Amarts and set function processes [e-book] / by Allan Gut, Klaus D. Schmidt |
Autore | Gut, Allan |
Pubbl/distr/stampa | Berlin : Springer, 1983 |
Descrizione fisica | 1 online resource (ii, 258 p.) |
Disciplina | 519.2 |
Altri autori (Persone) | Schmidt, Klaus D.author |
Collana | Lecture Notes in Mathematics, 0075-8434 ; 1042 |
Soggetto topico |
Mathematics
Distribution (Probability theory) |
ISBN | 9783540387541 |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002196639707536 |
Gut, Allan | ||
Berlin : Springer, 1983 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. del Salento | ||
|
Analysis on Gaussian spaces / Yaozhong Hu, University of Kansas, USA |
Autore | Hu, Yaozhong <1961- > |
Descrizione fisica | xi, 470 pages ; 24 cm |
Disciplina | 515.42 |
Soggetto topico |
Spaces of measures
Gaussian measures Measure theory Gaussian distribution Distribution (Probability theory) |
ISBN | 9789813142176 (hardcover : alk. paper) |
Classificazione |
AMS 60G15
AMS 28C20 LC QA312.H8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991003427709707536 |
Hu, Yaozhong <1961- > | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analytical methods in probability theory : proceedings of the conference held at Oberwolfach, Germany, June 9-14, 1980 / edited by D. Dugué, E. Lukacs, and V. K. Rohatgi |
Autore | Dugue, Daniel |
Pubbl/distr/stampa | Berlin : Springer, 1981 |
Descrizione fisica | ix, 183 p. ; 24 cm. |
Disciplina |
510
519.2 |
Altri autori (Persone) |
Lukacs, Eugene
Rohatgi, Vijay K. |
Collana | Lecture notes in mathematics, 0075-8434 ; 861 |
Soggetto topico |
Probability theory - Congresses
Distribution (Probability theory) |
ISBN | 3540108238 |
Classificazione |
AMS 60-06
AMS 60-XX |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000684439707536 |
Dugue, Daniel | ||
Berlin : Springer, 1981 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. del Salento | ||
|
Analytical methods in probability theory : : proceedings of the conference held at Oberwolfach, Germany, June 9-14, 1980 / / edited by Daniel Dugue, E. Lukacs, and V. K. Rohatgi |
Edizione | [1st ed. 1981.] |
Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1989] |
Descrizione fisica | 1 online resource (X, 186 p.) |
Disciplina | 519.2 |
Collana | Lecture Notes in Mathematics |
Soggetto topico |
Mathematics
Distribution (Probability theory) |
ISBN |
0-387-10823-8
3-540-36785-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Reduction of weak limit problems by transformations -- Characterizations of unimodal distribution functions -- Random sampling from a continuous parameter stochastic process -- On a test for goodness-of-fit based on the empirical probability measure of Foutz and testing for exponentiality -- A theorem of Deny with applications to characterization problems -- Multivariate tests of independence -- Local limit theorem for sample extremes -- On a simultaneous characterization of the poisson law and the gamma distribution -- Self-decomposable discrete distributions and branching processes -- An application of the method of moments to the central limit theorem on hyperbolic spaces -- Convergences stochastiques des processus ponctuels composes a signe -- Decomposition of probability measures on locally compact abelian groups -- Problemes classiques de probabilite sur un couple de Gelfand -- Construction of characterization theorems -- Local time and invariance -- On the rate of convergence in the central limit theorem -- Almost certain behavior of row sums of double arrays -- Extensions of Lukacs’ characterization of the gamma distribution -- On the unimodality of infinitely divisible distribution functions II. |
Record Nr. | UNISA-996466636903316 |
Berlin, Germany ; ; New York, New York : , : Springer-Verlag, , [1989] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Analytical methods in probability theory [e-book] : proceedings of the conference held at Oberwolfach, Germany, June 9–14, 1980 / edited by Daniel Dugué ... [et al.] |
Pubbl/distr/stampa | Berlin : Springer, 1981 |
Descrizione fisica | 1 online resource (x, 186 p.) |
Disciplina | 519.2 |
Altri autori (Persone) | Dugué, Daniel |
Collana | Lecture notes in mathematics, 0075-8434 ; 861 |
Soggetto topico |
Probability theory - Congresses
Distribution (Probability theory) |
ISBN | 9783540367857 |
Classificazione | AMS 60-06 |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002161649707536 |
Berlin : Springer, 1981 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. del Salento | ||
|
Applied probability : from random experiments to random sequences and statistics / / Valérie Girardin and Nikolaos Limnios |
Autore | Girardin Valérie |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (265 pages) |
Disciplina | 519.2 |
Soggetto topico |
Distribution (Probability theory)
Statistics Stochastic processes Probabilitats Estadística matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-97963-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Notation -- 1 Events and Probability Spaces -- 1.1 Sample Space -- 1.2 Measure Spaces -- 1.2.1 σ-Algebras -- Properties of σ-Algebras -- 1.2.2 Measures -- Properties of Measures -- Dirac Measure -- Counting Measure -- Lebesgue Measure -- 1.3 Probability Spaces -- 1.3.1 General Case -- 1.3.2 Conditional Probabilities -- 1.3.3 Discrete Case: Combinatorial Analysis and Entropy -- Properties of Shannon Entropy -- 1.4 Independence of Finite Collections -- 1.5 Exercises -- 2 Random Variables -- 2.1 Random Variables -- 2.1.1 Measurable Functions -- Properties of Measurable Functions -- 2.1.2 Distributions and Distribution Functions -- Properties of Distribution Functions -- Properties of Quantiles -- 2.2 Expectation -- 2.2.1 Lebesgue Integral -- Properties of Lebesgue Integrals -- 2.2.2 Expectation -- 2.3 Discrete Random Variables -- 2.3.1 General Properties -- 2.3.2 Classical Discrete Distributions -- Dirac Distribution -- Uniform Distribution -- Bernoulli Distribution -- Binomial Distribution -- Hyper-Geometric Distribution -- Geometric and Negative Binomial Distributions -- Poisson Distribution -- 2.4 Continuous Random Variables -- 2.4.1 Absolute Continuity of Measures -- 2.4.2 Densities -- Properties of Densities of Random Variables -- 2.4.3 Classical Distributions with Densities -- Uniform Distribution -- Gaussian Distribution -- Gamma, Exponential, Chi-Squared, Erlang Distributions -- Log-Normal Distribution -- Weibull Distribution -- Inverse-Gaussian Distribution -- Beta Distribution -- Fisher Distribution -- Student and Cauchy Distributions -- 2.4.4 Determination of Distributions -- 2.5 Analytical Tools -- 2.5.1 Generating Functions -- Properties of Generating Functions -- 2.5.2 Fourier Transform and Characteristic Functions -- Properties of Characteristic Functions -- 2.5.3 Laplace Transform.
Properties of Laplace Transforms -- 2.5.4 Moment Generating Functions and Cramér Transform -- Properties of Cramér Transform -- 2.6 Reliability and Survival Analysis -- 2.7 Exercises and Complements -- 3 Random Vectors -- 3.1 Relations Between Random Variables -- 3.1.1 Covariance -- Properties of Covariance and Correlation Coefficients -- 3.1.2 Independence of Random Variables -- 3.1.3 Stochastic Order Relation -- 3.1.4 Entropy -- Properties of Entropy -- 3.2 Characteristics of Random Vectors -- 3.2.1 Product of Probability Spaces -- 3.2.2 Distribution of Random Vectors -- Properties of Multi-dimensional Distribution Functions -- Properties of Densities of Random Vectors -- Properties of Covariance Matrices -- 3.2.3 Independence of Random Vectors -- Properties of Covariance Matrices of Two Vectors -- 3.3 Functions of Random Vectors -- 3.3.1 Order Statistics -- 3.3.2 Sums of Independent Variables or Vectors -- Properties of Convolution -- 3.3.3 Determination of Distributions -- 3.4 Gaussian Vectors -- 3.5 Exercises and Complements -- 4 Random Sequences -- 4.1 Enumerable Sequences -- 4.1.1 Sequences of Events -- Properties of Superior and Inferior Limits of Events -- 4.1.2 Independence of Sequences -- 4.2 Stochastic Convergence -- 4.2.1 Different Types of Convergence -- 4.2.2 Convergence Criteria -- 4.2.3 Links Between Convergences -- 4.2.4 Convergence of Sequences of Random Vectors -- 4.3 Limit Theorems -- 4.3.1 Asymptotics of Discrete Distributions -- 4.3.2 Laws of Large Numbers -- 4.3.3 Central Limit Theorem -- 4.4 Stochastic Simulation Methods -- 4.4.1 Generating Random Variables -- 4.4.2 Monte Carlo Simulation Method -- 4.5 Exercises and Complements -- 5 Introduction to Statistics -- 5.1 Non-parametric Statistics -- 5.1.1 Empirical Distribution Function -- 5.1.2 Confidence Intervals -- 5.1.3 Non-parametric Testing -- 5.2 Parametric Statistics. 5.2.1 Point Estimation -- 5.2.2 Maximum Likelihood Method -- 5.2.3 Precision of the Estimators -- 5.2.4 Parametric Confidence Intervals -- 5.2.5 Testing in a Parametric Model -- 5.3 The Linear Model -- 5.3.1 Linear and Quadratic Approximations -- 5.3.2 The Simple Linear Model -- 5.3.3 ANOVA -- For Two Samples -- One Way Model -- Two Way Model -- 5.4 Exercises and Complements -- Further Reading -- Measure and Probability -- Probability Theory and Statistics -- Applications -- Index. |
Record Nr. | UNINA-9910568249603321 |
Girardin Valérie | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Applied probability : from random experiments to random sequences and statistics / / Valérie Girardin and Nikolaos Limnios |
Autore | Girardin Valérie |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (265 pages) |
Disciplina | 519.2 |
Soggetto topico |
Distribution (Probability theory)
Statistics Stochastic processes Probabilitats Estadística matemàtica |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-97963-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Contents -- Notation -- 1 Events and Probability Spaces -- 1.1 Sample Space -- 1.2 Measure Spaces -- 1.2.1 σ-Algebras -- Properties of σ-Algebras -- 1.2.2 Measures -- Properties of Measures -- Dirac Measure -- Counting Measure -- Lebesgue Measure -- 1.3 Probability Spaces -- 1.3.1 General Case -- 1.3.2 Conditional Probabilities -- 1.3.3 Discrete Case: Combinatorial Analysis and Entropy -- Properties of Shannon Entropy -- 1.4 Independence of Finite Collections -- 1.5 Exercises -- 2 Random Variables -- 2.1 Random Variables -- 2.1.1 Measurable Functions -- Properties of Measurable Functions -- 2.1.2 Distributions and Distribution Functions -- Properties of Distribution Functions -- Properties of Quantiles -- 2.2 Expectation -- 2.2.1 Lebesgue Integral -- Properties of Lebesgue Integrals -- 2.2.2 Expectation -- 2.3 Discrete Random Variables -- 2.3.1 General Properties -- 2.3.2 Classical Discrete Distributions -- Dirac Distribution -- Uniform Distribution -- Bernoulli Distribution -- Binomial Distribution -- Hyper-Geometric Distribution -- Geometric and Negative Binomial Distributions -- Poisson Distribution -- 2.4 Continuous Random Variables -- 2.4.1 Absolute Continuity of Measures -- 2.4.2 Densities -- Properties of Densities of Random Variables -- 2.4.3 Classical Distributions with Densities -- Uniform Distribution -- Gaussian Distribution -- Gamma, Exponential, Chi-Squared, Erlang Distributions -- Log-Normal Distribution -- Weibull Distribution -- Inverse-Gaussian Distribution -- Beta Distribution -- Fisher Distribution -- Student and Cauchy Distributions -- 2.4.4 Determination of Distributions -- 2.5 Analytical Tools -- 2.5.1 Generating Functions -- Properties of Generating Functions -- 2.5.2 Fourier Transform and Characteristic Functions -- Properties of Characteristic Functions -- 2.5.3 Laplace Transform.
Properties of Laplace Transforms -- 2.5.4 Moment Generating Functions and Cramér Transform -- Properties of Cramér Transform -- 2.6 Reliability and Survival Analysis -- 2.7 Exercises and Complements -- 3 Random Vectors -- 3.1 Relations Between Random Variables -- 3.1.1 Covariance -- Properties of Covariance and Correlation Coefficients -- 3.1.2 Independence of Random Variables -- 3.1.3 Stochastic Order Relation -- 3.1.4 Entropy -- Properties of Entropy -- 3.2 Characteristics of Random Vectors -- 3.2.1 Product of Probability Spaces -- 3.2.2 Distribution of Random Vectors -- Properties of Multi-dimensional Distribution Functions -- Properties of Densities of Random Vectors -- Properties of Covariance Matrices -- 3.2.3 Independence of Random Vectors -- Properties of Covariance Matrices of Two Vectors -- 3.3 Functions of Random Vectors -- 3.3.1 Order Statistics -- 3.3.2 Sums of Independent Variables or Vectors -- Properties of Convolution -- 3.3.3 Determination of Distributions -- 3.4 Gaussian Vectors -- 3.5 Exercises and Complements -- 4 Random Sequences -- 4.1 Enumerable Sequences -- 4.1.1 Sequences of Events -- Properties of Superior and Inferior Limits of Events -- 4.1.2 Independence of Sequences -- 4.2 Stochastic Convergence -- 4.2.1 Different Types of Convergence -- 4.2.2 Convergence Criteria -- 4.2.3 Links Between Convergences -- 4.2.4 Convergence of Sequences of Random Vectors -- 4.3 Limit Theorems -- 4.3.1 Asymptotics of Discrete Distributions -- 4.3.2 Laws of Large Numbers -- 4.3.3 Central Limit Theorem -- 4.4 Stochastic Simulation Methods -- 4.4.1 Generating Random Variables -- 4.4.2 Monte Carlo Simulation Method -- 4.5 Exercises and Complements -- 5 Introduction to Statistics -- 5.1 Non-parametric Statistics -- 5.1.1 Empirical Distribution Function -- 5.1.2 Confidence Intervals -- 5.1.3 Non-parametric Testing -- 5.2 Parametric Statistics. 5.2.1 Point Estimation -- 5.2.2 Maximum Likelihood Method -- 5.2.3 Precision of the Estimators -- 5.2.4 Parametric Confidence Intervals -- 5.2.5 Testing in a Parametric Model -- 5.3 The Linear Model -- 5.3.1 Linear and Quadratic Approximations -- 5.3.2 The Simple Linear Model -- 5.3.3 ANOVA -- For Two Samples -- One Way Model -- Two Way Model -- 5.4 Exercises and Complements -- Further Reading -- Measure and Probability -- Probability Theory and Statistics -- Applications -- Index. |
Record Nr. | UNISA-996479370903316 |
Girardin Valérie | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
The art of random walks [e-book] / András Telcs |
Autore | Telcs, András |
Pubbl/distr/stampa | Berlin : Springer, c2006 |
Descrizione fisica | v.: digital |
Disciplina | 519.282 |
Collana | Lecture notes in mathematics, 0075-8434 ; 1885 |
Soggetto topico |
Differential equations, partial
Distribution (Probability theory) |
ISBN | 9783540330288 |
Classificazione |
AMS 60J10
AMS 60J45 LC QA3 |
Formato | Software |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000566169707536 |
Telcs, András | ||
Berlin : Springer, c2006 | ||
Software | ||
Lo trovi qui: Univ. del Salento | ||
|
Asymptotic approximations for probability integrals [e-book] / by Karl Wilhelm Breitung |
Autore | Breitung, Karl Wilhelm |
Pubbl/distr/stampa | Berlin : Springer, 1994 |
Descrizione fisica | 1 online resource (ix, 146 p.) |
Disciplina | 519.2 |
Collana | Lecture Notes in Mathematics, 0075-8434 ; 1592 |
Soggetto topico |
Mathematics
Distribution (Probability theory) Statistics |
ISBN | 9783540490333 |
Classificazione |
AMS 41A60
AMS 41A63 AMS 60F10 AMS 60G15 AMS 60G70 AMS 62N05 AMS 90B25 |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002249859707536 |
Breitung, Karl Wilhelm | ||
Berlin : Springer, 1994 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. del Salento | ||
|
Asymptotic combinatorics with applications to mathematical physics [e-book] : a european mathematical summer school held at the Euler Institute, St. Petersburg, Russia, July 9-20, 2001 / edited by Anatoly M. Vershik, Yuri Yakubovich |
Pubbl/distr/stampa | Berlin : Springer, 2003 |
Descrizione fisica | 1 online resource (x, 246 p.) |
Disciplina | 511.6 |
Altri autori (Persone) |
Vershik, Anatoly M.
Yakubovich, Yuri |
Collana | Lecture Notes in Mathematics, 0075-8434 ; 1815 |
Soggetto topico |
Mathematics
Group theory Functional analysis Differential equations, partial Combinatorics Distribution (Probability theory) |
ISBN | 9783540448907 |
Classificazione |
AMS 05-XX
AMS 35-XX AMS 46-XX AMS 60-XX |
Formato | Risorse elettroniche |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002221529707536 |
Berlin : Springer, 2003 | ||
Risorse elettroniche | ||
Lo trovi qui: Univ. del Salento | ||
|