nanotechnology in Seed Germination -- 5.5.2 Nano-Fertilizers for Better Crop Production -- 5.5.3 Nano-Pesticides and Nano-Herbicide for Crop Protection -- 5.5.4 Nanotechnology in Plant Disease Detection -- 5.5.5 Nano-Biosensors for Monitoring Agricultural Field -- 5.5.6 Nanotechnology in Recycling and Elimination of Agricultural Wastes -- 5.5.7 Role of Nanotechnology in Plant Genome Manipulation -- 5.6 Nano-Based Smart Delivery Systems for Nano-Fertilizers and Nano-Pesticides -- 5.6.1 Nanoformulation -- 5.6.2 Nanoemulsion -- 5.6.3 Nano-Encapsulation.
5.6.4 Mode of Administration -- 5.7 Conclusions and Prospects -- References -- 6 Contributions of Nano Biosensors in Managing Environmental Plant Stress Under Climatic Changing Era -- 6.1 Introduction -- 6.2 Nanosensors for Plant Health Status Monitoring -- 6.2.1 Abiotic and Biotic Stress -- 6.2.2 Nanoscale Sensors to Monitor Abiotic Stress in Plants -- 6.2.3 Detection of Toxic Elements in Water and Soil -- 6.2.4 Pests and Pathogen-Related Stresses -- 6.3 Optical Nanobiosensors for in Vivo Sensing -- 6.4 Conclusions and Prospects -- References -- 7 Nanobiotechnology: A Process to Combat Abiotic Stress in Crop Plants -- 7.1 Introduction -- 7.1.1 Climate Change -- 7.1.2 Stress Types -- 7.2 Plant Adaptation to Abiotic Stresses -- 7.3 Existing Biotechnological Strategies for Abiotic Stress Tolerance -- 7.4 Transgenic Plants as Alternative -- 7.5 Emerging Field of Nanotechnology -- 7.5.1 Types of Nanoparticles -- 7.5.2 Role of Nanoparticles on Plant -- 7.5.3 Development of Green Nanoparticles (GNPs) -- 7.6 Application of Nanobiotechnology in Agronomy -- 7.6.1 Application of Nanofertilizers -- 7.6.2 Mode of Application -- 7.7 Conclusions and Prospects -- References -- 8 Green Synthesis of Nanoparticles Using Different Plant Extracts and Their Characterizations -- 8.1 Introduction -- 8.1.1 Traditional Methods -- 8.1.2 Biological Methods -- 8.2 Green Synthesized NPs Using Plant Extract -- 8.2.1 Plant Material -- 8.2.2 Synthesis of NPs -- 8.2.3 Reaction Conditions -- 8.2.4 Mechanism of NPs Formation -- 8.3 Conclusion and Prospects -- References -- 9 Applications of Plant-Derived Nanomaterials in Mitigation of Crop Abiotic Stress -- 9.1 Introduction -- 9.1.1 Applications of Nanoparticles -- 9.2 Nano Fertilization -- 9.2.1 Soaking -- 9.2.2 Foliar Fertilization -- 9.2.3 Soil Fertilization -- 9.3 Mechanism of NPs Uptake and Accumulation in Crops.
9.3.1 Root System -- 9.3.2 Vegetative System -- 9.4 Effect of NPs on Plant Growth Under Abiotic Stresses -- 9.4.1 Silicone NPs Nano-Sio2 -- 9.4.2 Zinc Oxide NPs -- 9.4.3 Titanium Dioxide NPs -- 9.4.4 Silver NPs AgNPs -- 9.5 Application of Biosynthesis NPs in Agriculture for Sustainability Development -- 9.6 Conclusion and Prospects -- References -- 10 Biosynthesis and Characterization of Microorganisms-Derived Nanomaterials -- 10.1 Introduction -- 10.2 Biosynthesis of NPs Using Microorganisms -- 10.2.1 Synthesis of NPs Using Bacteria -- 10.2.2 Synthesis of NPs Using Actinomycetes -- 10.2.3 Synthesis of NPs Using Yeast -- 10.2.4 Synthesis of NPs Using Algae -- 10.2.5 Synthesis of NPs Using Fungi -- 10.2.6 Synthesis of Nanoparticles Using Virus -- 10.3 The Role of Biological Molecules of Microorganisms in Green NPs Synthesis -- 10.4 Conclusion and Prospects -- References -- 11 Utilization of Nanofertilizers in Crop Tolerance to Abiotic Stress -- 11.1 Introduction -- 11.2 Nano Fertilizers -- 11.2.1 Nanofertilizers Role -- 11.2.2 Characteristics of Nanofertilizer -- 11.2.3 Comparison Between Nanofertilizers and Conventional Fertilizers -- 11.3 Responses of Crop Growth Stages to Nanoparticles -- 11.3.1 Germination -- 11.3.2 Vegetative Stage -- 11.3.3 Reproduction Stage -- 11.4 Purification of Irrigation Water -- 11.5 Nanomaterials Toxicity to Crops -- 11.6 Effect of Nanofertilizers on Different Growth Stages of Plants Under Abiotic Stresses -- 11.6.1 Drought -- 11.6.2 Salinity -- 11.6.3 Heavy Metals -- 11.6.4 Heat -- 11.7 Conclusion and Prospects -- References -- 12 Role of Nanomaterials in Regulating Reactive Species as a Signaling Molecule of Abiotic Stress in Plants -- 12.1 Introduction -- 12.2 Production of ROS During Stress Conditions -- 12.3 Process of Nanoparticles Mechanism Under Stress Conditions.
12.4 Effect of Nanomaterials on Plants During Abiotic Stresses -- 12.5 Regulation of Reactive Species Signaling by Nanoparticles Under Abiotic Stresses -- 12.6 Conclusion and Prospects -- References -- 13 Role of Nanomaterials in Regulating Oxidative Stress in Plants -- 13.1 Introduction -- 13.2 Nanomaterials and Oxidative Stress -- 13.3 Mechanism Implicated by NMs to Alleviate Oxidative Burst in Plants -- 13.4 Attributes Governing Activities of Nanomaterials -- 13.5 Conclusions and Prospects -- References -- 14 Plant Stress Enzymes Nanobiotechnology -- 14.1 Introduction -- 14.2 ROS Scrounging Antioxidants of Plants -- 14.3 Stimulation of Antioxidant Mechanism in Response to Nanoparticle Exposure -- 14.4 Enzymatic Antioxidants -- 14.5 Impact of Nanoparticles on Plant Growth -- 14.6 Effect of Nanoparticles on Plant Growth Under Salinity -- 14.7 Impact of Nanoparticles on Plant Growth Under Drought Stress -- 14.8 Impact of Nanoparticles on Plant Growth Under Metallic Stress -- 14.9 Impact of Nanoparticles on Plant Growth Under Ultraviolet Radiation Stress -- 14.10 Effect of Nanoparticles on Plant Growth Under Flooding Stress -- 14.11 Conclusion and Prospects -- References -- 15 Plant Stress Hormones Nanobiotechnology -- 15.1 Introduction -- 15.2 Plant Growth Hormones and Their Physiological Significance -- 15.3 Phytohormones as Regulators of the Stress Responses -- 15.4 Phytohormone Signaling Under Stress -- 15.5 Impact of Nanoparticles on the Content of Phytohormones -- 15.6 Role of Nanomaterials and Phytohormones to Cope with Plants Stresses -- 15.7 Conclusions and Prospects -- References -- 16 Application of Nanobiotechnology in Overcoming Salinity Stress -- 16.1 Introduction -- 16.2 Effect of Salinity on Plants -- 16.3 Application of Nanobiotechnology in Agriculture -- 16.3.1 Role of Nanosensors in Agricultural Field.
16.3.2 Use of Nanoparticles for Mitigating Soil Salinity.
Record Nr. UNINA-9910495203703321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant growth and stress physiology / / Dharmendra K. Gupta, José Manuel Palma, editors
Plant growth and stress physiology / / Dharmendra K. Gupta, José Manuel Palma, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (284 pages)
Disciplina 581.31
Collana Plant in Challenging Environments
Soggetto topico Growth (Plants)
Plants - Effect of stress on
Creixement (Plantes)
Efecte de l'estrès sobre les plantes
Fisiologia vegetal
Soggetto genere / forma Llibres electrònics
ISBN 3-030-78420-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Chapter 1: Plant Stress, Acclimation, and Adaptation: A Review -- 1.1 Introduction -- 1.2 Stresses in Plants -- 1.3 Plant Responses Against Multiple Stressors to Develop Tolerance -- 1.4 Acclimation and Adaptation Against Multiple Stressors Through Different Signalling Pathways -- 1.4.1 Redox Signalling -- 1.4.2 MAP Kinase Pathway -- 1.4.3 Role of Phytohormones and Growth Regulators in Stress Signalling Pathway -- 1.5 Tolerance to Heavy Metals -- 1.5.1 Synthesis of Metal Chelators -- 1.5.2 Secretion of Organic Acids in Root Exudates -- 1.6 Tolerance to Heat Stress -- 1.7 Tolerance to Salt Stress -- 1.8 Plant Immune Response Against Biotic Stress -- 1.9 Antioxidant Defense System -- 1.9.1 Enzymatic Antioxidative System -- 1.9.2 Non-enzymatic Antioxidative System -- 1.10 Conclusion and Future Prospects -- References -- Chapter 2: Insights into Role of Invisible Partners in Plant Growth and Development -- 2.1 Introduction -- 2.2 Novel Insights in Plant-Microbiome Research -- 2.3 Influence of Endophytes on Plant Primary Growth and Secondary Metabolism -- 2.4 Effect of Endophytes in Imparting Stress Tolerance to Host Plants -- 2.5 Endophytes-Mediated Biotic Stress Response in Host Plants -- 2.6 Role of Endophytes in Improving Phytoremediation -- 2.7 Bio-Active Secondary Metabolites Produced by Endophytes -- 2.8 Concluding Remarks and Future Research Directions -- References -- Chapter 3: High Temperature Sensing Mechanisms and Their Downstream Pathways in Plants -- 3.1 Introduction -- 3.2 Sensing of Warm Temperature -- 3.3 Pathways that Function Downstream to Warm Temperature Sensing -- 3.4 Sensing of Heat Stress -- 3.5 Pathways that Function Downstream to Heat Stress Sensing -- 3.5.1 HSFs- or MBF1c-Dependent Pathways to Protect Plants Against Heat Stress -- 3.5.2 Signals Involving Ca2+, ROS and NO.
3.5.3 Plant Hormone Signaling -- 3.5.4 Integration of Unfolded Protein Responses in Cytosol and Endoplasmic Reticulum (ER) -- 3.6 Conclusions -- References -- Chapter 4: From Beneficial Bacteria to Microbial Derived Elicitors: Biotecnological Applications to Improve Fruit Quality -- 4.1 Introduction -- 4.2 Plant Fitness. Growth and Mechanisms for Adaptation to Stress. Factors Limiting Growth -- 4.3 The Multifactor Solution: PGPR -- 4.4 Case Study: Blackberry -- 4.5 Conclusions -- References -- Chapter 5: Come Hell or High Water: Breeding the Profile of Eucalyptus Tolerance to Abiotic Stress Focusing Water Deficit -- 5.1 Introduction -- 5.2 Data Mining Challenge: The State of the Art of Research on Biomarkers for Water Deficit Tolerance in Eucalyptus -- 5.3 Brief on Phenotypic Biomarkers and Environmental Conditions -- 5.3.1 Anatomical -- 5.3.2 Morphological and Growth Measures -- 5.3.3 Nutritional -- 5.3.4 Physiological -- 5.4 Statistical Issues -- 5.4.1 Reliable Data and Reproducible Results -- 5.4.2 Repeatability, Reliability and Accuracy -- 5.4.3 Criteria for Selecting Biomarkers -- 5.4.4 Field, Greenhouse and Molecular Sources of Information -- 5.4.5 Experimental Design -- 5.4.6 Statistical Tools -- 5.5 Eucalyptus Interplay and Outcomes -- 5.5.1 Functional Homeostasis -- 5.6 Gaps and Future Research Outlook -- 5.7 Conclusions -- References -- Chapter 6: Organic Fertilization of Fruit Trees as an Alternative to Mineral Fertilizers: Effect on Plant Growth, Yield and Fruit Quality -- 6.1 Introduction -- 6.2 Organic Amendment -- 6.2.1 Animal Manure -- 6.2.2 Municipal Biosolids -- 6.2.3 Cover Crops -- 6.2.4 Agro-Industry Wastes -- 6.2.5 Compost -- 6.3 Effect of Organic Matter on Plants -- 6.3.1 Effect on Nutritional Status and Growth -- 6.3.2 Effect on Yield and Fruit Quality -- 6.4 Biofertilizers -- 6.5 Conclusions -- References.
Chapter 7: Evaluation of Turbulence Stress on Submerged Macrophytes Growing in Lowland Streams Using H2O2 as an Indicator -- 7.1 Introduction -- 7.2 Dominant Stressors in the Natural Water -- 7.3 Effect of Temperature on ROS and Antioxidant Activities -- 7.4 Effects of Photosynthesis on the H2O2 and Antioxidant Activities -- 7.5 The Indicator of the Fractions of Stresses Associated with the Turbulence Stresses -- 7.6 Stress Patterns of the Changing Light Intensity -- 7.7 Effect of the Water Turbulence on the Structural Components of the Macrophyte Tissues -- 7.8 Biomass -- 7.9 Conclusion -- References -- Chapter 8: Opportunities of Revegetation and Bioenergy Production in Marginal Areas -- 8.1 Global Solid Waste Generation -- 8.2 Nonhazardous Waste Treatment -- 8.3 Landfills Restoration. Postclosure Use -- 8.4 Bioenergy as Strategy in Closed Landfill -- 8.5 Conclusion -- References -- Chapter 9: Biochar Behaviour and the Influence of Soil Microbial Community -- 9.1 Introduction -- 9.2 Soil-Biochar Interaction (Biochar Behaviour in Soil) -- 9.3 Biochar-Soil Microbiota Interaction -- 9.3.1 The Role of Feeding Types -- 9.3.2 Bacteria -- 9.3.3 Fungi -- 9.3.4 Other Microbiotas -- 9.3.5 Archaeal -- 9.3.6 Nematodes -- 9.3.7 Actinomycetes -- 9.3.8 Enzyme Activities -- 9.3.9 Factors Modulating Biochar-Microbiota Behaviour -- 9.3.10 Biochar Feedstock -- 9.3.11 Pyrolysis Temperature -- 9.3.12 Soil Type -- 9.3.13 Biochar Application Rate -- 9.3.14 Particle Size -- 9.3.15 Residence Time (Aging) -- 9.3.16 Presence of Organic Compounds -- 9.3.17 Land Use and Agricultural Management Practices -- 9.3.18 Implications for Soil Ecosystem -- 9.3.19 Waste Management -- 9.3.20 Immobilization and Sorption of Contaminants -- 9.3.21 Potential Source of Nutrients -- 9.3.22 Biogeochemical Cycling -- 9.3.23 Soil Biological Diversity and Activity -- 9.3.24 Food Quality.
9.4 Conclusions and Future Research -- References -- Chapter 10: New Insights into the Functional Role of Nitric Oxide and Reactive Oxygen Species in Plant Response to Biotic and Abiotic Stress Conditions -- 10.1 Introduction -- 10.2 Nitric Oxide Signalling in Plant Response to Stress Conditions -- 10.2.1 NO Signalling Under Biotic Stress -- 10.3 NO Signalling under Abiotic Stress -- 10.4 Reactive Oxygen Species and Oxidative Stress in Plants under Stress Conditions -- 10.4.1 Modulation of ROS Levels during Biotic Stress -- 10.4.2 Modulation of ROS Levels during Abiotic Stress -- 10.5 New Insights the Interaction Between NO and ROS in Plant Response to Stress Conditions -- 10.6 Conclusions -- References -- Chapter 11: Selenium Transport, Accumulation and Toxicity in Plants -- 11.1 Introduction -- 11.2 Selenium Uptake and Transport -- 11.3 Selenate -- 11.4 Selenite -- 11.5 Organic Selenium Compounds -- 11.6 Selenium Distribution, Translocation, and Accumulation -- 11.7 Beneficial Effects of Selenium for Plants -- 11.8 Selenium Toxicity in Plants -- 11.9 Toxicity of Selenoproteins -- 11.10 ROS-Induced Selenium Toxicity -- 11.11 RNS-Induced Selenium Toxicity -- 11.12 Phytoremediation -- 11.13 Phytoextraction -- 11.14 Phytovolatilization -- 11.15 Conclusions and Future Perspectives -- References -- Chapter 12: Selenium in Algae: Bioaccumulation and Toxicity -- 12.1 Introduction -- 12.2 Se Metabolism in Algae -- 12.2.1 Se Accumulation and Transformation -- 12.2.2 Se Beneficial Role, Toxicity and Detoxification Mechanisms -- 12.2.3 Algae as Se Bioindicators and Accumulators, and Their Applications -- 12.3 Conclusions -- References.
Record Nr. UNINA-9910508483303321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant performance under environmental stress : hormones, biostimulants and sustainable plant growth management / / Azamal Husen, editor
Plant performance under environmental stress : hormones, biostimulants and sustainable plant growth management / / Azamal Husen, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (604 pages)
Disciplina 581.7
Soggetto topico Plants - Effect of stress on
Efecte de l'estrès sobre les plantes
Soggetto genere / forma Llibres electrònics
ISBN 3-030-78521-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495178003321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant stress biology : strategies and trends / / Bhoopander Giri, Mahaveer Prasad Sharma, editors
Plant stress biology : strategies and trends / / Bhoopander Giri, Mahaveer Prasad Sharma, editors
Edizione [1st ed. 2020.]
Pubbl/distr/stampa Gateway East, Singapore : , : Springer, , [2020]
Descrizione fisica 1 online resource (XVI, 510 p. 45 illus., 41 illus. in color.)
Disciplina 581.7
Soggetto topico Plants - Effect of stress on
Efecte de l'estrès sobre les plantes
Soggetto genere / forma Llibres electrònics
ISBN 981-15-9380-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter 1. Abiotic Stress in Plants: An Overview -- Chapter 2. Silicon: A Plant Nutritional ‘Non-Entity’ for Mitigating Abiotic Stresses -- Chapter 3. Plant Morphological, Physiological Traits Associated with Adaptation Against Heat Stress in Wheat and Maize -- Chapter 4.Breeding and Molecular Approaches for Evolving Drought Tolerant Soybeans -- Chapter 5. Plant Roots and Mineral Nutrition: An Overview of Molecular Basis of Uptake and Regulation, and Strategies to Improve Nutrient Use Efficiency (NUE) -- Chapter 6. Plant Growth Promoting Rhizobacteria: Mechanisms and Alleviation of Cold Stress in Plants -- Chapter 7. Microbe-mediated mitigation of abiotic stress in plants -- Chapter 8. Orchestration of microRNAs and transcription factors in regulation of plant abiotic stress response -- Chapter 9. Phytohormones:A Promising Alternative in Boosting Salinity Stress Tolerance in Plants -- Chapter 10. Microbe-Mediated Biotic Stress Signaling and Resistance Mechanisms in Plants -- Chapter 11. Role of Wrkytranscription Factor Super Family in Plant Disease Management -- Chapter 12. Unraveling the Molecular Mechanism of Magnaporthe Oryzae Induced Signaling Cascade in Rice -- Chapter 13. The Role of Endophytic Insect-Pathogenic Fungi in Biotic Stress Management -- Chapter 14. Biological Overview and Adaptability Strategies of Tamarix Plants, T. articulata and T. gallica to Abiotic Stress -- Chapter 15. Plant Synthetic Biology: A Paradigm Shift Targeting Stress Mitigation, Reduction of Ecological Footprints and Sustainable Transformation in Agriculture -- Chapter 16. Role of Calcium Signalling During Plant-Herbivore Interaction. .
Record Nr. UNINA-9910444255103321
Gateway East, Singapore : , : Springer, , [2020]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui