Mexican Mathematicians in the World : Trends and Recent Contributions
| Mexican Mathematicians in the World : Trends and Recent Contributions |
| Autore | Galaz-García Fernando |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 2021 |
| Descrizione fisica | 1 online resource (336 pages) |
| Disciplina | 510.972 |
| Altri autori (Persone) |
González-TokmanCecilia
PardoJuan Carlos |
| Collana | Contemporary Mathematics |
| Soggetto topico |
Mathematics - Mexico
Mathematicians - Mexico Women mathematicians - Mexico Differential geometry -- Global differential geometry Relativity and gravitational theory -- General relativity Functional analysis -- Selfadjoint operator algebras ($C^*$-algebras, von Neumann ($W^*$-) algebras, etc.) Dynamical systems and ergodic theory -- Ergodic theory Algebraic topology -- Homotopy theory Partial differential equations -- Representations of solutions to partial differential equations Operator theory -- General theory of linear operators Nonassociative rings and algebras -- Lie algebras and Lie superalgebras Number theory -- Discontinuous groups and automorphic forms Topological groups, Lie groups -- Lie groups |
| ISBN |
9781470467289
1470467283 |
| Classificazione | 53Cxx83Cxx46Lxx37Axx55Pxx35Cxx47Axx17Bxx11Fxx22Exx |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title page -- Contents -- Preface -- List of Talks and Speakers -- A survey on extensions of Riemannian manifolds and Bartnik mass estimates -- 1. Mathematical relativity -- 2. The Mantoulidis-Schoen construction -- 3. Collar extensions, gluing procedures, and Bartnik mass estimates -- 4. Recent results on Bartnik mass estimates -- 5. Conclusions and open problems -- Acknowledgments -- References -- Four-dimensional homogeneous Kähler Ricci solitons -- 1. Introduction -- 2. Preliminaries -- 3. Homogeneous Kähler surfaces. The proof of Theorem 1.1 -- 4. The proof of Corollary 1.2 -- References -- *-algebras and their nuclear dimension -- Introduction -- 1. Basics of *-algebras -- 2. Nuclear dimension -- 3. Zero dimensional objects -- 4. *-algebras associated to groups -- 5. *-algebras associated to dynamical systems -- 6. Cuntz algebras -- 7. General simple *-algebras -- 8. Nuclear dimension of commutative algebras -- Acknowledgments -- References -- Short survey on the existence of slices for the space of Riemannian metrics -- 1. Introduction -- 2. Preliminaries -- 3. Proofs of the Slice Theorem and Theorem B -- 4. Consequences of the Slice Theorem -- Acknowledgment -- References -- Model theory and metric convergence II: Averages of unitary polynomial actions -- Introduction -- 1. PET structures -- 2. Leibman sequences -- 3. An ergodic theorem for unitary polynomial actions of ℤ -- 4. A Mean Ergodic Theorem for unitary polynomial actions of abelian groups -- Appendix A. A Dominated Convergence Theorem for notions of integration in Banach spaces -- Acknowledgments -- References -- A survey on the blow-up method for fast-slow systems -- 1. Introduction -- Notation -- 2. Preliminaries -- 3. Survey -- 4. Summary and outlook -- Acknowledgments -- References -- Langlands program and Ramanujan Conjecture: A survey -- Introduction.
1. Artin -functions and number theory -- 2. Reductive groups and representation theory -- 3. The Langlands-Shahidi method -- 4. Local Langlands -- 5. Global Langlands -- 6. Globalization methods -- 7. Ramanujan Conjecture -- Acknowledgments -- References -- The least quadratic non-residue -- 1. Introduction -- 2. History and heuristics -- 3. The Pólya-Vinogradov inequality -- 4. The Burgess inequality -- 5. Explicit results on the least quadratic non-residue -- 6. The large sieve and Linnik's theorem -- 7. Ankeny's Theorem -- 8. Conclusion -- Acknowledgments -- References -- Thin homotopy and the holonomy approach to gauge theories -- 1. Introduction -- 2. Brief survey -- 3. Thin homotopy and groups of based loops on a manifold -- 4. Results -- 5. Conclusion and further remarks -- Acknowledgments -- References -- On fractional higher-order Dirichlet boundary value problems: Between the Laplacian and the bilaplacian -- 1. Introduction -- 2. Pointwise evaluations -- 3. Variational framework -- 4. Positivity preserving properties -- 5. Explicit formulas for the inhomogeneous Dirichlet problem in balls -- 6. Asymptotic behavior of solutions -- Appendix A. On the composition of Green functions -- Acknowledgments -- References -- ¹ solutions on curve integrable spacetimes -- 1. Introduction -- 2. Preliminaries and notation -- 3. Curve integrable spacetimes -- Acknowledgments -- References -- On the pseudospectra of Schrödinger operators on Zoll manifolds -- 1. Introduction and statement of results -- 2. Proof of Theorem 1.2 -- 3. Proof of Theorem 1.3 -- 4. Proof of Theorem 1.4 -- 5. Examples on ² -- References -- On a conjecture of Naito-Sagaki: Littelmann paths and Littlewood-Richardson Sundaram tableaux -- Introduction -- 1. Notation for the Lie algebras -- 2. Tableaux, words and their paths -- 3. Restriction of paths that come from words. 4. The Naito-Sagaki conjecture -- 5. Littlewood-Richardson tableaux and n-symplectic Sundaram tableaux: branching -- 6. On the proof of the Naito-Sagaki conjecture -- 7. Symplectic combinatorics of King, Berele and Sundaram -- Acknowledgments -- References -- Back Cover. |
| Altri titoli varianti | Mexican Mathematicians in the World |
| Record Nr. | UNINA-9910958808603321 |
Galaz-García Fernando
|
||
| Providence : , : American Mathematical Society, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nilspace Factors for General Uniformity Seminorms, Cubic Exchangeability and Limits
| Nilspace Factors for General Uniformity Seminorms, Cubic Exchangeability and Limits |
| Autore | Candela Pablo |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Providence : , : American Mathematical Society, , 2023 |
| Descrizione fisica | 1 online resource (114 pages) |
| Disciplina |
512/.2505
512.2505 |
| Altri autori (Persone) | SzegedyBalázs |
| Collana | Memoirs of the American Mathematical Society Series |
| Soggetto topico |
Nilpotent groups
Curves, Cubic Ergodic theory Measure-preserving transformations Dynamical systems and ergodic theory -- Ergodic theory Dynamical systems and ergodic theory -- Ergodic theory -- General groups of measure-preserving transformations Probability theory and stochastic processes Probability theory and stochastic processes -- Probability theory on algebraic and topological structures Number theory -- Sequences and sets -- Arithmetic combinatorics; higher degree uniformity |
| ISBN | 1-4704-7541-3 |
| Classificazione | 37Axx37A1560-XX60Bxx11B30 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Cover -- Title page -- Chapter 1. Introduction -- Acknowledgments -- Chapter 2. Measure-theoretic preliminaries -- 2.1. Some basic notions -- 2.2. Couplings -- 2.3. Closed properties in a coupling space -- 2.4. Localization -- 2.5. Conditional independence in set lattices -- 2.6. Idempotent couplings -- Chapter 3. Cubic couplings -- 3.1. Conditional independence of simplicial sets -- 3.2. Tricubes -- 3.3. ^{ }-convolutions and ^{ }-seminorms associated with a cubic coupling -- 3.4. Fourier -algebras -- 3.5. Properties of ^{ }-convolutions -- 3.6. Topologization of cubic couplings -- 3.7. Continuous ⁿ-convolutions -- 3.8. Topological nilspace factors of \ns -- Chapter 4. The structure theorem for cubic couplings -- 4.1. Verifying the ergodicity and composition axioms -- 4.2. Complete dependence of corner couplings -- 4.3. Convolution neighbourhoods -- 4.4. Construction of the coupling Υ. -- 4.5. Verifying the corner-completion axiom -- Chapter 5. On characteristic factors associated with nilpotent group actions -- Chapter 6. On cubic exchangeability -- Chapter 7. Limits of functions on compact nilspaces -- Appendix A. Background results from measure theory -- Bibliography -- Back Cover. |
| Record Nr. | UNINA-9910915792003321 |
Candela Pablo
|
||
| Providence : , : American Mathematical Society, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||