top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Automating data-driven modelling of dynamical systems : an evolutionary computation approach / / Dhruv Khandelwal
Automating data-driven modelling of dynamical systems : an evolutionary computation approach / / Dhruv Khandelwal
Autore Khandelwal Dhruv
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (250 pages) : illustrations (some color)
Disciplina 620.10540285
Collana Springer Theses.
Soggetto topico Dynamics - Mathematical models
Automatic control
ISBN 9783030903435
9783030903428
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction The State-of-the-art Preliminaries - Evolutionary Algorithms Tree Adjoining Grammar Performance measures
Record Nr. UNINA-9910522566403321
Khandelwal Dhruv  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson
Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson
Autore Oustaloup Alain
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (383 p.)
Disciplina 003.85
Collana Control, Systems and Industrial Engineering Series
Soggetto topico Dynamics - Mathematical models
System analysis - Mathematical models
ISBN 1-118-76082-4
1-118-76086-7
1-118-76092-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page ; Copyright; Contents; Acknowledgments; Preface; Introduction; Chapter 1: From Diversity to Unexpected Dynamic Performances; 1.1. Introduction; 1.2. An issue raising a technological bottle-neck; 1.3. An aim liable to answer to the issue; 1.4. A strategy idea liable to reach the aim; 1.4.1. Why diversity?; 1.4.2. What does diversity imply?; 1.5. On the strategy itself; 1.5.1. The study object; 1.5.2. A pore: its model and its technological equivalent; 1.5.2.1. The model; 1.5.2.2. The technological equivalent; 1.5.3. Case of identical pores; 1.5.4. Case of different pores
1.5.4.1. On differences coming from regional heritage1.5.4.1.1 Differences of technological origin; 1.5.4.1.2. A difference of natural origin; 1.5.4.1.3. How is difference expressed?; 1.5.4.2. Transposition to the study object; 1.6. From physics to mathematics; 1.6.1. An unusual model of the porous face; 1.6.1.1. A smoothing remarkable of simplicity: the one of crenels; 1.6.1.2. A non-integer derivative as a smoothing result; 1.6.1.3. An original heuristic verification of differentiation non-integer order; 1.6.2. A just as unusual model governing water relaxation
1.7.2.1. Taking into account the past1.7.2.2. Memory notion; 1.7.2.3. A diversion through an aspect of human memory; 1.7.2.3.1. The serial position effect; 1.7.2.3.2. A model of the primacy effect; 1.8. On the nature of diversity; 1.8.1. An action level to be defined; 1.8.2. One or several forms of diversity?; 1.8.2.1. Forms based on the invariance of the elements; 1.8.2.2. A singular form based on the time variability of an element; 1.9. From the porous dyke to the CRONE suspension; 1.10. Conclusion; 1.11. Bibliography; Chapter 2: Damping Robustness; 2.1. Introduction
2.2. From ladder network to a non-integer derivative as a water-dyke interface model2.2.1. On the admittance factorizing; 2.2.2. On the asymptotic diagrams at stake; 2.2.3. On the asymptotic diagram exploiting; 2.2.3.1. Step smoothing; 2.2.3.2. Crenel smoothing; 2.2.3.3. A non-integer differentiator as a smoothing result; 2.2.3.4. A non-integer derivative as a water-dyke interface model; 2.3. From a non-integer derivative to a non-integer differential equation as a model governing water relaxation; 2.3.1. Flow-pressure differential equation
2.3.2. A non-integer differential equation as a model governing relaxation
Record Nr. UNINA-9910132160703321
Oustaloup Alain  
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson
Diversity and non-integer differentiation for system dynamics / / Alain Oustaloup ; series editor Bernard Dubuisson
Autore Oustaloup Alain
Pubbl/distr/stampa London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Descrizione fisica 1 online resource (383 p.)
Disciplina 003.85
Collana Control, Systems and Industrial Engineering Series
Soggetto topico Dynamics - Mathematical models
System analysis - Mathematical models
ISBN 1-118-76082-4
1-118-76086-7
1-118-76092-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page ; Copyright; Contents; Acknowledgments; Preface; Introduction; Chapter 1: From Diversity to Unexpected Dynamic Performances; 1.1. Introduction; 1.2. An issue raising a technological bottle-neck; 1.3. An aim liable to answer to the issue; 1.4. A strategy idea liable to reach the aim; 1.4.1. Why diversity?; 1.4.2. What does diversity imply?; 1.5. On the strategy itself; 1.5.1. The study object; 1.5.2. A pore: its model and its technological equivalent; 1.5.2.1. The model; 1.5.2.2. The technological equivalent; 1.5.3. Case of identical pores; 1.5.4. Case of different pores
1.5.4.1. On differences coming from regional heritage1.5.4.1.1 Differences of technological origin; 1.5.4.1.2. A difference of natural origin; 1.5.4.1.3. How is difference expressed?; 1.5.4.2. Transposition to the study object; 1.6. From physics to mathematics; 1.6.1. An unusual model of the porous face; 1.6.1.1. A smoothing remarkable of simplicity: the one of crenels; 1.6.1.2. A non-integer derivative as a smoothing result; 1.6.1.3. An original heuristic verification of differentiation non-integer order; 1.6.2. A just as unusual model governing water relaxation
1.7.2.1. Taking into account the past1.7.2.2. Memory notion; 1.7.2.3. A diversion through an aspect of human memory; 1.7.2.3.1. The serial position effect; 1.7.2.3.2. A model of the primacy effect; 1.8. On the nature of diversity; 1.8.1. An action level to be defined; 1.8.2. One or several forms of diversity?; 1.8.2.1. Forms based on the invariance of the elements; 1.8.2.2. A singular form based on the time variability of an element; 1.9. From the porous dyke to the CRONE suspension; 1.10. Conclusion; 1.11. Bibliography; Chapter 2: Damping Robustness; 2.1. Introduction
2.2. From ladder network to a non-integer derivative as a water-dyke interface model2.2.1. On the admittance factorizing; 2.2.2. On the asymptotic diagrams at stake; 2.2.3. On the asymptotic diagram exploiting; 2.2.3.1. Step smoothing; 2.2.3.2. Crenel smoothing; 2.2.3.3. A non-integer differentiator as a smoothing result; 2.2.3.4. A non-integer derivative as a water-dyke interface model; 2.3. From a non-integer derivative to a non-integer differential equation as a model governing water relaxation; 2.3.1. Flow-pressure differential equation
2.3.2. A non-integer differential equation as a model governing relaxation
Record Nr. UNINA-9910821362303321
Oustaloup Alain  
London, [England] ; ; Hoboken, New Jersey : , : ISTE : , : Wiley, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]]
Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]]
Autore Majda Andrew <1949->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (vii, 357 pages) : digital, PDF file(s)
Disciplina 660.2842450151
Soggetto topico Filters (Mathematics)
Dynamics - Mathematical models
Turbulence
Numerical analysis
ISBN 1-107-23048-9
1-280-39412-9
9786613572042
1-139-33781-5
1-139-34026-3
1-139-34184-7
1-139-33694-0
1-139-33868-4
1-139-06130-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction and overview: mathematical strategies for filtering turbulent systems -- 2. Filtering a stochastic complex scalar: the prototype test problem -- 3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model -- 4. Continuous and discrete Fourier series and numerical discretization -- 5. Stochastic models for turbulence -- 6. Filtering turbulent signals: plentiful observations -- 7. Filtering turbulent signals: regularly spaced sparse observations -- 8. Filtering linear stochastic PDE models with instability and model error -- 9. Strategies for filtering nonlinear systems -- 10. Filtering prototype nonlinear slow-fast systems -- 11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods -- 12. Filtering turbulent nonlinear dynamical systems by linear stochastic models -- 13. Stochastic parametrized extended Kalman filter for filtering turbulent signals with model error -- 14. Filtering turbulent tracers from partial observations: an exactly solvable test model -- 15. The search for efficient skillful particle filters for high-dimensional turbulent dynamical systems.
Record Nr. UNINA-9910461211603321
Majda Andrew <1949->  
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]]
Filtering complex turbulent systems / / Andrew J. Majda, John Harlim [[electronic resource]]
Autore Majda Andrew <1949->
Pubbl/distr/stampa Cambridge : , : Cambridge University Press, , 2012
Descrizione fisica 1 online resource (vii, 357 pages) : digital, PDF file(s)
Disciplina 660.2842450151
Soggetto topico Filters (Mathematics)
Dynamics - Mathematical models
Turbulence
Numerical analysis
ISBN 1-107-23048-9
1-280-39412-9
9786613572042
1-139-33781-5
1-139-34026-3
1-139-34184-7
1-139-33694-0
1-139-33868-4
1-139-06130-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction and overview: mathematical strategies for filtering turbulent systems -- 2. Filtering a stochastic complex scalar: the prototype test problem -- 3. The Kalman filter for vector systems: reduced filters and a three-dimensional toy model -- 4. Continuous and discrete Fourier series and numerical discretization -- 5. Stochastic models for turbulence -- 6. Filtering turbulent signals: plentiful observations -- 7. Filtering turbulent signals: regularly spaced sparse observations -- 8. Filtering linear stochastic PDE models with instability and model error -- 9. Strategies for filtering nonlinear systems -- 10. Filtering prototype nonlinear slow-fast systems -- 11. Filtering turbulent nonlinear dynamical systems by finite ensemble methods -- 12. Filtering turbulent nonlinear dynamical systems by linear stochastic models -- 13. Stochastic parametrized extended Kalman filter for filtering turbulent signals with model error -- 14. Filtering turbulent tracers from partial observations: an exactly solvable test model -- 15. The search for efficient skillful particle filters for high-dimensional turbulent dynamical systems.
Record Nr. UNINA-9910790142003321
Majda Andrew <1949->  
Cambridge : , : Cambridge University Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Model emergent dynamics in complex systems / / A.J. Roberts, University of Adelaide, Adelaide, South Australia, Australia
Model emergent dynamics in complex systems / / A.J. Roberts, University of Adelaide, Adelaide, South Australia, Australia
Autore Roberts A. J (Anthony John), <1957->
Pubbl/distr/stampa Society for Industrial and Applied Mathematics
Disciplina 515/.39
Soggetto topico Dynamics - Mathematical models
Computational complexity
Differential equations - Asymptotic theory
ISBN 1-61197-356-2
1-5231-0936-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9911007092703321
Roberts A. J (Anthony John), <1957->  
Society for Industrial and Applied Mathematics
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others]
Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others]
Autore Ryzhov Vladimir
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (182 pages)
Disciplina 531.11
Soggetto topico Dynamics - Computer simulation
Dynamics - Mathematical models
Mechanics - Computer simulation
ISBN 981-16-3053-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495161103321
Ryzhov Vladimir  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others]
Modeling and simulation of complex dynamical systems : virtual laboratory approach based on Wolfram system modeler / / Vladimir Ryzhov [and five others]
Autore Ryzhov Vladimir
Pubbl/distr/stampa Singapore : , : Springer, , [2021]
Descrizione fisica 1 online resource (182 pages)
Disciplina 531.11
Soggetto topico Dynamics - Computer simulation
Dynamics - Mathematical models
Mechanics - Computer simulation
ISBN 981-16-3053-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466732103316
Ryzhov Vladimir  
Singapore : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Non-smooth deterministic or stochastic discrete dynamical systems [[electronic resource] ] : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
Non-smooth deterministic or stochastic discrete dynamical systems [[electronic resource] ] : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
Autore Bastien Jérôme
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (514 p.)
Disciplina 620.00151539
Altri autori (Persone) BernardinFrédéric
LamarqueClaude-Henri
Collana Mechanical engineering and solid mechanics series
Soggetto topico Dynamics - Mathematical models
Friction - Mathematical models
Impact - Mathematical models
ISBN 1-118-60408-3
1-118-60404-0
1-299-40244-5
1-118-60432-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R)
2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one)
2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme
3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction
5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations
5.3.5. Free oscillations
Record Nr. UNINA-9910139032503321
Bastien Jérôme  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Non-smooth deterministic or stochastic discrete dynamical systems : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
Non-smooth deterministic or stochastic discrete dynamical systems : applications to models with friction or impact / / Jérôme Bastien, Frédéric Bernardin, Claude-Henri Lamarque
Autore Bastien Jérôme
Edizione [1st ed.]
Pubbl/distr/stampa London, : ISTE
Descrizione fisica 1 online resource (514 p.)
Disciplina 620.00151539
Altri autori (Persone) BernardinFrédéric
LamarqueClaude-Henri
Collana Mechanical engineering and solid mechanics series
Soggetto topico Dynamics - Mathematical models
Friction - Mathematical models
Impact - Mathematical models
ISBN 9781118604083
1118604083
9781118604045
1118604040
9781299402447
1299402445
9781118604328
1118604326
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Contents; Introduction; Chapter 1. Some Simple Examples; 1.1. Introduction; 1.2. Frictions; 1.2.1. Coulomb's law; 1.2.2. Differential equation with univalued operator and usual sign; 1.2.3. Differential equation with multivalued term: differential inclusion; 1.2.4. Other friction laws; 1.3. Impact; 1.3.1. Difficulties with writing the differential equation; 1.3.2. Ill-posed problems; 1.4. Probabilistic context; Chapter 2. Theoretical Deterministic Context; 2.1. Introduction; 2.2. Maximal monotone operators and first result on differential inclusions (in R)
2.2.1. Graphs (operators) definitions2.2.2. Maximal monotone operators; 2.2.3. Convex function, sub-differentials and operators; 2.2.4. Resolvent and regularization; 2.2.5. Taking the limit; 2.2.6. First result of existence and uniqueness for a differential inclusion; 2.3. Extension to any Hilbert space; 2.4. Existence and uniqueness results in Hilbert space; 2.5. Numerical scheme in a Hilbert space; 2.5.1. The numerical scheme; 2.5.2. State of the art summary and results shown in this publication; 2.5.3. Convergence (general results and order 1/2); 2.5.4. Convergence (order one)
2.5.5. Change of scalar product2.5.6. Resolvent calculation; 2.5.7. More regular schemes; Chapter 3. Stochastic Theoretical Context; 3.1. Introduction; 3.2. Stochastic integral; 3.2.1. The stochastic processes background; 3.2.2. Stochastic integral; 3.3. Stochastic differential equations; 3.3.1. Existence and uniqueness of strong solution; 3.3.2. Existence and uniqueness of weak solution; 3.3.3. Kolmogorov and Fokker-Planck equations; 3.4. Multivalued stochastic differential equations; 3.4.1. Problem statement; 3.4.2. Uniqueness and existence results; 3.5. Numerical scheme
3.5.1. Which convergence: weak or strong?3.5.2. Strong convergence results; 3.5.3. Weak convergence results; Chapter 4. Riemannian Theoretical Context; 4.1. Introduction; 4.2. First or second order; 4.3. Differential geometry; 4.3.1. Sphere case; 4.3.2. General case; 4.4. Dynamics of the mechanical systems; 4.4.1. Definition of mechanical system; 4.4.2. Equation of the dynamics; 4.5. Connection, covariant derivative, geodesics and parallel transport; 4.6. Maximal monotone term; 4.7. Stochastic term; 4.8. Results on the existence and uniqueness of a solution; Chapter 5. Systems with Friction
5.1. Introduction5.2. Examples of frictional systems with a finite number of degrees of freedom; 5.2.1. General framework; 5.2.2. Two elementary models; 5.2.3. Assembly and results in finite dimensions; 5.2.4. Conclusion; 5.2.5. Examples of numerical simulation; 5.2.6. Identification of the generalized Prandtl model (principles and simulation); 5.3. Another example: the case of a pendulum with friction; 5.3.1. Formulation of the problem, existence and uniqueness; 5.3.2. Numerical scheme; 5.3.3. Numerical estimation of the order; 5.3.4. Example of numerical simulations
5.3.5. Free oscillations
Record Nr. UNINA-9910818175103321
Bastien Jérôme  
London, : ISTE
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui