American journal of drug delivery |
Pubbl/distr/stampa | Mairangi Bay, Auckland, N.Z., : Adis International Ltd |
Disciplina | 615.6 |
Soggetto topico |
Drug delivery systems
Drug delivery devices Drug Therapy Pharmacology Drug Delivery Systems |
Soggetto genere / forma |
Periodicals.
Periodical |
ISSN | 2230-6072 |
Formato | Materiale a stampa |
Livello bibliografico | Periodico |
Lingua di pubblicazione | eng |
Altri titoli varianti |
Drug delivery
Am. j. drug deliv |
Record Nr. | UNISA-996206250503316 |
Mairangi Bay, Auckland, N.Z., : Adis International Ltd | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Functional biomaterials : drug delivery and biomedical applications / / edited by Sougata Jana and Subrata Jana |
Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (524 pages) |
Disciplina | 615.6 |
Soggetto topico |
Nanostructured materials
Drug delivery devices Biomedical materials |
ISBN |
981-16-7151-6
981-16-7152-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Contents -- About the Editors -- Functional Biomaterials: Drug Delivery and Biomedical Applications Polymeric Micelle in Drug Delivery Applications -- 1 Introduction -- 2 Types of PMs -- 3 Synthesis Materials, Methods, and Characterization of Polymeric Micelles -- 3.1 Materials for the Synthesis of PMs -- 3.2 Preparation Methods of PMs -- 3.2.1 Direct Dissolution -- 3.2.2 Indirect Dissolution -- 3.3 Characterization of PMs -- 4 Targeting Approaches of PMs -- 4.1 Passive Targeting -- 4.2 Active Targeting -- 5 Stimuli-Based Drug Release -- 5.1 pH-Sensitive PMs -- 5.2 Thermal-Sensitive PMs -- 5.3 Redox-Sensitive PMs -- 5.4 Light-Sensitive PMs -- 6 Drug Delivery Applications -- 6.1 Anticancer Drug Delivery -- 6.2 Gene Delivery -- 6.3 Immuno Micelles -- 6.4 Ocular Drug Delivery -- 6.5 Oral Drug Delivery -- 7 Conclusion -- References -- pH-Responsive Biomaterials in Drug Delivery -- 1 Introduction -- 2 Importance of pH as a Stimulus for Drug Release -- 3 Polymeric Carrier as Biomaterial. -- 3.1 Properties of pH-Responsive Polymers -- 4 Classification of Polymeric Carrier as Biomaterial -- 4.1 Natural Polymers -- 4.1.1 Alginates -- 4.1.2 Chitosan -- 4.1.3 Pullulan -- 4.1.4 Carboxymethylcellulose -- 4.1.5 Hyaluronic Acid -- 4.1.6 Starch and Dextran -- 4.1.7 Polyurethane -- 4.2 Synthetic pH-Responsive Polymers -- 4.2.1 Polyacids/Polyanions based pH-Responsive Polymers -- 4.2.2 Polybases/Polycations based pH-Responsive Polymers -- 4.2.3 Block Copolymers -- 4.2.4 Polymer Brushes and Comb -- 4.2.5 Hydrogels -- 5 pH-Sensitive Bonds -- 5.1 Imine Bonds -- 5.2 Hydrazone Bonds -- 5.3 Oxime Bonds -- 5.4 Amide Bonds -- 5.5 Acetals -- 6 Mechanism of pH-Responsive Behavior of Biomaterials -- 6.1 Protonation as a Response to Change in pH -- 6.2 Acid Labile Bond Cleavage -- 6.3 Acid Labile Bond Cleavage for the Detachment of PEG.
7 Application of pH-Responsive Biomaterials in Drug Delivery -- 7.1 Oral Drug Delivery for Organ Targeting -- 7.1.1 Oral Drug Delivery for Local Action in the Stomach -- 7.1.2 Oral Drug Delivery for Local Action in Colon -- 7.1.3 Oral Drug Delivery for Protein and Peptide -- 7.1.4 Oral Drug Delivery for Vaccine and Immunotherapeutics -- 7.2 Tissue-Level Drug Delivery/Tumor Targeting -- 7.3 Intracellular Delivery -- 8 Summary -- References -- Stimuli-Responsive Hydrogels in Drug Delivery -- 1 Introduction -- 2 Release Mechanisms for Drugs -- 2.1 Mathematical Models -- 3 Polymers Used in the Fabrication of Stimuli-Responsive Hydrogels for Controlled Drug Delivery -- 3.1 Natural Polymers -- 3.2 Synthetic Polymers -- 3.3 Hybrid Polymers -- 4 Stimuli-Responsive Hydrogels in Drug Delivery -- 4.1 Thermo-responsive -- 4.2 pH-Responsive -- 4.3 Photoresponsive -- 4.4 Analyte-Responsive Hydrogels -- 4.5 Ultrasound -- 4.6 Others -- 5 Advances in Stimuli-Responsive Hydrogels for Drug Release -- 5.1 Transdermal -- 5.2 Vaginal -- 5.3 Ocular -- 5.4 Oral Delivery -- 5.5 Nasal -- 6 Conclusion -- References -- Polysaccharide Based Biomaterials for Dermal Applications -- 1 Introduction -- 2 Categorization of Natural Polysaccharides -- 2.1 According to the Ionic Nature -- 2.2 According to the Origin -- 2.3 According to the Shape -- 3 Polysaccharides Used in TDDS -- 3.1 Starch -- 3.2 Cellulose -- 3.3 Chitin and Chitosan -- 3.4 Hyaluronic Acid -- 3.5 Alginate/Sodium Alginate -- 4 Conclusion -- References -- Biomaterials in Gene Delivery -- 1 Introduction -- 2 Classification and Biological Performance of Biomaterials -- 3 Properties of Biomaterials -- 3.1 Physical Properties -- 3.2 Chemical Properties -- 3.3 Mechanical Properties -- 3.4 Host Response to Biomaterials -- 4 Use of Biomaterials in Medical Fields -- 5 Gene Delivery and Biological Barrier. 6 Engineering Challenges to Gene Transfer -- 7 Vectors Associated with Biomaterials Carriers -- 8 Gene Delivery Based on Non-viral Vectors -- 9 Biomaterials in Gene Delivery -- 9.1 Lipid-Based Gene Vectors -- 9.2 PLL-Based Gene Vectors -- 9.3 Polyethylenimine-Based Gene Vectors -- 9.4 Polyamidoamine Dendrimers-Based Gene Vectors -- 9.5 Chitosan-Based Gene Vector -- 10 Practical Application of Gene Delivery Systems -- 11 Perspective of Biomaterials for Gene Delivery -- 12 Conclusion -- References -- Polymeric Nanoparticles for Theranostic Treatment of Cancer -- 1 Introduction -- 2 Polymeric Nanoparticles in Cancer Treatment -- 2.1 Passive-Targeting Strategies -- 2.2 Active-Targeting Strategies -- 3 Design of Polymer-Based Nanotheranostics for Cancer -- 3.1 Fluorescence Imaging -- 3.2 X-Ray Computed Tomography -- 3.3 Magnetic Resonance Imaging -- 3.4 Positron Emission Tomography -- 3.5 Single-Photon Emission Computed Tomography -- 3.6 Ultrasound Imaging -- 4 Multimodal Theranostic Nanoparticles -- 5 Polymeric Nanotheranostic Currently in Clinical Trials -- 6 Conclusions and Remarking for Future Perspectives -- References -- Smart Theranostic Biomaterials for Advanced Healthcare Application -- 1 Introduction -- 2 Biomaterials -- 3 Natural Biomaterials -- 3.1 Polysaccharide Biomaterials -- 3.2 Protein Biomaterials -- 3.3 Decellularized Biomaterials -- 4 Synthetic Biomaterial -- 4.1 Metals -- 4.2 Ceramics -- 4.3 Glass -- 4.4 Polymers -- 5 Theranostic Biomaterials -- 6 Applications of Theranostic Biomaterials -- 7 Imaging -- 8 Therapy -- 9 Future Perspectives -- 10 Conclusion -- References -- Silk Fibroin-Based Biomaterials in Biomedical Applications -- 1 Introduction -- 2 Life Cycle of Silkworm -- 3 Extraction Process of Silk Fibroin from Bombyx Mori Cocoons -- 3.1 Dissolution of Silk Fibroin -- 4 Cross-Linking Strategies for Silk Fibroin. 5 Morphological Diversity of Silk Fibroin into Various Forms -- 5.1 Hydrogel -- 5.2 Sponges -- 5.3 Electrospun Silk Fibers -- 5.4 Microspheres -- 5.5 Films -- 5.6 Tubes -- 6 Biomedical Applications of Silk Fibroin Based Materials -- 6.1 Bone -- 6.2 Articular Cartilage -- 6.3 Cornea -- 6.4 Wound Healing -- 6.5 Vascular Graft -- 6.6 Drug Delivery -- 6.7 Gene Delivery -- 7 Future Perspectives -- References -- Biomaterial-Based Nanofibers Scaffolds in Tissue Engineering Application -- 1 Introduction -- 2 Bone Fracture Statistics -- 3 Bone and Biomaterials -- 4 Nanofibrous Scaffolds -- 5 Analogous Functions of Scaffolds and Extracellular Matrix -- 6 Materials for Scaffolds -- 7 Fabrication Techniques -- 8 Scaffold Applications -- 9 Latest Developments and Challenges -- 10 Conclusion and Future Perspectives -- References -- Biomedical Applications of Inorganic Biomaterials -- 1 Introduction -- 2 Nonmetallic Biomaterials -- 2.1 Ceramic Biomaterials -- 2.1.1 Biodegradable or Resorbable Ceramics -- Calcium Phosphate -- Coralline -- Zinc-Calcium-Phosphorous Oxide (ZCAP) Ceramics -- 2.1.2 Bioactive Ceramics -- Bioglass -- Ceravitals -- Hydroxyapatite -- 2.1.3 Bioinert Ceramics -- Alumina Ceramics -- Zirconia Ceramics -- Carbon Ceramics -- 2.2 Biocomposites -- 2.2.1 Classification of Composites -- Fibrous Composites -- Particulate Composite -- 2.3 Polymeric Biomaterials -- 2.3.1 Rubber -- 2.3.2 Polyphosphate -- 2.3.3 Biosilica -- 3 Drawbacks of the Inorganic Biomaterials -- 4 Conclusion -- References -- Synthesis Biomaterials in Biomedical Applications -- 1 Introduction -- 1.1 Design of Biomaterial -- 1.1.1 Polymer Materials -- 1.1.2 Metal Biomaterials -- 1.1.3 Synthesis Composite Materials -- 1.1.4 Ceramics Materials -- 2 Synthetic Biomaterials -- 2.1 Synthesis Polymer Biomaterials for Biomedical Applications -- 2.2 Synthetic Biodegradable Polymers. 2.3 Synthetic Biodegradable Polymer in Tissue Engineering Applications -- 2.3.1 Nerve Repair -- 2.3.2 Skin Regeneration -- 2.3.3 Bone Regeneration -- 2.4 Biodegradable Synthetic Polymer in Drug Delivery Application -- 3 Synthetic Conducting Polymer -- 3.1 Types of Conduction Polymers -- 3.2 Biomedical Application of Conducting Polymer -- 3.2.1 Tissue Engineering Application of Synthesis Conducting Polymer -- Neural Applications -- Conducting Polymer in Cardiovascular Tissue Engineering -- 3.2.2 Drug Delivery Application of Synthetic Conducting Polymer -- 4 Synthetic Polymer Hydrogel -- 4.1 Biomedical Application of Synthetic Polymer Hydrogel -- 5 Stimuli-Responsive Synthetic Polymer -- 5.1 Temperature and pH-Responsive Synthetic Polymers -- 5.2 Stimuli-Responsive Synthetic Biopolymer -- 5.3 Responsive Synthetic for Biological Polymer Micelles -- 5.4 Stimuli-Responsive Synthetic Polymers Application -- 5.4.1 Actuators and Artificial Muscles Application -- 5.4.2 Sensors -- 5.4.3 Controlled Drug Delivery -- 5.4.4 Gene Delivery -- 6 Polyelectrolytes (PEs) for Biomedical Applications -- 6.1 Types of Polyelectrolyte Complex (PEC) -- 6.2 Preparation of Polyelectrolytes -- 6.3 Applications of PECs in Wound Healing -- 6.3.1 Wound Dressing -- 6.3.2 PEC-in Wound Dressings Applications -- 6.4 Drug Delivery Application of PECs -- 6.5 Tissue Engineering Application of PECs -- 7 Synthetic Fluorescent Gold Nanoclusters for Detecting Applications in Cancer Treatment -- 7.1 Strategies for the Synthesis of Gold Nanoparticles (AuNPs) -- 7.1.1 Dendrimer -- 7.1.2 Proteins -- 7.2 Biomedical Applications of AuNCs -- 7.2.1 Imaging Biography and Targeted Therapy Application of AuNCs -- Biosensors -- 8 Synthetic Biomaterials with Antimicrobial Properties -- 8.1 Silvernanoparticles as Antimicrobial Agent in Biomedical Application -- 8.2 Silver-Polymeric Nanocomposites. 8.3 Silver-Inorganic Nanocomposites. |
Record Nr. | UNINA-9910743362803321 |
Gateway East, Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Implantable electronic medical devices / Dennis Fitzpatrick |
Autore | Fitzpatrick, Dennis |
Descrizione fisica | ix, 183 p. : ill. ; 24 cm |
Disciplina | 610.28 |
Soggetto topico |
Biomedical engineering
Drug delivery devices Cochlear implants Cardiovascular instruments, Implanted |
ISBN | 9780124165564 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003610439707536 |
Fitzpatrick, Dennis | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|