Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee
| Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee |
| Autore | Pourmohamad Tony |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (113 pages) |
| Disciplina | 004.071 |
| Collana | SpringerBriefs in Statistics |
| Soggetto topico |
Disseny d'experiments
Estadística bayesiana Computer science - Experiments Experimental design - Data processing |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-82458-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466393203316 |
Pourmohamad Tony
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee
| Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee |
| Autore | Pourmohamad Tony |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (113 pages) |
| Disciplina | 004.071 |
| Collana | SpringerBriefs in Statistics |
| Soggetto topico |
Disseny d'experiments
Estadística bayesiana Computer science - Experiments Experimental design - Data processing |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-82458-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910502986503321 |
Pourmohamad Tony
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dose Finding and Beyond in Biopharmaceutical Development / / edited by Jingjing Ye, Ding-Geng Chen, Wen Zhou, Qiqi Deng, Joseph C. Cappelleri
| Dose Finding and Beyond in Biopharmaceutical Development / / edited by Jingjing Ye, Ding-Geng Chen, Wen Zhou, Qiqi Deng, Joseph C. Cappelleri |
| Edizione | [1st ed. 2025.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 |
| Descrizione fisica | 1 online resource (XVII, 254 p. 43 illus.) |
| Disciplina | 570.15195 |
| Collana | ICSA Book Series in Statistics |
| Soggetto topico |
Biometry
Experimental design Data mining Biostatistics Design of Experiments Data Mining and Knowledge Discovery Biometria Disseny d'experiments Mineria de dades |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031671104
3031671104 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Emerging Topics in Dose-Finding and Beyond -- Understanding FDA Guidance On Dosage Optimization For Oncology Therapies -- FDA Project Optimus: The "Paradigm-Shifting" Initiative for Oncology Drug Development -- Challenges and Practical Guidance on the Implementation of Novel Oncology Dose Escalation Designs -- Challenges and Practical Guidance on the Implementation of Novel Oncology Dose Escalation Designs -- Monotonic Dose Response Assumption and Curve-Free Designs for Phase I Dose Finding Trials -- Dose Selection with 2-in-1 Design -- A Rank-Based Approach to Improve the Efficiency of Inferential Seamless Phase 2/3 Clinical Trials with Dose Optimization -- Comparing MCP-MOD and Ordinal Linear Contrast Test in Dose Finding Clinical Trials: A Thorough Examination -- Patient-Reported Tolerability in Drug Development -- Endpoint Development and Validation. |
| Record Nr. | UNINA-9910983317403321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Experimental design : from user studies to psychophysics / / Douglas W. Cunningham, Christian Wallraven
| Experimental design : from user studies to psychophysics / / Douglas W. Cunningham, Christian Wallraven |
| Autore | Cunningham Douglas W (Douglas William) |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Boca Raton, Fla. : , : CRC Press, , 2012 |
| Descrizione fisica | 1 online resource (402 pages) |
| Disciplina | 519.5/7 |
| Collana | An A K Peters book Experimental design |
| Soggetto topico |
Computer science - Experiments
Human-computer interaction - Experiments Experimental design Psychophysics Informàtica - Experiments Psicofísica Disseny d'experiments Interacció persona-ordinador - Experiments |
| ISBN |
9786613908896
9780429104954 0429104952 9781283596442 128359644X 9781439865514 1439865515 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Cover; Contents; Preface; I. Introduction; 1. What Is an Experiment?; 2. Designing an Experiment; II. Response Measures; 3. The Task; 4. Free Description; 5. Rating Scales; 6. Forced-Choice; 7. Specialized Multiple Choice; 8. Real-World Tasks; 9. Physiology; III. Stimuli; 10. Choosing Stimuli; 11. Presenting Stimuli: The Psychtoolbox; IV. Data Analysis; 12. Statistical Issues; 13. Free Description, Questionnaires, and Rating Scales; 14. Forced and Multiple Choice; Bibliography |
| Record Nr. | UNINA-9910973324503321 |
Cunningham Douglas W (Douglas William)
|
||
| Boca Raton, Fla. : , : CRC Press, , 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Mindful Topics on Risk Analysis and Design of Experiments [[electronic resource] ] : Selected contributions from ICRA8, Vienna 2019 / / edited by Jürgen Pilz, Teresa A. Oliveira, Karl Moder, Christos P. Kitsos
| Mindful Topics on Risk Analysis and Design of Experiments [[electronic resource] ] : Selected contributions from ICRA8, Vienna 2019 / / edited by Jürgen Pilz, Teresa A. Oliveira, Karl Moder, Christos P. Kitsos |
| Edizione | [1st ed. 2022.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 |
| Descrizione fisica | 1 online resource (166 pages) |
| Disciplina | 519.2 |
| Soggetto topico |
Statistics
Experimental design Financial risk management Statistical Theory and Methods Design of Experiments Risk Management Avaluació del risc Estadística matemàtica Disseny d'experiments |
| Soggetto genere / forma |
Congressos
Llibres electrònics |
| ISBN | 3-031-06685-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996479369303316 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Optimal Experimental Design : A Concise Introduction for Researchers / / by Jesús López-Fidalgo
| Optimal Experimental Design : A Concise Introduction for Researchers / / by Jesús López-Fidalgo |
| Autore | López-Fidalgo Jesús |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (XVIII, 216 p. 33 illus., 24 illus. in color.) |
| Disciplina | 001.434 |
| Collana | Lecture Notes in Statistics |
| Soggetto topico |
Experimental design
Statistics Mathematical statistics - Data processing Biometry Design of Experiments Statistical Theory and Methods Statistics and Computing Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences Biostatistics Bayesian Inference Disseny d'experiments |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-031-35918-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Motivating Introduction -- Linear Models -- Nonlinear Models -- Bayesian Optimal Designs -- Hot Topics -- Real Case Examples -- Appendices -- References -- Index. |
| Record Nr. | UNINA-9910746090203321 |
López-Fidalgo Jesús
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Statistical design and analysis of biological experiments / / Hans-Michael Kaltenbach
| Statistical design and analysis of biological experiments / / Hans-Michael Kaltenbach |
| Autore | Kaltenbach Hans-Michael |
| Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
| Descrizione fisica | 1 online resource (281 pages) |
| Disciplina | 001.434 |
| Collana | Statistics for Biology and Health |
| Soggetto topico |
Experimental design
Disseny d'experiments |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 3-030-69641-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996466549503316 |
Kaltenbach Hans-Michael
|
||
| Cham, Switzerland : , : Springer, , [2021] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications : Selected Contributions from SimStat 2019 and Invited Papers / / edited by Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
| Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications : Selected Contributions from SimStat 2019 and Invited Papers / / edited by Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke |
| Autore | Pilz Jürgen |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (265 pages) |
| Disciplina | 519.57 |
| Altri autori (Persone) |
MelasViatcheslav B
BathkeArne |
| Collana | Contributions to Statistics |
| Soggetto topico |
Statistics
Mathematical statistics - Data processing Experimental design Machine learning Stochastic models Statistical Theory and Methods Statistics and Computing Design of Experiments Machine Learning Applied Statistics Stochastic Modelling in Statistics Disseny d'experiments Aprenentatge automàtic Estadística matemàtica |
| Soggetto genere / forma | Llibres electrònics |
| ISBN |
9783031400551
3031400550 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Contents -- Part I Invited Papers -- 1 Likelihood Ratios in Forensics: What They Are and What They Are Not -- 1.1 Introduction -- 1.2 Lindley's Likelihood Ratio (LLR) -- 1.2.1 Notations -- 1.2.2 A Frequentist Framework for Lindley's Likelihood Ratio (LLR) -- 1.3 Score-Based Likelihood Ratio (SLR) -- 1.3.1 The Expression of the SLR -- 1.3.2 The Glass Example -- 1.4 Discussion -- References -- 2 MANOVA for Large Number of Treatments -- 2.1 Introduction -- 2.2 Notations and Model Setup -- 2.3 Simulations -- 2.3.1 MANOVA Tests for Large g -- 2.3.2 Special Case: ANOVA for Large g -- 2.4 Discussion and Outlook -- References -- 3 Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model -- 3.1 Introduction -- 3.2 Meteorological Monitoring Network -- 3.3 Wind Field Modeling -- 3.3.1 Mass Correction of the Wind Field -- 3.3.2 Plume Rise -- 3.4 Stochastic Particle Model -- 3.4.1 Deposition -- 3.4.2 Implementation -- 3.5 Dynamic Gaussian Plume Model -- 3.6 Implementation on the Server -- 3.7 A Real-World Example with Application to an Alpine Valley -- 3.8 Conclusions and Outlook -- References -- 4 On an Alternative Trigonometric Strategy for StatisticalModeling -- 4.1 Introduction -- 4.2 The Alternative Sine Distribution -- 4.2.1 Presentation -- 4.2.2 Moment Properties -- 4.2.3 Parametric Extensions -- 4.3 AS Generated Family -- 4.3.1 Definition -- 4.3.2 Series Expansions -- 4.3.3 Example: The ASE Exponential Distribution -- 4.3.4 Moment Properties -- 4.4 Application to a Famous Cancer Data -- 4.5 Conclusion -- References -- Part II Design of Experiments -- 5 Incremental Construction of Nested Designs Basedon Two-Level Fractional Factorial Designs -- 5.1 Introduction -- 5.2 Greedy Coffee-House Design -- 5.3 Two-Level Fractional Factorial Designs -- 5.3.1 Half Fractions: m=1.
5.3.2 Several Generators -- 5.3.2.1 Defining Relations -- 5.3.2.2 Resolution -- 5.3.2.3 Word Length Pattern -- 5.3.3 Minimum Size -- 5.4 Two-Level Factorial Designs and Error-Correcting Codes -- 5.4.1 Definitions and Properties -- 5.4.2 Examples -- 5.5 Maximin Distance Properties of Two-Level Factorial Designs -- 5.5.1 Neighbouring Pattern and Distant Site Pattern -- 5.5.2 Optimal Selection of Generators by Simulated Annealing -- 5.5.2.1 SA Algorithm for the Maximisation of ρH -- 5.6 Covering Properties of Two-Level Factorial Designs -- 5.6.1 Bounds on CRH(Xn) -- 5.6.2 Calculation of CRH(Xn) -- 5.6.2.1 Algorithmic Construction of a Lower Bound on CRH(Xn) -- 5.7 Greedy Constructions Based on Fractional Factorial Designs -- 5.7.1 Base Designs -- 5.7.2 Rescaled Designs -- 5.7.3 Projection Properties -- 5.8 Summary and Future Work -- Appendix -- References -- 6 A Study of L-Optimal Designs for the Two-Dimensional Exponential Model -- 6.1 Introduction -- 6.2 Equivalence Theorem for L-Optimal Designs -- 6.3 General Case -- 6.4 Excess and Saturated Designs -- References -- 7 Testing for Randomized Block Single-Case Designsby Combined Permutation Tests with Multivariate Mixed Data -- 7.1 Introduction -- 7.2 Randomized Block Single-Case Designs and NPC -- 7.3 Simulation Study -- 7.4 A Real Case Study -- 7.5 Conclusions -- References -- 8 Adaptive Design Criteria Motivated by a Plug-In Percentile Estimator -- 8.1 Introduction -- 8.2 Problem Formulation and Background -- 8.2.1 Problem Formulation -- 8.2.2 Background -- 8.3 The Plug-In Estimator -- 8.4 Adaptive ``Plug-In'' Criteria -- 8.4.1 Monte Carlo Approximation -- 8.4.2 Monte Carlo Approximation Assuming Independency -- 8.4.3 Assuming Independency and Neglecting Uncertainty -- 8.4.4 Using SUR Design Criterion for Exceedance Probability -- 8.5 Numerical Implementation -- 8.6 Numerical Study. 8.6.1 Comparison Study -- 8.6.2 Methodology -- 8.6.2.1 Case Studies -- 8.6.2.2 Performance Indicators -- 8.6.3 Numerical Results -- 8.6.3.1 Estimators Performance -- 8.6.3.2 Implementation -- 8.6.3.3 Criteria -- 8.7 Conclusions -- Appendix 1 -- Posterior Mean and Variance of f Under the Gaussian Process Assumption -- SUR Design Criteria for Exceedance Probability Estimation -- Appendix 2 -- References -- Part III Queueing and Inventory Analysis -- 9 On a Parametric Estimation for a Convolutionof Exponential Densities -- 9.1 Introduction -- 9.2 Convolution of the Exponential Densities -- 9.3 ML Estimation of the Parameters -- 9.4 Parameter's Estimation by the Moments' Method -- 9.5 Approximation of the Density -- 9.6 Experimental Study -- 9.7 Application to a Single Queueing System M/G/1/k -- 9.8 Conclusions -- References -- 10 Statistical Estimation with a Known Quantileand Its Application in a Modified ABC-XYZ Analysis -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Statistical Estimation with a Known Quantile -- 10.2.2 ABC-XYZ Analysis -- 10.3 ABC-XYZ Analysis Modified with a Known Quantile -- 10.4 Conclusions -- References -- Part IV Machine Learning and Applications -- 11 A Study of Design of Experiments and Machine Learning Methods to Improve Fault Detection Algorithms -- 11.1 Introduction -- 11.2 Design of Experiments and Machine Learning Modelling -- 11.3 Application to Fault Detection -- 11.3.1 Design of Experiments Step -- 11.3.2 Machine Learning Modelling Step -- 11.3.2.1 Refrigerant Undercharge: Fault Detection -- 11.3.2.2 Condenser Fouling: Fault Detection -- 11.4 Conclusions -- References -- 12 Microstructure Image Segmentation Using Patch-Based Clustering Approach -- 12.1 Introduction -- 12.2 Input Data -- 12.3 Previous Work -- 12.4 Grain Segmentation -- 12.4.1 Seeded Region Growing (SRG) -- 12.4.2 Image Denoising and Patch Determination. 12.4.3 Feature Extraction -- 12.4.4 Patch Clustering -- 12.4.5 Implementation -- 12.5 Results -- 12.6 Conclusion and Outlook -- References -- 13 Clustering and Symptom Analysis in Binary Datawith Application -- 13.1 Introduction -- 13.2 The Symptom Analysis -- 13.2.1 The Symptom and Syndrome Definition -- 13.2.2 Impulse Vector and Super-symptoms -- 13.2.3 Prefigurations of Super-symptom -- 13.2.4 The Super-symptom Recovery by Vector β -- 13.2.5 Clustering in Dichotomous Space and Symptom Analysis -- 13.3 The Medical Application of the Clustering and Symptom Analysis in Binary Data -- 13.3.1 Dataset -- 13.3.2 Result and Discussion -- 13.4 Conclusion -- References -- 14 Big Data for Credit Risk Analysis: Efficient Machine Learning Models Using PySpark -- 14.1 Introduction -- 14.2 Data Processing -- 14.2.1 Data Treatment -- 14.2.2 Data Storage and Distribution -- 14.2.3 Munge Data -- 14.2.4 Creating New Measures -- 14.2.5 Missing Values Imputation and Outliers Treatment -- 14.2.6 One-Hot Code and Dummy Variables -- 14.2.7 Final Dataset -- 14.3 Method and Models -- 14.3.1 Method -- 14.3.2 Model Building -- 14.4 Results and Credit Scorecard Conversion -- 14.5 Conclusion -- Appendix 1 -- Appendix 2 -- References. |
| Record Nr. | UNINA-9910754092903321 |
Pilz Jürgen
|
||
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||