top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Distillation design and control using Aspen simulation / / William L. Luyben
Distillation design and control using Aspen simulation / / William L. Luyben
Autore Luyben William L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Descrizione fisica 1 online resource (742 p.)
Disciplina 660/.28425
Soggetto topico Distillation apparatus - Design and construction
Chemical process control - Simulation methods
Petroleum - Refining
ISBN 1-5231-1062-7
1-118-51019-4
1-118-51013-5
1-118-51009-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; Preface to the Second Edition; Preface to the First Edition; Chapter 1: Fundamentals of Vapor-Liquid-Equilibrium (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubble Point Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Distillation Boundaries; 1.10 Conclusions; Reference; Chapter 2: Analysis of Distillation Columns; 2.1 Design Degrees of Freedom; 2.2 Binary Mccabe-Thiele Method; 2.3 Approximate Multicomponent Methods
2.4 Conclusions Chapter 3: Setting Up a Steady-State Simulation; 3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Parameters of Equipment; 3.5 Running the Simulation; 3.6 Using Design Spec/Vary Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conceptual Design; 3.10 Conclusions; Chapter 4: Distillation Economic Optimization; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Optimum Pressure for Vacuum Columns
4.6 Conclusions Chapter 5: More Complex Distillation Systems; 5.1 Extractive Distillation; 5.2 Ethanol Dehydration; 5.3 Pressure-Swing Azeotropic Distillation; 5.4 Heat-Integrated Columns; 5.5 Conclusions; Chapter 6: Steady-State Calculations for Control Structure Selection; 6.1 Control Structure Alternatives; 6.2 Feed Composition Sensitivity Analysis (ZSA); 6.3 Temperature Control Tray Selection; 6.4 Conclusions; Reference; Chapter 7: Converting From Steady-State to Dynamic Simulation; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics
7.4 Installing Basic Controllers 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation; 7.7 Conclusions; Chapter 8: Control of More Complex Columns; 8.1 Extractive Distillation Process; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Unusual Control Structure; 8.6 Conclusions; References; Chapter 9: Reactive Distillation; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 Tame Process Basics; 9.4 Tame Reaction Kinetics and Vle
9.5 Plantwide Control Structure 9.6 Conclusions; References; Chapter 10: Control of Sidestream Columns; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column; 10.3 Liquid Sidestream Column with Stripper; 10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusions; Chapter 11: Control of Petroleum Fractionators; 11.1 Petroleum Fractions; 11.2 Characterization Crude Oil; 11.3 Steady-State Design of Preflash Column; 11.4 Control of Preflash Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusions; References
Chapter 12: Divided-Wall (Petlyuk) Columns
Record Nr. UNINA-9910141607903321
Luyben William L.  
Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distillation design and control using Aspen simulation / / William L. Luyben
Distillation design and control using Aspen simulation / / William L. Luyben
Autore Luyben William L.
Edizione [Second edition.]
Pubbl/distr/stampa Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Descrizione fisica 1 online resource (742 p.)
Disciplina 660/.28425
Soggetto topico Distillation apparatus - Design and construction
Chemical process control - Simulation methods
Petroleum - Refining
ISBN 1-5231-1062-7
1-118-51019-4
1-118-51013-5
1-118-51009-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Dedication; Preface to the Second Edition; Preface to the First Edition; Chapter 1: Fundamentals of Vapor-Liquid-Equilibrium (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubble Point Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Distillation Boundaries; 1.10 Conclusions; Reference; Chapter 2: Analysis of Distillation Columns; 2.1 Design Degrees of Freedom; 2.2 Binary Mccabe-Thiele Method; 2.3 Approximate Multicomponent Methods
2.4 Conclusions Chapter 3: Setting Up a Steady-State Simulation; 3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Parameters of Equipment; 3.5 Running the Simulation; 3.6 Using Design Spec/Vary Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conceptual Design; 3.10 Conclusions; Chapter 4: Distillation Economic Optimization; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Optimum Pressure for Vacuum Columns
4.6 Conclusions Chapter 5: More Complex Distillation Systems; 5.1 Extractive Distillation; 5.2 Ethanol Dehydration; 5.3 Pressure-Swing Azeotropic Distillation; 5.4 Heat-Integrated Columns; 5.5 Conclusions; Chapter 6: Steady-State Calculations for Control Structure Selection; 6.1 Control Structure Alternatives; 6.2 Feed Composition Sensitivity Analysis (ZSA); 6.3 Temperature Control Tray Selection; 6.4 Conclusions; Reference; Chapter 7: Converting From Steady-State to Dynamic Simulation; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics
7.4 Installing Basic Controllers 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation; 7.7 Conclusions; Chapter 8: Control of More Complex Columns; 8.1 Extractive Distillation Process; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Unusual Control Structure; 8.6 Conclusions; References; Chapter 9: Reactive Distillation; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 Tame Process Basics; 9.4 Tame Reaction Kinetics and Vle
9.5 Plantwide Control Structure 9.6 Conclusions; References; Chapter 10: Control of Sidestream Columns; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column; 10.3 Liquid Sidestream Column with Stripper; 10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusions; Chapter 11: Control of Petroleum Fractionators; 11.1 Petroleum Fractions; 11.2 Characterization Crude Oil; 11.3 Steady-State Design of Preflash Column; 11.4 Control of Preflash Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusions; References
Chapter 12: Divided-Wall (Petlyuk) Columns
Record Nr. UNINA-9910808123303321
Luyben William L.  
Hoboken, New Jersey : , : AlChE : , : Wiley, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Distillation design and control using Aspen simulation / / William L. Luyben
Distillation design and control using Aspen simulation / / William L. Luyben
Autore Luyben William L.
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-Interscience, , 2006
Descrizione fisica 1 online resource (361 p.)
Disciplina 660.2842
660/.28425
Soggetto topico Distillation apparatus - Design and construction
Chemical process control - Simulation methods
ISBN 1-280-44809-1
9786610448098
0-470-36131-X
0-471-78525-3
1-61583-844-9
0-471-78524-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto DISTILLATION DESIGN AND CONTROL USING ASPENTM SIMULATION; CONTENTS; PREFACE; 1 FUNDAMENTALS OF VAPOR-LIQUID PHASE EQUILIBRIUM (VLE); 1.1 Vapor Pressure; 1.2 Binary VLE Phase Diagrams; 1.3 Physical Property Methods; 1.4 Relative Volatility; 1.5 Bubblepoint Calculations; 1.6 Ternary Diagrams; 1.7 VLE Nonideality; 1.8 Residue Curves for Ternary Systems; 1.9 Conclusion; 2 ANALYSIS OF DISTILLATION COLUMNS; 2.1 Design Degrees of Freedom; 2.2 Binary McCabe-Thiele Method; 2.3 Approximate Multicomponent Methods; 2.4 Analysis of Ternary Systems Using DISTIL; 2.5 Conclusion
3 SETTING UP A STEADY-STATE SIMULATION3.1 Configuring a New Simulation; 3.2 Specifying Chemical Components and Physical Properties; 3.3 Specifying Stream Properties; 3.4 Specifying Equipment Parameters; 3.5 Running the Simulation; 3.6 Using "Design Spec/Vary" Function; 3.7 Finding the Optimum Feed Tray and Minimum Conditions; 3.8 Column Sizing; 3.9 Conclusion; 4 DISTILLATION ECONOMIC OPTIMIZATION; 4.1 Heuristic Optimization; 4.2 Economic Basis; 4.3 Results; 4.4 Operating Optimization; 4.5 Conclusion; 5 MORE COMPLEX DISTILLATION SYSTEMS; 5.1 Methyl Acetate/Methanol/Water System
5.2 Ethanol Dehydration5.3 Heat-Integrated Columns; 5.4 Conclusion; 6 STEADY-STATE CALCULATIONS FOR CONTROL STRUCTURE SELECTION; 6.1 Summary of Methods; 6.2 Binary Propane/Isobutane System; 6.3 Ternary BTX System; 6.4 Multicomponent Hydrocarbon System; 6.5 Ternary Azeotropic System; 6.6 Conclusion; 7 CONVERTING FROM STEADY STATE TO DYNAMIC SIMULATION; 7.1 Equipment Sizing; 7.2 Exporting to Aspen Dynamics; 7.3 Opening the Dynamic Simulation in Aspen Dynamics; 7.4 Installing Basic Controllers; 7.5 Installing Temperature and Composition Controllers; 7.6 Performance Evaluation
7.7 Comparison with Economic Optimum Design7.8 Conclusion; 8 CONTROL OF MORE COMPLEX COLUMNS; 8.1 Methyl Acetate Column; 8.2 Columns with Partial Condensers; 8.3 Control of Heat-Integrated Distillation Columns; 8.4 Control of Azeotropic Columns/Decanter System; 8.5 Conclusion; 9 REACTIVE DISTILLATION; 9.1 Introduction; 9.2 Types of Reactive Distillation Systems; 9.3 TAME Process Basics; 9.4 TAME Reaction Kinetics and VLE; 9.5 Plantwide Control Structure; 9.6 Conclusion; 10 CONTROL OF SIDESTREAM COLUMNS; 10.1 Liquid Sidestream Column; 10.2 Vapor Sidestream Column
10.3 Liquid Sidestream Column with Stripper10.4 Vapor Sidestream Column with Rectifier; 10.5 Sidestream Purge Column; 10.6 Conclusion; 11 CONTROL OF PETROLEUM FRACTIONATORS; 11.1 Petroleum Fractions; 11.2 Characterization of Crude Oil; 11.3 Steady-State Design of PREFLASH Column; 11.4 Control of PREFLASH Column; 11.5 Steady-State Design of Pipestill; 11.6 Control of Pipestill; 11.7 Conclusion; INDEX
Record Nr. UNISA-996202368903316
Luyben William L.  
Hoboken, New Jersey : , : Wiley-Interscience, , 2006
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Reactive distillation [[electronic resource] ] : status and future directions / / Kai Sundmacher and Achim Kienle (eds.)
Reactive distillation [[electronic resource] ] : status and future directions / / Kai Sundmacher and Achim Kienle (eds.)
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2003
Descrizione fisica 1 online resource (309 p.)
Disciplina 660
660.28425
660/.28425
Altri autori (Persone) SundmacherKai
KienleAchim
Soggetto topico Distillation
Distillation apparatus - Design and construction
Reactivity (Chemistry) - Industrial applications
Soggetto genere / forma Electronic books.
ISBN 1-280-55826-1
9786610558261
3-527-60626-2
3-527-60052-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Reactive Distillation Status and Future Directions; Contents; Preface; List of Contributors; Part I Industrial Applications; 1 Industrial Applications of Reactive Distillation; 1.1 Introduction; 1.2 Etherification: MTBE, ETBE, and TAME; 1.3 Dimerization, Oligomerization, and Condensation; 1.4 Esterification: Methyl Acetate and Other Esters; 1.5 Hydrolysis of Esters; 1.6 Hydration; 1.7 Hydrogenation/Hydrodesulfurization/Hydrocracking; 1.7.1 Benzene to Cyclohexane; 1.7.2 Selective Hydrogenation of C(4) Stream; 1.7.3 Hydrogenation of Pentadiene; 1.7.4 C(4) Acetylene Conversion
1.7.5 Hydrodesulfurization, Hydrodenitrogenation, and Hydrocracking1.7.6 Miscellaneous Hydrogenations; 1.8 Chlorination; 1.9 Acetalization/Ketalization; 1.10 Recovery and Purification of Chemicals; 1.11 Difficult Separations; 1.12 Chemical Heat Pumps; 1.13 RD with Supercritical Fluids; 1.14 Conclusions; 2 Reactive Distillation Process Development in the Chemical Process Industries; 2.1 Introduction; 2.2 Process Synthesis; 2.3 Process Design and Optimization; 2.4 Limitations of the Methods for Synthesis and Design: the Scale-Up Problem; 2.5 Choice of Equipment
2.6 Some Remarks on the Role of Catalysis2.7 Conclusions; 2.8 Acknowledgments; 2.9 Notation; 3 Application of Reactive Distillation and Strategies in Process Design; 3.1 Introduction; 3.2 Challenges in Process Design for Reactive Distillation; 3.2.1 Feasibility Analysis; 3.2.2 Catalyst and Hardware Selection; 3.2.3 Column Scale-Up; 3.3 MTBE Decomposition via Reactive Distillation; 3.3.1 Conceptual Design; 3.3.2 Model Development; 3.3.2.1 Catalyst Selection and Reaction Kinetics; 3.3.2.2 Phase Equilibrium Model; 3.3.2.3 Steady-State Simulation; 3.3.3 Lab-Scale Experiments
3.3.4 Pilot-Plant Experiments3.4 Conclusions; Part II Physicochemical Fundamentals; 4 Thermodynamics of Reactive Separations; 4.1 Introduction; 4.2 Process Models for Reactive Distillation; 4.2.1 Outline; 4.2.2 Case Study: Methyl Acetate; 4.3 Equilibrium Thermodynamics of Reacting Multiphase Mixtures; 4.4 Fluid Property Models for Reactive Distillation; 4.4.1 Outline; 4.4.2 Examples; 4.4.2.1 Hexyl Acetate: Sensitivity Analysis; 4.4.2.2 Methyl Acetate: Prediction of Polynary Vapor-Liquid Equilibria; 4.4.2.3 Butyl Acetate: Thermodynamic Consistency
4.4.2.4 Ethyl Acetate: Consequences of Inconsistency4.4.2.5 Formaldehyde + Water + Methanol: Intrinsically Reactive Complex Mixture; 4.5 Experimental Studies of Phase Equilibria in Reacting Systems; 4.5.1 Outline; 4.5.2 Reactive Vapor-Liquid Equilibria; 4.5.2.1 Batch Experiments; 4.5.2.2 Flow Experiments; 4.5.2.3 Recirculation Experiments; 4.6 Conclusions; 4.7 Acknowledgments; 4.8 Notation; 5 Importance of Reaction Kinetics for Catalytic Distillation Processes; 5.1 Introduction; 5.2 Reactive Ideal Binary Mixtures; 5.2.1 Reaction-Distillation Process with External Recycling
5.2.1.1 (,)-Analysis
Record Nr. UNINA-9910146239603321
Weinheim, : Wiley-VCH, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reactive distillation [[electronic resource] ] : status and future directions / / Kai Sundmacher and Achim Kienle (eds.)
Reactive distillation [[electronic resource] ] : status and future directions / / Kai Sundmacher and Achim Kienle (eds.)
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2003
Descrizione fisica 1 online resource (309 p.)
Disciplina 660
660.28425
660/.28425
Altri autori (Persone) SundmacherKai
KienleAchim
Soggetto topico Distillation
Distillation apparatus - Design and construction
Reactivity (Chemistry) - Industrial applications
ISBN 1-280-55826-1
9786610558261
3-527-60626-2
3-527-60052-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Reactive Distillation Status and Future Directions; Contents; Preface; List of Contributors; Part I Industrial Applications; 1 Industrial Applications of Reactive Distillation; 1.1 Introduction; 1.2 Etherification: MTBE, ETBE, and TAME; 1.3 Dimerization, Oligomerization, and Condensation; 1.4 Esterification: Methyl Acetate and Other Esters; 1.5 Hydrolysis of Esters; 1.6 Hydration; 1.7 Hydrogenation/Hydrodesulfurization/Hydrocracking; 1.7.1 Benzene to Cyclohexane; 1.7.2 Selective Hydrogenation of C(4) Stream; 1.7.3 Hydrogenation of Pentadiene; 1.7.4 C(4) Acetylene Conversion
1.7.5 Hydrodesulfurization, Hydrodenitrogenation, and Hydrocracking1.7.6 Miscellaneous Hydrogenations; 1.8 Chlorination; 1.9 Acetalization/Ketalization; 1.10 Recovery and Purification of Chemicals; 1.11 Difficult Separations; 1.12 Chemical Heat Pumps; 1.13 RD with Supercritical Fluids; 1.14 Conclusions; 2 Reactive Distillation Process Development in the Chemical Process Industries; 2.1 Introduction; 2.2 Process Synthesis; 2.3 Process Design and Optimization; 2.4 Limitations of the Methods for Synthesis and Design: the Scale-Up Problem; 2.5 Choice of Equipment
2.6 Some Remarks on the Role of Catalysis2.7 Conclusions; 2.8 Acknowledgments; 2.9 Notation; 3 Application of Reactive Distillation and Strategies in Process Design; 3.1 Introduction; 3.2 Challenges in Process Design for Reactive Distillation; 3.2.1 Feasibility Analysis; 3.2.2 Catalyst and Hardware Selection; 3.2.3 Column Scale-Up; 3.3 MTBE Decomposition via Reactive Distillation; 3.3.1 Conceptual Design; 3.3.2 Model Development; 3.3.2.1 Catalyst Selection and Reaction Kinetics; 3.3.2.2 Phase Equilibrium Model; 3.3.2.3 Steady-State Simulation; 3.3.3 Lab-Scale Experiments
3.3.4 Pilot-Plant Experiments3.4 Conclusions; Part II Physicochemical Fundamentals; 4 Thermodynamics of Reactive Separations; 4.1 Introduction; 4.2 Process Models for Reactive Distillation; 4.2.1 Outline; 4.2.2 Case Study: Methyl Acetate; 4.3 Equilibrium Thermodynamics of Reacting Multiphase Mixtures; 4.4 Fluid Property Models for Reactive Distillation; 4.4.1 Outline; 4.4.2 Examples; 4.4.2.1 Hexyl Acetate: Sensitivity Analysis; 4.4.2.2 Methyl Acetate: Prediction of Polynary Vapor-Liquid Equilibria; 4.4.2.3 Butyl Acetate: Thermodynamic Consistency
4.4.2.4 Ethyl Acetate: Consequences of Inconsistency4.4.2.5 Formaldehyde + Water + Methanol: Intrinsically Reactive Complex Mixture; 4.5 Experimental Studies of Phase Equilibria in Reacting Systems; 4.5.1 Outline; 4.5.2 Reactive Vapor-Liquid Equilibria; 4.5.2.1 Batch Experiments; 4.5.2.2 Flow Experiments; 4.5.2.3 Recirculation Experiments; 4.6 Conclusions; 4.7 Acknowledgments; 4.8 Notation; 5 Importance of Reaction Kinetics for Catalytic Distillation Processes; 5.1 Introduction; 5.2 Reactive Ideal Binary Mixtures; 5.2.1 Reaction-Distillation Process with External Recycling
5.2.1.1 (,)-Analysis
Record Nr. UNINA-9910830995803321
Weinheim, : Wiley-VCH, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reactive distillation : status and future directions / / Kai Sundmacher and Achim Kienle (eds.)
Reactive distillation : status and future directions / / Kai Sundmacher and Achim Kienle (eds.)
Pubbl/distr/stampa Weinheim, : Wiley-VCH, c2003
Descrizione fisica 1 online resource (309 p.)
Disciplina 660/.28425
Altri autori (Persone) SundmacherKai
KienleAchim
Soggetto topico Distillation
Distillation apparatus - Design and construction
Reactivity (Chemistry) - Industrial applications
ISBN 1-280-55826-1
9786610558261
3-527-60626-2
3-527-60052-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Reactive Distillation Status and Future Directions; Contents; Preface; List of Contributors; Part I Industrial Applications; 1 Industrial Applications of Reactive Distillation; 1.1 Introduction; 1.2 Etherification: MTBE, ETBE, and TAME; 1.3 Dimerization, Oligomerization, and Condensation; 1.4 Esterification: Methyl Acetate and Other Esters; 1.5 Hydrolysis of Esters; 1.6 Hydration; 1.7 Hydrogenation/Hydrodesulfurization/Hydrocracking; 1.7.1 Benzene to Cyclohexane; 1.7.2 Selective Hydrogenation of C(4) Stream; 1.7.3 Hydrogenation of Pentadiene; 1.7.4 C(4) Acetylene Conversion
1.7.5 Hydrodesulfurization, Hydrodenitrogenation, and Hydrocracking1.7.6 Miscellaneous Hydrogenations; 1.8 Chlorination; 1.9 Acetalization/Ketalization; 1.10 Recovery and Purification of Chemicals; 1.11 Difficult Separations; 1.12 Chemical Heat Pumps; 1.13 RD with Supercritical Fluids; 1.14 Conclusions; 2 Reactive Distillation Process Development in the Chemical Process Industries; 2.1 Introduction; 2.2 Process Synthesis; 2.3 Process Design and Optimization; 2.4 Limitations of the Methods for Synthesis and Design: the Scale-Up Problem; 2.5 Choice of Equipment
2.6 Some Remarks on the Role of Catalysis2.7 Conclusions; 2.8 Acknowledgments; 2.9 Notation; 3 Application of Reactive Distillation and Strategies in Process Design; 3.1 Introduction; 3.2 Challenges in Process Design for Reactive Distillation; 3.2.1 Feasibility Analysis; 3.2.2 Catalyst and Hardware Selection; 3.2.3 Column Scale-Up; 3.3 MTBE Decomposition via Reactive Distillation; 3.3.1 Conceptual Design; 3.3.2 Model Development; 3.3.2.1 Catalyst Selection and Reaction Kinetics; 3.3.2.2 Phase Equilibrium Model; 3.3.2.3 Steady-State Simulation; 3.3.3 Lab-Scale Experiments
3.3.4 Pilot-Plant Experiments3.4 Conclusions; Part II Physicochemical Fundamentals; 4 Thermodynamics of Reactive Separations; 4.1 Introduction; 4.2 Process Models for Reactive Distillation; 4.2.1 Outline; 4.2.2 Case Study: Methyl Acetate; 4.3 Equilibrium Thermodynamics of Reacting Multiphase Mixtures; 4.4 Fluid Property Models for Reactive Distillation; 4.4.1 Outline; 4.4.2 Examples; 4.4.2.1 Hexyl Acetate: Sensitivity Analysis; 4.4.2.2 Methyl Acetate: Prediction of Polynary Vapor-Liquid Equilibria; 4.4.2.3 Butyl Acetate: Thermodynamic Consistency
4.4.2.4 Ethyl Acetate: Consequences of Inconsistency4.4.2.5 Formaldehyde + Water + Methanol: Intrinsically Reactive Complex Mixture; 4.5 Experimental Studies of Phase Equilibria in Reacting Systems; 4.5.1 Outline; 4.5.2 Reactive Vapor-Liquid Equilibria; 4.5.2.1 Batch Experiments; 4.5.2.2 Flow Experiments; 4.5.2.3 Recirculation Experiments; 4.6 Conclusions; 4.7 Acknowledgments; 4.8 Notation; 5 Importance of Reaction Kinetics for Catalytic Distillation Processes; 5.1 Introduction; 5.2 Reactive Ideal Binary Mixtures; 5.2.1 Reaction-Distillation Process with External Recycling
5.2.1.1 (,)-Analysis
Record Nr. UNINA-9910877608603321
Weinheim, : Wiley-VCH, c2003
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reactive distillation design and control [[electronic resource] /] / William L. Luyben, Cheng-Ching Yu
Reactive distillation design and control [[electronic resource] /] / William L. Luyben, Cheng-Ching Yu
Autore Luyben William L
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, c2008
Descrizione fisica 1 online resource (598 p.)
Disciplina 660
660.28425
660/.28425
Altri autori (Persone) YuCheng-Ching <1956->
Soggetto topico Distillation apparatus - Design and construction
Chemical process control
Distillation
Reactivity (Chemistry)
ISBN 1-282-11265-1
9786612112652
0-470-37774-7
0-470-37779-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto REACTIVE DISTILLATION DESIGN AND CONTROL; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 History; 1.2 Basics of Reactive Distillation; 1.3 Neat Operation Versus Excess Reactant; 1.4 Limitations; 1.4.1 Temperature Mismatch; 1.4.2 Unfavorable Volatilities; 1.4.3 Slow Reaction Rates; 1.4.4 Other Restrictions; 1.5 Scope; 1.6 Computational Methods; 1.6.1 Matlab Programs for Steady-State Design; 1.6.2 Aspen Simulations; 1.7 Reference Materials; PART I STEADY-STATE DESIGN OF IDEAL QUATERNARY SYSTEM; 2 PARAMETER EFFECTS; 2.1 Effect of Holdup on Reactive Trays; 2.2 Effect of Number of Reactive Trays
2.3 Effect of Pressure2.4 Effect of Chemical Equilibrium Constant; 2.5 Effect of Relative Volatilities; 2.5.1 Constant Relative Volatilities; 2.5.2 Temperature-Dependent Relative Volatilities; 2.6 Effect of Number of Stripping and Rectifying Trays; 2.7 Effect of Reactant Feed Location; 2.7.1 Reactant A Feed Location (N(FA)); 2.7.2 Reactant B Feed Location (N(FB)); 2.8 Conclusion; 3 ECONOMIC COMPARISON OF REACTIVE DISTILLATION WITH A CONVENTIONAL PROCESS; 3.1 Conventional Multiunit Process; 3.1.1 Assumptions and Specifications; 3.1.2 Steady-State Design Procedure
3.1.3 Sizing and Economic Equations3.2 Reactive Distillation Design; 3.2.1 Assumptions and Specifications; 3.2.2 Steady-State Design Procedure; 3.3 Results for Different Chemical Equilibrium Constants; 3.3.1 Conventional Process; 3.3.2 Reactive Distillation Process; 3.3.3 Comparisons; 3.4 Results for Temperature-Dependent Relative Volatilities; 3.4.1 Relative Volatilities; 3.4.2 Optimum Steady-State Designs; 3.4.3 Real Chemical Systems; 3.5 Conclusion; 4 NEAT OPERATION VERSUS USING EXCESS REACTANT; 4.1 Introduction; 4.2 Neat Reactive Column; 4.3 Two-Column System with Excess B
4.3.1 20% Excess B Case4.3.2 10% Excess B Case; 4.4 Two-Column System with 20% Excess of A; 4.5 Economic Comparison; 4.6 Conclusion; PART II STEADY-STATE DESIGN OF OTHER IDEAL SYSTEMS; 5 TERNARY REACTIVE DISTILLATION SYSTEMS; 5.1 Ternary System Without Inerts; 5.1.1 Column Configuration; 5.1.2 Chemistry and Phase Equilibrium Parameters; 5.1.3 Design Parameters and Procedure; 5.1.4 Effect of Pressure; 5.1.5 Holdup on Reactive Trays; 5.1.6 Number of Reactive Trays; 5.1.7 Number of Stripping Trays; 5.2 Ternary System With Inerts; 5.2.1 Column Configuration
5.2.2 Chemistry and Phase Equilibrium Parameters5.2.3 Design Parameters and Procedure; 5.2.4 Effect of Pressure; 5.2.5 Control Tray Composition; 5.2.6 Reactive Tray Holdup; 5.2.7 Effect of Reflux; 5.2.8 Chemical Equilibrium Constant; 5.2.9 Feed Composition; 5.2.10 Number of Reactive Trays; 5.2.11 Number of Rectifying and Stripping Trays; 5.3 Conclusion; 6 TERNARY DECOMPOSITION REACTION; 6.1 Ternary Decomposition Reaction: Intermediate-Boiling Reactant; 6.1.1 Column Configuration; 6.1.2 Chemistry and Phase Equilibrium Parameters; 6.1.3 Design Parameters and Procedure
6.1.4 Holdup on Reactive Trays
Record Nr. UNINA-9910145955003321
Luyben William L  
Hoboken, NJ, : John Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reactive distillation design and control [[electronic resource] /] / William L. Luyben, Cheng-Ching Yu
Reactive distillation design and control [[electronic resource] /] / William L. Luyben, Cheng-Ching Yu
Autore Luyben William L
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, c2008
Descrizione fisica 1 online resource (598 p.)
Disciplina 660
660.28425
660/.28425
Altri autori (Persone) YuCheng-Ching <1956->
Soggetto topico Distillation apparatus - Design and construction
Chemical process control
Distillation
Reactivity (Chemistry)
ISBN 1-282-11265-1
9786612112652
0-470-37774-7
0-470-37779-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto REACTIVE DISTILLATION DESIGN AND CONTROL; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 History; 1.2 Basics of Reactive Distillation; 1.3 Neat Operation Versus Excess Reactant; 1.4 Limitations; 1.4.1 Temperature Mismatch; 1.4.2 Unfavorable Volatilities; 1.4.3 Slow Reaction Rates; 1.4.4 Other Restrictions; 1.5 Scope; 1.6 Computational Methods; 1.6.1 Matlab Programs for Steady-State Design; 1.6.2 Aspen Simulations; 1.7 Reference Materials; PART I STEADY-STATE DESIGN OF IDEAL QUATERNARY SYSTEM; 2 PARAMETER EFFECTS; 2.1 Effect of Holdup on Reactive Trays; 2.2 Effect of Number of Reactive Trays
2.3 Effect of Pressure2.4 Effect of Chemical Equilibrium Constant; 2.5 Effect of Relative Volatilities; 2.5.1 Constant Relative Volatilities; 2.5.2 Temperature-Dependent Relative Volatilities; 2.6 Effect of Number of Stripping and Rectifying Trays; 2.7 Effect of Reactant Feed Location; 2.7.1 Reactant A Feed Location (N(FA)); 2.7.2 Reactant B Feed Location (N(FB)); 2.8 Conclusion; 3 ECONOMIC COMPARISON OF REACTIVE DISTILLATION WITH A CONVENTIONAL PROCESS; 3.1 Conventional Multiunit Process; 3.1.1 Assumptions and Specifications; 3.1.2 Steady-State Design Procedure
3.1.3 Sizing and Economic Equations3.2 Reactive Distillation Design; 3.2.1 Assumptions and Specifications; 3.2.2 Steady-State Design Procedure; 3.3 Results for Different Chemical Equilibrium Constants; 3.3.1 Conventional Process; 3.3.2 Reactive Distillation Process; 3.3.3 Comparisons; 3.4 Results for Temperature-Dependent Relative Volatilities; 3.4.1 Relative Volatilities; 3.4.2 Optimum Steady-State Designs; 3.4.3 Real Chemical Systems; 3.5 Conclusion; 4 NEAT OPERATION VERSUS USING EXCESS REACTANT; 4.1 Introduction; 4.2 Neat Reactive Column; 4.3 Two-Column System with Excess B
4.3.1 20% Excess B Case4.3.2 10% Excess B Case; 4.4 Two-Column System with 20% Excess of A; 4.5 Economic Comparison; 4.6 Conclusion; PART II STEADY-STATE DESIGN OF OTHER IDEAL SYSTEMS; 5 TERNARY REACTIVE DISTILLATION SYSTEMS; 5.1 Ternary System Without Inerts; 5.1.1 Column Configuration; 5.1.2 Chemistry and Phase Equilibrium Parameters; 5.1.3 Design Parameters and Procedure; 5.1.4 Effect of Pressure; 5.1.5 Holdup on Reactive Trays; 5.1.6 Number of Reactive Trays; 5.1.7 Number of Stripping Trays; 5.2 Ternary System With Inerts; 5.2.1 Column Configuration
5.2.2 Chemistry and Phase Equilibrium Parameters5.2.3 Design Parameters and Procedure; 5.2.4 Effect of Pressure; 5.2.5 Control Tray Composition; 5.2.6 Reactive Tray Holdup; 5.2.7 Effect of Reflux; 5.2.8 Chemical Equilibrium Constant; 5.2.9 Feed Composition; 5.2.10 Number of Reactive Trays; 5.2.11 Number of Rectifying and Stripping Trays; 5.3 Conclusion; 6 TERNARY DECOMPOSITION REACTION; 6.1 Ternary Decomposition Reaction: Intermediate-Boiling Reactant; 6.1.1 Column Configuration; 6.1.2 Chemistry and Phase Equilibrium Parameters; 6.1.3 Design Parameters and Procedure
6.1.4 Holdup on Reactive Trays
Record Nr. UNINA-9910830370703321
Luyben William L  
Hoboken, NJ, : John Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Reactive distillation design and control / / William L. Luyben, Cheng-Ching Yu
Reactive distillation design and control / / William L. Luyben, Cheng-Ching Yu
Autore Luyben William L
Pubbl/distr/stampa Hoboken, NJ, : John Wiley, c2008
Descrizione fisica 1 online resource (598 p.)
Disciplina 660
660.28425
660/.28425
Altri autori (Persone) YuCheng-Ching <1956->
Soggetto topico Distillation apparatus - Design and construction
Chemical process control
Distillation
Reactivity (Chemistry)
ISBN 1-282-11265-1
9786612112652
0-470-37774-7
0-470-37779-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto REACTIVE DISTILLATION DESIGN AND CONTROL; CONTENTS; PREFACE; 1 INTRODUCTION; 1.1 History; 1.2 Basics of Reactive Distillation; 1.3 Neat Operation Versus Excess Reactant; 1.4 Limitations; 1.4.1 Temperature Mismatch; 1.4.2 Unfavorable Volatilities; 1.4.3 Slow Reaction Rates; 1.4.4 Other Restrictions; 1.5 Scope; 1.6 Computational Methods; 1.6.1 Matlab Programs for Steady-State Design; 1.6.2 Aspen Simulations; 1.7 Reference Materials; PART I STEADY-STATE DESIGN OF IDEAL QUATERNARY SYSTEM; 2 PARAMETER EFFECTS; 2.1 Effect of Holdup on Reactive Trays; 2.2 Effect of Number of Reactive Trays
2.3 Effect of Pressure2.4 Effect of Chemical Equilibrium Constant; 2.5 Effect of Relative Volatilities; 2.5.1 Constant Relative Volatilities; 2.5.2 Temperature-Dependent Relative Volatilities; 2.6 Effect of Number of Stripping and Rectifying Trays; 2.7 Effect of Reactant Feed Location; 2.7.1 Reactant A Feed Location (N(FA)); 2.7.2 Reactant B Feed Location (N(FB)); 2.8 Conclusion; 3 ECONOMIC COMPARISON OF REACTIVE DISTILLATION WITH A CONVENTIONAL PROCESS; 3.1 Conventional Multiunit Process; 3.1.1 Assumptions and Specifications; 3.1.2 Steady-State Design Procedure
3.1.3 Sizing and Economic Equations3.2 Reactive Distillation Design; 3.2.1 Assumptions and Specifications; 3.2.2 Steady-State Design Procedure; 3.3 Results for Different Chemical Equilibrium Constants; 3.3.1 Conventional Process; 3.3.2 Reactive Distillation Process; 3.3.3 Comparisons; 3.4 Results for Temperature-Dependent Relative Volatilities; 3.4.1 Relative Volatilities; 3.4.2 Optimum Steady-State Designs; 3.4.3 Real Chemical Systems; 3.5 Conclusion; 4 NEAT OPERATION VERSUS USING EXCESS REACTANT; 4.1 Introduction; 4.2 Neat Reactive Column; 4.3 Two-Column System with Excess B
4.3.1 20% Excess B Case4.3.2 10% Excess B Case; 4.4 Two-Column System with 20% Excess of A; 4.5 Economic Comparison; 4.6 Conclusion; PART II STEADY-STATE DESIGN OF OTHER IDEAL SYSTEMS; 5 TERNARY REACTIVE DISTILLATION SYSTEMS; 5.1 Ternary System Without Inerts; 5.1.1 Column Configuration; 5.1.2 Chemistry and Phase Equilibrium Parameters; 5.1.3 Design Parameters and Procedure; 5.1.4 Effect of Pressure; 5.1.5 Holdup on Reactive Trays; 5.1.6 Number of Reactive Trays; 5.1.7 Number of Stripping Trays; 5.2 Ternary System With Inerts; 5.2.1 Column Configuration
5.2.2 Chemistry and Phase Equilibrium Parameters5.2.3 Design Parameters and Procedure; 5.2.4 Effect of Pressure; 5.2.5 Control Tray Composition; 5.2.6 Reactive Tray Holdup; 5.2.7 Effect of Reflux; 5.2.8 Chemical Equilibrium Constant; 5.2.9 Feed Composition; 5.2.10 Number of Reactive Trays; 5.2.11 Number of Rectifying and Stripping Trays; 5.3 Conclusion; 6 TERNARY DECOMPOSITION REACTION; 6.1 Ternary Decomposition Reaction: Intermediate-Boiling Reactant; 6.1.1 Column Configuration; 6.1.2 Chemistry and Phase Equilibrium Parameters; 6.1.3 Design Parameters and Procedure
6.1.4 Holdup on Reactive Trays
Record Nr. UNINA-9910877048303321
Luyben William L  
Hoboken, NJ, : John Wiley, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Understanding distillation using column profile maps [[electronic resource] /] / Daniel Beneke ... [et al.] ; Centre of Material and Process Synthesis (COMPS), University of the Witwatersrand, Johannesburg, South Africa
Understanding distillation using column profile maps [[electronic resource] /] / Daniel Beneke ... [et al.] ; Centre of Material and Process Synthesis (COMPS), University of the Witwatersrand, Johannesburg, South Africa
Autore Beneke Daniel <1985->
Pubbl/distr/stampa Hoboken, N.J., : Wiley, 2013
Descrizione fisica 1 online resource (380 p.)
Disciplina 660.28425
660/.28425
Soggetto topico Distillation - Simulation methods
Distillation apparatus - Design and construction
Soggetto genere / forma Electronic books.
ISBN 1-118-47730-8
1-283-83523-1
1-118-47729-4
1-118-47727-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto UNDERSTANDING DISTILLATION USING COLUMN PROFILE MAPS; CONTENTS; PREFACE; NOMENCLATURE AND ABBREVIATIONS; ABOUT THE AUTHORS; 1 INTRODUCTION; 1.1 Context and Significance; 1.2 Important Distillation Concepts; 1.2.1 A Typical Column; 1.2.2 Complex Columns; 1.2.3 Vapor-Liquid Equilibrium; 1.3 Summary; References; 2 FUNDAMENTALS OF RESIDUE CURVE MAPS; 2.1 Introduction; 2.2 Batch Boiling; 2.3 The Mass Balance Triangle (MBT); 2.4 The Residue Curve Equation; 2.4.1 Derivation; 2.4.2 Approximation to Equilibrium; 2.5 Residue Curve Maps; 2.5.1 Constant Relative Volatility Systems; 2.5.2 Nonideal Systems
2.5.3 Numerical Integration2.6 Properties of Residue Curve Maps; 2.6.1 Separation Vector Field; 2.6.2 Stationary Points; 2.6.3 Isotherms; 2.6.4 Other Properties of RCMs; 2.7 Applicability of RCMs to Continuous Processes; 2.7.1 Total Reflux Columns; 2.7.2 Infinite Reflux Columns; 2.7.3 Bow-Tie Regions; 2.7.4 Column Sequencing at Infinite Reflux; 2.8 Limitations of RCMs; 2.8.1 Applications; 2.9 Residue Curve Maps: The Bigger Picture; 2.9.1 Extending the Axes; 2.9.2 Discontinuity; 2.9.3 Thermodynamic Models in Negative Space; 2.9.4 Use of Negative Compositions; 2.10 Summary; References
3 DERIVATION AND PROPERTIES OF COLUMN PROFILE MAPS3.1 Introduction; 3.2 The Column Section (CS); 3.3 The Difference Point Equation (DPE); 3.3.1 The Generalized CS; 3.3.2 Constant Molar Overflow; 3.3.3 Material Balances; 3.4 Column Profile Maps; 3.4.1 Constant Relative Volatility Systems; 3.4.2 Nonideal Systems; 3.5 The Effect of CPM Parameters; 3.5.1 The Net Flow (Δ); 3.5.2 The Difference Point (XΔ); 3.5.2.1 XΔ in CSs with Condensers/ Reboilers; 3.5.2.2 XΔ in General CSs; 3.5.2.3 Individual Component Flows; 3.5.3 The Reflux Ratio (RΔ); 3.6 Properties of Column Profile Maps
3.6.1 The Relationship Between RCMs and CPMs3.6.2 Vector Fields; 3.6.3 Pinch Points; 3.6.4 Isotherms; 3.6.5 Transformed Triangles; 3.7 Pinch Point Loci; 3.7.1 Analytical Solutions; 3.7.2 Graphical Approach; 3.8 Some Mathematical Aspects of CPMs; 3.8.1 Eigenvalues and Eigenvectors; 3.8.2 Nature of Pinch Points; 3.9 Some Insights and Applications of CPMs; 3.9.1 Column Stability; 3.9.2 Node Placement; 3.9.3 Sharp Splits; 3.10 Summary; References; 4 EXPERIMENTAL MEASUREMENT OF COLUMN PROFILES; 4.1 Introduction; 4.2 The Rectifying Column Section; 4.2.1 The Batch Analogy
4.2.2 Experimental Setup and Procedure4.2.2.1 Distillate Addition; 4.2.2.2 Apparatus; 4.2.3 Experimental Results; 4.2.3.1 Stable Node; 4.2.3.2 Saddle Point; 4.3 The Stripping Column Section; 4.4 Validation of Thermodynamic Models; 4.5 Continuous Column Sections; 4.5.1 Apparatus; 4.5.1.1 Column Shell and Packing; 4.5.1.2 Vapor Feed; 4.5.1.3 Liquid Feed; 4.5.1.4 Vapor Exit; 4.5.1.5 Liquid Exit; 4.5.1.6 Sampling Equipment; 4.5.2 Experimental Results; 4.5.3 Temperature Inversion; 4.6 Summary; References; 5 DESIGN OF SIMPLE COLUMNS USING COLUMN PROFILE MAPS; 5.1 Introduction
5.2 Absorbers and Strippers
Record Nr. UNINA-9910141367603321
Beneke Daniel <1985->  
Hoboken, N.J., : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui