Chaos in ecology [[electronic resource] ] : experimental nonlinear dynamics / / J.M. Cushing ... [et al.] |
Pubbl/distr/stampa | Amsterdam, : Boston, : Academic Press, c2003 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 577/.01/5118 |
Altri autori (Persone) | CushingJ. M <1942-> (Jim Michael) |
Collana | Academic Press theoretical ecology series |
Soggetto topico |
Ecology - Mathematical models
Population biology - Mathematical models Chaotic behavior in systems Nonlinear theories |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-02713-8
9786611027131 0-08-052887-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Chaos in Ecology: Experimental Nonlinear Dynamics; Copyright Page; Contents; Foreword; Preface; Chapter 1. Introduction; 1.1 What Is Chaos?; 1.2 Bifurcations and Chaos; 1.3 The Hunt for Chaos; 1.4 Mathematical Models and Data; Chapter 2. Models; 2.1 The Deterministic LPA Model; 2.2 The Flour Beetle; 2.3 Dynamics of the LPA Model; 2.4 A Stochastic LPA Model; 2.5 Parameter Estimation; 2.6 Model Validation; 2.7 Predicted Dynamics; 2.8 Concluding Remarks; Chapter 3. Bifurcations; 3.1 A Bifurcation Experiment; 3.2 The Experimental Results; 3.3 Concluding Remarks; Chapter 4. Chaos
4.1 A Route-to-Chaos4.2 Demographic Variability; 4.3 Analysis of the Experiment; 4.4 Concluding Remarks; Chapter 5. Patterns in Chaos; 5.1 Sensitivity to Initial Conditions; 5.2 Temporal Patterns; 5.3 Lattice Effects; 5.4 Concluding Remarks; Chapter 6. What We Learned; Bibliography; Appendix; A The Desharnais Experiment; B The Bifurcation Experiment; C The Chaos Experiment; Index |
Record Nr. | UNINA-9910458697103321 |
Amsterdam, : Boston, : Academic Press, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaos in ecology [[electronic resource] ] : experimental nonlinear dynamics / / J.M. Cushing ... [et al.] |
Pubbl/distr/stampa | Amsterdam, : Boston, : Academic Press, c2003 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 577/.01/5118 |
Altri autori (Persone) | CushingJ. M <1942-> (Jim Michael) |
Collana | Academic Press theoretical ecology series |
Soggetto topico |
Ecology - Mathematical models
Population biology - Mathematical models Chaotic behavior in systems Nonlinear theories |
ISBN |
1-281-02713-8
9786611027131 0-08-052887-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Chaos in Ecology: Experimental Nonlinear Dynamics; Copyright Page; Contents; Foreword; Preface; Chapter 1. Introduction; 1.1 What Is Chaos?; 1.2 Bifurcations and Chaos; 1.3 The Hunt for Chaos; 1.4 Mathematical Models and Data; Chapter 2. Models; 2.1 The Deterministic LPA Model; 2.2 The Flour Beetle; 2.3 Dynamics of the LPA Model; 2.4 A Stochastic LPA Model; 2.5 Parameter Estimation; 2.6 Model Validation; 2.7 Predicted Dynamics; 2.8 Concluding Remarks; Chapter 3. Bifurcations; 3.1 A Bifurcation Experiment; 3.2 The Experimental Results; 3.3 Concluding Remarks; Chapter 4. Chaos
4.1 A Route-to-Chaos4.2 Demographic Variability; 4.3 Analysis of the Experiment; 4.4 Concluding Remarks; Chapter 5. Patterns in Chaos; 5.1 Sensitivity to Initial Conditions; 5.2 Temporal Patterns; 5.3 Lattice Effects; 5.4 Concluding Remarks; Chapter 6. What We Learned; Bibliography; Appendix; A The Desharnais Experiment; B The Bifurcation Experiment; C The Chaos Experiment; Index |
Record Nr. | UNINA-9910784647403321 |
Amsterdam, : Boston, : Academic Press, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Chaos in ecology : experimental nonlinear dynamics / / J.M. Cushing ... [et al.] |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Amsterdam, : Boston, : Academic Press, c2003 |
Descrizione fisica | 1 online resource (241 p.) |
Disciplina | 577/.01/5118 |
Altri autori (Persone) | CushingJ. M <1942-> (Jim Michael) |
Collana | Academic Press theoretical ecology series |
Soggetto topico |
Ecology - Mathematical models
Population biology - Mathematical models Chaotic behavior in systems Nonlinear theories |
ISBN |
1-281-02713-8
9786611027131 0-08-052887-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Front Cover; Chaos in Ecology: Experimental Nonlinear Dynamics; Copyright Page; Contents; Foreword; Preface; Chapter 1. Introduction; 1.1 What Is Chaos?; 1.2 Bifurcations and Chaos; 1.3 The Hunt for Chaos; 1.4 Mathematical Models and Data; Chapter 2. Models; 2.1 The Deterministic LPA Model; 2.2 The Flour Beetle; 2.3 Dynamics of the LPA Model; 2.4 A Stochastic LPA Model; 2.5 Parameter Estimation; 2.6 Model Validation; 2.7 Predicted Dynamics; 2.8 Concluding Remarks; Chapter 3. Bifurcations; 3.1 A Bifurcation Experiment; 3.2 The Experimental Results; 3.3 Concluding Remarks; Chapter 4. Chaos
4.1 A Route-to-Chaos4.2 Demographic Variability; 4.3 Analysis of the Experiment; 4.4 Concluding Remarks; Chapter 5. Patterns in Chaos; 5.1 Sensitivity to Initial Conditions; 5.2 Temporal Patterns; 5.3 Lattice Effects; 5.4 Concluding Remarks; Chapter 6. What We Learned; Bibliography; Appendix; A The Desharnais Experiment; B The Bifurcation Experiment; C The Chaos Experiment; Index |
Record Nr. | UNINA-9910825426803321 |
Amsterdam, : Boston, : Academic Press, c2003 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex population dynamics [[electronic resource] ] : nonlinear modeling in ecology, epidemiology, and genetics / / editors, Bernd Blasius, Jürgen Kurths, Lewi Stone |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (257 p.) |
Disciplina | 577.8/8 |
Altri autori (Persone) |
BlasiusBernd
KurthsJ <1953-> (Jürgen) StoneLewi |
Collana | World Scientific lecture notes in complex systems |
Soggetto topico |
Population biology - Mathematical models
Ecology - Mathematical models Epidemiology - Mathematical models Genetics - Mathematical models |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-91178-X
9786611911782 981-277-158-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; References; 1. Chaotic dynamics in food web systems; 1.1. Introduction; 1.2. Food web model formulation; 1.3. Detecting and quantifying chaotic dynamics in model food webs; 1.4. Dynamical patterns in food webs; 1.5. Chaos in real food webs and conclusion; References; 2. Generalized models ; 2.1. Introduction; 2.2. The basic idea of generalized models; 2.3. Example: A general predator-prey system; 2.4. Additional difficulties in complex models; 2.5. A generalized spatial model; 2.6. Local stability in small and intermediate models; 2.7. Some results on global dynamics
2.8. Numerical investigation of complex networks2.9. Discussion; References; 3. Dynamics of plant communities in drylands ; 3.1. Introduction; 3.2. Model for dryland water-vegetation systems; 3.3. Landscape states; 3.3.1. Mapping the landscape states along aridity gradients; 3.3.2. Coexistence of landscape states and state transitions; 3.3.3. Landscape states and aridity classes; 3.4. Plants as ecosystem engineers; 3.4.1. Facilitation vs. resilience; 3.4.2. Facilitation vs. competition; 3.5. Species richness: Pattern formation aspects; 3.5.1. The niche concept and the niche map 3.5.2. Landscape diversity3.5.3. Environmental changes; 3.6. Conclusion; Acknowledgments; References; 4. Metapopulation dynamics and the evolution of dispersal ; 4.1. Introduction; 4.1.1. What is a metapopulation?; 4.1.2. Levins metapopulation model; 4.2. Metapopulation ecology in different models; 4.2.1. Local dynamics; 4.2.2. Finite number of patches with the Ricker model; 4.2.3. Infinite number of patches; 4.2.3.1. Model presentation; 4.2.3.2. Resident equilibrium; 4.3. Adaptive dynamics; 4.3.1. Invasion fitness; 4.3.2. Pairwise Invasibility Plots (PIP); 4.4. Evolution of dispersal 4.4.1. Finite number of patches4.4.1.1. Fitness; 4.4.1.2. Fixed-point attractor; 4.4.1.3. Cyclic orbits; 4.4.2. Infinite number of patches; 4.4.2.1. Invasion fitness for the mutant; 4.4.2.2. Results; 4.4.3. Local growth with an Allee effect can result in evolu- tionary suicide; 4.4.3.1. Local population growth with an Allee effect; 4.4.3.2. Allee effect in the metapopulation model; 4.4.3.3. Bifurcation to evolutionary suicide; 4.4.3.4. Theory of evolutionary suicide; 4.5. Summary; References; 5. The scaling law of human travel - A message from; References 6. Multiplicative processes in social systems 6.1. Introduction; 6.2. Models for Zipf's law in language; 6.3. City sizes and the distribution of languages; 6.4. Family names; 6.4.1. The effects of mortality; 6.4.2. The distribution of given names; 6.5. Conclusion; Acknowledgments; References; 7. Criticality in epidemiology ; 7.1. Introduction; 7.2. Simple epidemic models showing criticality; 7.2.1. The SIS epidemic; 7.2.2. Solution of the SIS system shows criticality; 7.2.3. The spatial SIS epidemic; 7.2.4. Dynamics for the spatial mean; 7.2.5. Moment equations; 7.2.6. Mean field behavior 7.3. Accidental pathogens: the meningococcus |
Record Nr. | UNINA-9910450791603321 |
Singapore ; ; Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex population dynamics [[electronic resource] ] : nonlinear modeling in ecology, epidemiology, and genetics / / editors, Bernd Blasius, Jürgen Kurths, Lewi Stone |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (257 p.) |
Disciplina | 577.8/8 |
Altri autori (Persone) |
BlasiusBernd
KurthsJ <1953-> (Jürgen) StoneLewi |
Collana | World Scientific lecture notes in complex systems |
Soggetto topico |
Population biology - Mathematical models
Ecology - Mathematical models Epidemiology - Mathematical models Genetics - Mathematical models |
ISBN |
1-281-91178-X
9786611911782 981-277-158-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; References; 1. Chaotic dynamics in food web systems; 1.1. Introduction; 1.2. Food web model formulation; 1.3. Detecting and quantifying chaotic dynamics in model food webs; 1.4. Dynamical patterns in food webs; 1.5. Chaos in real food webs and conclusion; References; 2. Generalized models ; 2.1. Introduction; 2.2. The basic idea of generalized models; 2.3. Example: A general predator-prey system; 2.4. Additional difficulties in complex models; 2.5. A generalized spatial model; 2.6. Local stability in small and intermediate models; 2.7. Some results on global dynamics
2.8. Numerical investigation of complex networks2.9. Discussion; References; 3. Dynamics of plant communities in drylands ; 3.1. Introduction; 3.2. Model for dryland water-vegetation systems; 3.3. Landscape states; 3.3.1. Mapping the landscape states along aridity gradients; 3.3.2. Coexistence of landscape states and state transitions; 3.3.3. Landscape states and aridity classes; 3.4. Plants as ecosystem engineers; 3.4.1. Facilitation vs. resilience; 3.4.2. Facilitation vs. competition; 3.5. Species richness: Pattern formation aspects; 3.5.1. The niche concept and the niche map 3.5.2. Landscape diversity3.5.3. Environmental changes; 3.6. Conclusion; Acknowledgments; References; 4. Metapopulation dynamics and the evolution of dispersal ; 4.1. Introduction; 4.1.1. What is a metapopulation?; 4.1.2. Levins metapopulation model; 4.2. Metapopulation ecology in different models; 4.2.1. Local dynamics; 4.2.2. Finite number of patches with the Ricker model; 4.2.3. Infinite number of patches; 4.2.3.1. Model presentation; 4.2.3.2. Resident equilibrium; 4.3. Adaptive dynamics; 4.3.1. Invasion fitness; 4.3.2. Pairwise Invasibility Plots (PIP); 4.4. Evolution of dispersal 4.4.1. Finite number of patches4.4.1.1. Fitness; 4.4.1.2. Fixed-point attractor; 4.4.1.3. Cyclic orbits; 4.4.2. Infinite number of patches; 4.4.2.1. Invasion fitness for the mutant; 4.4.2.2. Results; 4.4.3. Local growth with an Allee effect can result in evolu- tionary suicide; 4.4.3.1. Local population growth with an Allee effect; 4.4.3.2. Allee effect in the metapopulation model; 4.4.3.3. Bifurcation to evolutionary suicide; 4.4.3.4. Theory of evolutionary suicide; 4.5. Summary; References; 5. The scaling law of human travel - A message from; References 6. Multiplicative processes in social systems 6.1. Introduction; 6.2. Models for Zipf's law in language; 6.3. City sizes and the distribution of languages; 6.4. Family names; 6.4.1. The effects of mortality; 6.4.2. The distribution of given names; 6.5. Conclusion; Acknowledgments; References; 7. Criticality in epidemiology ; 7.1. Introduction; 7.2. Simple epidemic models showing criticality; 7.2.1. The SIS epidemic; 7.2.2. Solution of the SIS system shows criticality; 7.2.3. The spatial SIS epidemic; 7.2.4. Dynamics for the spatial mean; 7.2.5. Moment equations; 7.2.6. Mean field behavior 7.3. Accidental pathogens: the meningococcus |
Record Nr. | UNINA-9910784701603321 |
Singapore ; ; Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Complex population dynamics : nonlinear modeling in ecology, epidemiology, and genetics / / editors, Bernd Blasius, Jurgen Kurths, Lewi Stone |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, NJ, : World Scientific, c2007 |
Descrizione fisica | 1 online resource (257 p.) |
Disciplina | 577.8/8 |
Altri autori (Persone) |
BlasiusBernd
KurthsJ <1953-> (Jurgen) StoneLewi |
Collana | World Scientific lecture notes in complex systems |
Soggetto topico |
Population biology - Mathematical models
Ecology - Mathematical models Epidemiology - Mathematical models Genetics - Mathematical models |
ISBN |
1-281-91178-X
9786611911782 981-277-158-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Contents; Preface; References; 1. Chaotic dynamics in food web systems; 1.1. Introduction; 1.2. Food web model formulation; 1.3. Detecting and quantifying chaotic dynamics in model food webs; 1.4. Dynamical patterns in food webs; 1.5. Chaos in real food webs and conclusion; References; 2. Generalized models ; 2.1. Introduction; 2.2. The basic idea of generalized models; 2.3. Example: A general predator-prey system; 2.4. Additional difficulties in complex models; 2.5. A generalized spatial model; 2.6. Local stability in small and intermediate models; 2.7. Some results on global dynamics
2.8. Numerical investigation of complex networks2.9. Discussion; References; 3. Dynamics of plant communities in drylands ; 3.1. Introduction; 3.2. Model for dryland water-vegetation systems; 3.3. Landscape states; 3.3.1. Mapping the landscape states along aridity gradients; 3.3.2. Coexistence of landscape states and state transitions; 3.3.3. Landscape states and aridity classes; 3.4. Plants as ecosystem engineers; 3.4.1. Facilitation vs. resilience; 3.4.2. Facilitation vs. competition; 3.5. Species richness: Pattern formation aspects; 3.5.1. The niche concept and the niche map 3.5.2. Landscape diversity3.5.3. Environmental changes; 3.6. Conclusion; Acknowledgments; References; 4. Metapopulation dynamics and the evolution of dispersal ; 4.1. Introduction; 4.1.1. What is a metapopulation?; 4.1.2. Levins metapopulation model; 4.2. Metapopulation ecology in different models; 4.2.1. Local dynamics; 4.2.2. Finite number of patches with the Ricker model; 4.2.3. Infinite number of patches; 4.2.3.1. Model presentation; 4.2.3.2. Resident equilibrium; 4.3. Adaptive dynamics; 4.3.1. Invasion fitness; 4.3.2. Pairwise Invasibility Plots (PIP); 4.4. Evolution of dispersal 4.4.1. Finite number of patches4.4.1.1. Fitness; 4.4.1.2. Fixed-point attractor; 4.4.1.3. Cyclic orbits; 4.4.2. Infinite number of patches; 4.4.2.1. Invasion fitness for the mutant; 4.4.2.2. Results; 4.4.3. Local growth with an Allee effect can result in evolu- tionary suicide; 4.4.3.1. Local population growth with an Allee effect; 4.4.3.2. Allee effect in the metapopulation model; 4.4.3.3. Bifurcation to evolutionary suicide; 4.4.3.4. Theory of evolutionary suicide; 4.5. Summary; References; 5. The scaling law of human travel - A message from; References 6. Multiplicative processes in social systems 6.1. Introduction; 6.2. Models for Zipf's law in language; 6.3. City sizes and the distribution of languages; 6.4. Family names; 6.4.1. The effects of mortality; 6.4.2. The distribution of given names; 6.5. Conclusion; Acknowledgments; References; 7. Criticality in epidemiology ; 7.1. Introduction; 7.2. Simple epidemic models showing criticality; 7.2.1. The SIS epidemic; 7.2.2. Solution of the SIS system shows criticality; 7.2.3. The spatial SIS epidemic; 7.2.4. Dynamics for the spatial mean; 7.2.5. Moment equations; 7.2.6. Mean field behavior 7.3. Accidental pathogens: the meningococcus |
Record Nr. | UNINA-9910809989903321 |
Singapore ; ; Hackensack, NJ, : World Scientific, c2007 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational and numerical challenges in environmental modelling [e-book] / Zahari Zlatev, Ivan Dimov |
Autore | Zlatev, Zahari |
Pubbl/distr/stampa | Amsterdam ; Boston : Elsevier, c2006 |
Descrizione fisica | xviii, 373 p. : ill. (some col.), maps (some col.) ; 25 cm |
Disciplina | 577.015118 |
Altri autori (Persone) | Dimov, Ivanauthor |
Collana | Studies in computational mathematics, 1570-579X ; 13 |
Soggetto topico |
Environmental protection - Mathematical models
Ecology - Mathematical models Pollution - Mathematical models |
ISBN |
9780444522092
0444522093 |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003272819707536 |
Zlatev, Zahari | ||
Amsterdam ; Boston : Elsevier, c2006 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. del Salento | ||
|
Computational ecology [[electronic resource] ] : graphs, networks, and agent based modeling / / Wenjun Zhang |
Autore | Zhang Wenjun |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2012 |
Descrizione fisica | 1 online resource (382 p.) |
Disciplina | 577.0151 |
Soggetto topico |
Ecology - Mathematical models
Multiagent systems |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-60356-2
9786613784254 981-4343-62-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Graphs -- pt. 2. Networks -- pt. 3. Agent-based modeling. |
Record Nr. | UNINA-9910462045303321 |
Zhang Wenjun | ||
Hackensack, N.J., : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational ecology [[electronic resource] ] : graphs, networks, and agent based modeling / / Wenjun Zhang |
Autore | Zhang Wenjun |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2012 |
Descrizione fisica | 1 online resource (382 p.) |
Disciplina | 577.0151 |
Soggetto topico |
Ecology - Mathematical models
Multiagent systems |
ISBN |
1-281-60356-2
9786613784254 981-4343-62-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Graphs -- pt. 2. Networks -- pt. 3. Agent-based modeling. |
Record Nr. | UNINA-9910790329503321 |
Zhang Wenjun | ||
Hackensack, N.J., : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational ecology : graphs, networks, and agent based modeling / / Wenjun Zhang |
Autore | Zhang Wenjun |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, N.J., : World Scientific, 2012 |
Descrizione fisica | 1 online resource (382 p.) |
Disciplina | 577.0151 |
Soggetto topico |
Ecology - Mathematical models
Multiagent systems |
ISBN |
1-281-60356-2
9786613784254 981-4343-62-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | pt. 1. Graphs -- pt. 2. Networks -- pt. 3. Agent-based modeling. |
Record Nr. | UNINA-9910810643403321 |
Zhang Wenjun | ||
Hackensack, N.J., : World Scientific, 2012 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|