Automating data-driven modelling of dynamical systems : an evolutionary computation approach / / Dhruv Khandelwal
| Automating data-driven modelling of dynamical systems : an evolutionary computation approach / / Dhruv Khandelwal |
| Autore | Khandelwal Dhruv |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
| Descrizione fisica | 1 online resource (250 pages) : illustrations (some color) |
| Disciplina | 620.10540285 |
| Collana | Springer Theses. |
| Soggetto topico |
Dynamics - Mathematical models
Automatic control |
| ISBN |
9783030903435
9783030903428 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction The State-of-the-art Preliminaries - Evolutionary Algorithms Tree Adjoining Grammar Performance measures |
| Record Nr. | UNINA-9910522566403321 |
Khandelwal Dhruv
|
||
| Cham, Switzerland : , : Springer, , [2022] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson
| Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson |
| Autore | Oustaloup Alain |
| Pubbl/distr/stampa | London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
| Descrizione fisica | 1 online resource (383 p.) |
| Disciplina | 003.85 |
| Collana | Control, Systems and Industrial Engineering Series |
| Soggetto topico |
Dynamics - Mathematical models
System analysis - Mathematical models |
| ISBN |
1-118-76082-4
1-118-76086-7 1-118-76092-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page ; Copyright; Contents; Acknowledgments; Preface; Introduction; Chapter 1: From Diversity to Unexpected Dynamic Performances; 1.1. Introduction; 1.2. An issue raising a technological bottle-neck; 1.3. An aim liable to answer to the issue; 1.4. A strategy idea liable to reach the aim; 1.4.1. Why diversity?; 1.4.2. What does diversity imply?; 1.5. On the strategy itself; 1.5.1. The study object; 1.5.2. A pore: its model and its technological equivalent; 1.5.2.1. The model; 1.5.2.2. The technological equivalent; 1.5.3. Case of identical pores; 1.5.4. Case of different pores
1.5.4.1. On differences coming from regional heritage1.5.4.1.1 Differences of technological origin; 1.5.4.1.2. A difference of natural origin; 1.5.4.1.3. How is difference expressed?; 1.5.4.2. Transposition to the study object; 1.6. From physics to mathematics; 1.6.1. An unusual model of the porous face; 1.6.1.1. A smoothing remarkable of simplicity: the one of crenels; 1.6.1.2. A non-integer derivative as a smoothing result; 1.6.1.3. An original heuristic verification of differentiation non-integer order; 1.6.2. A just as unusual model governing water relaxation 1.7.2.1. Taking into account the past1.7.2.2. Memory notion; 1.7.2.3. A diversion through an aspect of human memory; 1.7.2.3.1. The serial position effect; 1.7.2.3.2. A model of the primacy effect; 1.8. On the nature of diversity; 1.8.1. An action level to be defined; 1.8.2. One or several forms of diversity?; 1.8.2.1. Forms based on the invariance of the elements; 1.8.2.2. A singular form based on the time variability of an element; 1.9. From the porous dyke to the CRONE suspension; 1.10. Conclusion; 1.11. Bibliography; Chapter 2: Damping Robustness; 2.1. Introduction 2.2. From ladder network to a non-integer derivative as a water-dyke interface model2.2.1. On the admittance factorizing; 2.2.2. On the asymptotic diagrams at stake; 2.2.3. On the asymptotic diagram exploiting; 2.2.3.1. Step smoothing; 2.2.3.2. Crenel smoothing; 2.2.3.3. A non-integer differentiator as a smoothing result; 2.2.3.4. A non-integer derivative as a water-dyke interface model; 2.3. From a non-integer derivative to a non-integer differential equation as a model governing water relaxation; 2.3.1. Flow-pressure differential equation 2.3.2. A non-integer differential equation as a model governing relaxation |
| Record Nr. | UNINA-9910132160703321 |
Oustaloup Alain
|
||
| London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson
| Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson |
| Autore | Oustaloup Alain |
| Pubbl/distr/stampa | London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 |
| Descrizione fisica | 1 online resource (383 p.) |
| Disciplina | 003.85 |
| Collana | Control, Systems and Industrial Engineering Series |
| Soggetto topico |
Dynamics - Mathematical models
System analysis - Mathematical models |
| ISBN |
1-118-76082-4
1-118-76086-7 1-118-76092-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Title Page ; Copyright; Contents; Acknowledgments; Preface; Introduction; Chapter 1: From Diversity to Unexpected Dynamic Performances; 1.1. Introduction; 1.2. An issue raising a technological bottle-neck; 1.3. An aim liable to answer to the issue; 1.4. A strategy idea liable to reach the aim; 1.4.1. Why diversity?; 1.4.2. What does diversity imply?; 1.5. On the strategy itself; 1.5.1. The study object; 1.5.2. A pore: its model and its technological equivalent; 1.5.2.1. The model; 1.5.2.2. The technological equivalent; 1.5.3. Case of identical pores; 1.5.4. Case of different pores
1.5.4.1. On differences coming from regional heritage1.5.4.1.1 Differences of technological origin; 1.5.4.1.2. A difference of natural origin; 1.5.4.1.3. How is difference expressed?; 1.5.4.2. Transposition to the study object; 1.6. From physics to mathematics; 1.6.1. An unusual model of the porous face; 1.6.1.1. A smoothing remarkable of simplicity: the one of crenels; 1.6.1.2. A non-integer derivative as a smoothing result; 1.6.1.3. An original heuristic verification of differentiation non-integer order; 1.6.2. A just as unusual model governing water relaxation 1.7.2.1. Taking into account the past1.7.2.2. Memory notion; 1.7.2.3. A diversion through an aspect of human memory; 1.7.2.3.1. The serial position effect; 1.7.2.3.2. A model of the primacy effect; 1.8. On the nature of diversity; 1.8.1. An action level to be defined; 1.8.2. One or several forms of diversity?; 1.8.2.1. Forms based on the invariance of the elements; 1.8.2.2. A singular form based on the time variability of an element; 1.9. From the porous dyke to the CRONE suspension; 1.10. Conclusion; 1.11. Bibliography; Chapter 2: Damping Robustness; 2.1. Introduction 2.2. From ladder network to a non-integer derivative as a water-dyke interface model2.2.1. On the admittance factorizing; 2.2.2. On the asymptotic diagrams at stake; 2.2.3. On the asymptotic diagram exploiting; 2.2.3.1. Step smoothing; 2.2.3.2. Crenel smoothing; 2.2.3.3. A non-integer differentiator as a smoothing result; 2.2.3.4. A non-integer derivative as a water-dyke interface model; 2.3. From a non-integer derivative to a non-integer differential equation as a model governing water relaxation; 2.3.1. Flow-pressure differential equation 2.3.2. A non-integer differential equation as a model governing relaxation |
| Record Nr. | UNINA-9910821362303321 |
Oustaloup Alain
|
||
| London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]]
| Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]] |
| Autore | Majda Andrew <1949-> |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
| Descrizione fisica | 1 online resource (vii, 357 pages) : digital, PDF file(s) |
| Disciplina | 660.2842450151 |
| Soggetto topico |
Filters (Mathematics)
Dynamics - Mathematical models Turbulence Numerical analysis |
| ISBN |
1-107-23048-9
1-280-39412-9 9786613572042 1-139-33781-5 1-139-34026-3 1-139-34184-7 1-139-33694-0 1-139-33868-4 1-139-06130-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction and overview: mathematical strategies for filtering turbulent systems -- 2. Filtering a stochastic complex scalar: the prototype test problem -- 3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model -- 4. Continuous and discrete Fourier series and numerical discretization -- 5. Stochastic models for turbulence -- 6. Filtering turbulent signals: plentiful observations -- 7. Filtering turbulent signals: regularly spaced sparse observations -- 8. Filtering linear stochastic PDE models with instability and model error -- 9. Strategies for filtering nonlinear systems -- 10. Filtering prototype nonlinear slow-fast systems -- 11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods -- 12. Filtering turbulent nonlinear dynamical systems by linear stochastic models -- 13. Stochastic parametrized extended Kalman filter for filtering turbulent signals with model error -- 14. Filtering turbulent tracers from partial observations: an exactly solvable test model -- 15. The search for efficient skillful particle filters for high-dimensional turbulent dynamical systems. |
| Record Nr. | UNINA-9910461211603321 |
Majda Andrew <1949->
|
||
| Cambridge : , : Cambridge University Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]]
| Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]] |
| Autore | Majda Andrew <1949-> |
| Pubbl/distr/stampa | Cambridge : , : Cambridge University Press, , 2012 |
| Descrizione fisica | 1 online resource (vii, 357 pages) : digital, PDF file(s) |
| Disciplina | 660.2842450151 |
| Soggetto topico |
Filters (Mathematics)
Dynamics - Mathematical models Turbulence Numerical analysis |
| ISBN |
1-107-23048-9
1-280-39412-9 9786613572042 1-139-33781-5 1-139-34026-3 1-139-34184-7 1-139-33694-0 1-139-33868-4 1-139-06130-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | 1. Introduction and overview: mathematical strategies for filtering turbulent systems -- 2. Filtering a stochastic complex scalar: the prototype test problem -- 3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model -- 4. Continuous and discrete Fourier series and numerical discretization -- 5. Stochastic models for turbulence -- 6. Filtering turbulent signals: plentiful observations -- 7. Filtering turbulent signals: regularly spaced sparse observations -- 8. Filtering linear stochastic PDE models with instability and model error -- 9. Strategies for filtering nonlinear systems -- 10. Filtering prototype nonlinear slow-fast systems -- 11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods -- 12. Filtering turbulent nonlinear dynamical systems by linear stochastic models -- 13. Stochastic parametrized extended Kalman filter for filtering turbulent signals with model error -- 14. Filtering turbulent tracers from partial observations: an exactly solvable test model -- 15. The search for efficient skillful particle filters for high-dimensional turbulent dynamical systems. |
| Record Nr. | UNINA-9910790142003321 |
Majda Andrew <1949->
|
||
| Cambridge : , : Cambridge University Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Model emergent dynamics in complex systems / / A.J. Roberts, University of Adelaide, Adelaide, South Australia, Australia
| Model emergent dynamics in complex systems / / A.J. Roberts, University of Adelaide, Adelaide, South Australia, Australia |
| Autore | Roberts A. J (Anthony John), <1957-> |
| Pubbl/distr/stampa | Society for Industrial and Applied Mathematics |
| Disciplina | 515/.39 |
| Soggetto topico |
Dynamics - Mathematical models
Computational complexity Differential equations - Asymptotic theory |
| ISBN |
1-61197-356-2
1-5231-0936-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9911007092703321 |
Roberts A. J (Anthony John), <1957->
|
||
| Society for Industrial and Applied Mathematics | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others]
| Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others] |
| Autore | Ryzhov Vladimir |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (182 pages) |
| Disciplina | 531.11 |
| Soggetto topico |
Dynamics - Computer simulation
Dynamics - Mathematical models Mechanics - Computer simulation |
| ISBN | 981-16-3053-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910495161103321 |
Ryzhov Vladimir
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others]
| Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others] |
| Autore | Ryzhov Vladimir |
| Pubbl/distr/stampa | Singapore : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (182 pages) |
| Disciplina | 531.11 |
| Soggetto topico |
Dynamics - Computer simulation
Dynamics - Mathematical models Mechanics - Computer simulation |
| ISBN | 981-16-3053-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466732103316 |
Ryzhov Vladimir
|
||
| Singapore : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Non-smooth deterministic or stochastic discrete dynamical systems [[electronic resource] ] : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
| Non-smooth deterministic or stochastic discrete dynamical systems [[electronic resource] ] : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque |
| Autore | Bastien Jérôme |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (514 p.) |
| Disciplina | 620.00151539 |
| Altri autori (Persone) |
BernardinFrédéric
LamarqueClaude-Henri |
| Collana | Mechanical engineering and solid mechanics series |
| Soggetto topico |
Dynamics - Mathematical models
Friction - Mathematical models Impact - Mathematical models |
| ISBN |
1-118-60408-3
1-118-60404-0 1-299-40244-5 1-118-60432-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R)
2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one) 2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme 3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction 5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations 5.3.5. Free oscillations |
| Record Nr. | UNINA-9910139032503321 |
Bastien Jérôme
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Non-smooth deterministic or stochastic discrete dynamical systems : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
| Non-smooth deterministic or stochastic discrete dynamical systems : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque |
| Autore | Bastien Jérôme |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | London, : ISTE |
| Descrizione fisica | 1 online resource (514 p.) |
| Disciplina | 620.00151539 |
| Altri autori (Persone) |
BernardinFrédéric
LamarqueClaude-Henri |
| Collana | Mechanical engineering and solid mechanics series |
| Soggetto topico |
Dynamics - Mathematical models
Friction - Mathematical models Impact - Mathematical models |
| ISBN |
9781118604083
1118604083 9781118604045 1118604040 9781299402447 1299402445 9781118604328 1118604326 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R)
2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one) 2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme 3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction 5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations 5.3.5. Free oscillations |
| Record Nr. | UNINA-9910818175103321 |
Bastien Jérôme
|
||
| London, : ISTE | ||
| Lo trovi qui: Univ. Federico II | ||
| ||