top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee
Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee
Autore Pourmohamad Tony
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (113 pages)
Disciplina 004.071
Collana SpringerBriefs in Statistics
Soggetto topico Disseny d'experiments
Estadística bayesiana
Computer science - Experiments
Experimental design - Data processing
Soggetto genere / forma Llibres electrònics
ISBN 3-030-82458-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466393203316
Pourmohamad Tony  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee
Bayesian optimization with application to computer experiments / / Tony Pourmohamad and Herbert K. H. Lee
Autore Pourmohamad Tony
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (113 pages)
Disciplina 004.071
Collana SpringerBriefs in Statistics
Soggetto topico Disseny d'experiments
Estadística bayesiana
Computer science - Experiments
Experimental design - Data processing
Soggetto genere / forma Llibres electrònics
ISBN 3-030-82458-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910502986503321
Pourmohamad Tony  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dose Finding and Beyond in Biopharmaceutical Development / / edited by Jingjing Ye, Ding-Geng Chen, Wen Zhou, Qiqi Deng, Joseph C. Cappelleri
Dose Finding and Beyond in Biopharmaceutical Development / / edited by Jingjing Ye, Ding-Geng Chen, Wen Zhou, Qiqi Deng, Joseph C. Cappelleri
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVII, 254 p. 43 illus.)
Disciplina 570.15195
Collana ICSA Book Series in Statistics
Soggetto topico Biometry
Experimental design
Data mining
Biostatistics
Design of Experiments
Data Mining and Knowledge Discovery
Biometria
Disseny d'experiments
Mineria de dades
Soggetto genere / forma Llibres electrònics
ISBN 9783031671104
3031671104
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Emerging Topics in Dose-Finding and Beyond -- Understanding FDA Guidance On Dosage Optimization For Oncology Therapies -- FDA Project Optimus: The "Paradigm-Shifting" Initiative for Oncology Drug Development -- Challenges and Practical Guidance on the Implementation of Novel Oncology Dose Escalation Designs -- Challenges and Practical Guidance on the Implementation of Novel Oncology Dose Escalation Designs -- Monotonic Dose Response Assumption and Curve-Free Designs for Phase I Dose Finding Trials -- Dose Selection with 2-in-1 Design -- A Rank-Based Approach to Improve the Efficiency of Inferential Seamless Phase 2/3 Clinical Trials with Dose Optimization -- Comparing MCP-MOD and Ordinal Linear Contrast Test in Dose Finding Clinical Trials: A Thorough Examination -- Patient-Reported Tolerability in Drug Development -- Endpoint Development and Validation.
Record Nr. UNINA-9910983317403321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Experimental design : from user studies to psychophysics / / Douglas W. Cunningham, Christian Wallraven
Experimental design : from user studies to psychophysics / / Douglas W. Cunningham, Christian Wallraven
Autore Cunningham Douglas W (Douglas William)
Edizione [1st edition]
Pubbl/distr/stampa Boca Raton, Fla. : , : CRC Press, , 2012
Descrizione fisica 1 online resource (402 pages)
Disciplina 519.5/7
Collana An A K Peters book Experimental design
Soggetto topico Computer science - Experiments
Human-computer interaction - Experiments
Experimental design
Psychophysics
Informàtica - Experiments
Psicofísica
Disseny d'experiments
Interacció persona-ordinador - Experiments
ISBN 9786613908896
9780429104954
0429104952
9781283596442
128359644X
9781439865514
1439865515
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Contents; Preface; I. Introduction; 1. What Is an Experiment?; 2. Designing an Experiment; II. Response Measures; 3. The Task; 4. Free Description; 5. Rating Scales; 6. Forced-Choice; 7. Specialized Multiple Choice; 8. Real-World Tasks; 9. Physiology; III. Stimuli; 10. Choosing Stimuli; 11. Presenting Stimuli: The Psychtoolbox; IV. Data Analysis; 12. Statistical Issues; 13. Free Description, Questionnaires, and Rating Scales; 14. Forced and Multiple Choice; Bibliography
Record Nr. UNINA-9910973324503321
Cunningham Douglas W (Douglas William)  
Boca Raton, Fla. : , : CRC Press, , 2012
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Mindful Topics on Risk Analysis and Design of Experiments [[electronic resource] ] : Selected contributions from ICRA8, Vienna 2019 / / edited by Jürgen Pilz, Teresa A. Oliveira, Karl Moder, Christos P. Kitsos
Mindful Topics on Risk Analysis and Design of Experiments [[electronic resource] ] : Selected contributions from ICRA8, Vienna 2019 / / edited by Jürgen Pilz, Teresa A. Oliveira, Karl Moder, Christos P. Kitsos
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (166 pages)
Disciplina 519.2
Soggetto topico Statistics
Experimental design
Financial risk management
Statistical Theory and Methods
Design of Experiments
Risk Management
Avaluació del risc
Estadística matemàtica
Disseny d'experiments
Soggetto genere / forma Congressos
Llibres electrònics
ISBN 3-031-06685-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996479369303316
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Optimal Experimental Design : A Concise Introduction for Researchers / / by Jesús López-Fidalgo
Optimal Experimental Design : A Concise Introduction for Researchers / / by Jesús López-Fidalgo
Autore López-Fidalgo Jesús
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (XVIII, 216 p. 33 illus., 24 illus. in color.)
Disciplina 001.434
Collana Lecture Notes in Statistics
Soggetto topico Experimental design
Statistics
Mathematical statistics - Data processing
Biometry
Design of Experiments
Statistical Theory and Methods
Statistics and Computing
Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Biostatistics
Bayesian Inference
Disseny d'experiments
Soggetto genere / forma Llibres electrònics
ISBN 3-031-35918-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Motivating Introduction -- Linear Models -- Nonlinear Models -- Bayesian Optimal Designs -- Hot Topics -- Real Case Examples -- Appendices -- References -- Index.
Record Nr. UNINA-9910746090203321
López-Fidalgo Jesús  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Statistical design and analysis of biological experiments / / Hans-Michael Kaltenbach
Statistical design and analysis of biological experiments / / Hans-Michael Kaltenbach
Autore Kaltenbach Hans-Michael
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (281 pages)
Disciplina 001.434
Collana Statistics for Biology and Health
Soggetto topico Experimental design
Disseny d'experiments
Soggetto genere / forma Llibres electrònics
ISBN 3-030-69641-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996466549503316
Kaltenbach Hans-Michael  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications : Selected Contributions from SimStat 2019 and Invited Papers / / edited by Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications : Selected Contributions from SimStat 2019 and Invited Papers / / edited by Jürgen Pilz, Viatcheslav B. Melas, Arne Bathke
Autore Pilz Jürgen
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (265 pages)
Disciplina 519.57
Altri autori (Persone) MelasViatcheslav B
BathkeArne
Collana Contributions to Statistics
Soggetto topico Statistics
Mathematical statistics - Data processing
Experimental design
Machine learning
Stochastic models
Statistical Theory and Methods
Statistics and Computing
Design of Experiments
Machine Learning
Applied Statistics
Stochastic Modelling in Statistics
Disseny d'experiments
Aprenentatge automàtic
Estadística matemàtica
Soggetto genere / forma Llibres electrònics
ISBN 9783031400551
3031400550
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Part I Invited Papers -- 1 Likelihood Ratios in Forensics: What They Are and What They Are Not -- 1.1 Introduction -- 1.2 Lindley's Likelihood Ratio (LLR) -- 1.2.1 Notations -- 1.2.2 A Frequentist Framework for Lindley's Likelihood Ratio (LLR) -- 1.3 Score-Based Likelihood Ratio (SLR) -- 1.3.1 The Expression of the SLR -- 1.3.2 The Glass Example -- 1.4 Discussion -- References -- 2 MANOVA for Large Number of Treatments -- 2.1 Introduction -- 2.2 Notations and Model Setup -- 2.3 Simulations -- 2.3.1 MANOVA Tests for Large g -- 2.3.2 Special Case: ANOVA for Large g -- 2.4 Discussion and Outlook -- References -- 3 Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model -- 3.1 Introduction -- 3.2 Meteorological Monitoring Network -- 3.3 Wind Field Modeling -- 3.3.1 Mass Correction of the Wind Field -- 3.3.2 Plume Rise -- 3.4 Stochastic Particle Model -- 3.4.1 Deposition -- 3.4.2 Implementation -- 3.5 Dynamic Gaussian Plume Model -- 3.6 Implementation on the Server -- 3.7 A Real-World Example with Application to an Alpine Valley -- 3.8 Conclusions and Outlook -- References -- 4 On an Alternative Trigonometric Strategy for StatisticalModeling -- 4.1 Introduction -- 4.2 The Alternative Sine Distribution -- 4.2.1 Presentation -- 4.2.2 Moment Properties -- 4.2.3 Parametric Extensions -- 4.3 AS Generated Family -- 4.3.1 Definition -- 4.3.2 Series Expansions -- 4.3.3 Example: The ASE Exponential Distribution -- 4.3.4 Moment Properties -- 4.4 Application to a Famous Cancer Data -- 4.5 Conclusion -- References -- Part II Design of Experiments -- 5 Incremental Construction of Nested Designs Basedon Two-Level Fractional Factorial Designs -- 5.1 Introduction -- 5.2 Greedy Coffee-House Design -- 5.3 Two-Level Fractional Factorial Designs -- 5.3.1 Half Fractions: m=1.
5.3.2 Several Generators -- 5.3.2.1 Defining Relations -- 5.3.2.2 Resolution -- 5.3.2.3 Word Length Pattern -- 5.3.3 Minimum Size -- 5.4 Two-Level Factorial Designs and Error-Correcting Codes -- 5.4.1 Definitions and Properties -- 5.4.2 Examples -- 5.5 Maximin Distance Properties of Two-Level Factorial Designs -- 5.5.1 Neighbouring Pattern and Distant Site Pattern -- 5.5.2 Optimal Selection of Generators by Simulated Annealing -- 5.5.2.1 SA Algorithm for the Maximisation of ρH -- 5.6 Covering Properties of Two-Level Factorial Designs -- 5.6.1 Bounds on CRH(Xn) -- 5.6.2 Calculation of CRH(Xn) -- 5.6.2.1 Algorithmic Construction of a Lower Bound on CRH(Xn) -- 5.7 Greedy Constructions Based on Fractional Factorial Designs -- 5.7.1 Base Designs -- 5.7.2 Rescaled Designs -- 5.7.3 Projection Properties -- 5.8 Summary and Future Work -- Appendix -- References -- 6 A Study of L-Optimal Designs for the Two-Dimensional Exponential Model -- 6.1 Introduction -- 6.2 Equivalence Theorem for L-Optimal Designs -- 6.3 General Case -- 6.4 Excess and Saturated Designs -- References -- 7 Testing for Randomized Block Single-Case Designsby Combined Permutation Tests with Multivariate Mixed Data -- 7.1 Introduction -- 7.2 Randomized Block Single-Case Designs and NPC -- 7.3 Simulation Study -- 7.4 A Real Case Study -- 7.5 Conclusions -- References -- 8 Adaptive Design Criteria Motivated by a Plug-In Percentile Estimator -- 8.1 Introduction -- 8.2 Problem Formulation and Background -- 8.2.1 Problem Formulation -- 8.2.2 Background -- 8.3 The Plug-In Estimator -- 8.4 Adaptive ``Plug-In'' Criteria -- 8.4.1 Monte Carlo Approximation -- 8.4.2 Monte Carlo Approximation Assuming Independency -- 8.4.3 Assuming Independency and Neglecting Uncertainty -- 8.4.4 Using SUR Design Criterion for Exceedance Probability -- 8.5 Numerical Implementation -- 8.6 Numerical Study.
8.6.1 Comparison Study -- 8.6.2 Methodology -- 8.6.2.1 Case Studies -- 8.6.2.2 Performance Indicators -- 8.6.3 Numerical Results -- 8.6.3.1 Estimators Performance -- 8.6.3.2 Implementation -- 8.6.3.3 Criteria -- 8.7 Conclusions -- Appendix 1 -- Posterior Mean and Variance of f Under the Gaussian Process Assumption -- SUR Design Criteria for Exceedance Probability Estimation -- Appendix 2 -- References -- Part III Queueing and Inventory Analysis -- 9 On a Parametric Estimation for a Convolutionof Exponential Densities -- 9.1 Introduction -- 9.2 Convolution of the Exponential Densities -- 9.3 ML Estimation of the Parameters -- 9.4 Parameter's Estimation by the Moments' Method -- 9.5 Approximation of the Density -- 9.6 Experimental Study -- 9.7 Application to a Single Queueing System M/G/1/k -- 9.8 Conclusions -- References -- 10 Statistical Estimation with a Known Quantileand Its Application in a Modified ABC-XYZ Analysis -- 10.1 Introduction -- 10.2 Methods -- 10.2.1 Statistical Estimation with a Known Quantile -- 10.2.2 ABC-XYZ Analysis -- 10.3 ABC-XYZ Analysis Modified with a Known Quantile -- 10.4 Conclusions -- References -- Part IV Machine Learning and Applications -- 11 A Study of Design of Experiments and Machine Learning Methods to Improve Fault Detection Algorithms -- 11.1 Introduction -- 11.2 Design of Experiments and Machine Learning Modelling -- 11.3 Application to Fault Detection -- 11.3.1 Design of Experiments Step -- 11.3.2 Machine Learning Modelling Step -- 11.3.2.1 Refrigerant Undercharge: Fault Detection -- 11.3.2.2 Condenser Fouling: Fault Detection -- 11.4 Conclusions -- References -- 12 Microstructure Image Segmentation Using Patch-Based Clustering Approach -- 12.1 Introduction -- 12.2 Input Data -- 12.3 Previous Work -- 12.4 Grain Segmentation -- 12.4.1 Seeded Region Growing (SRG) -- 12.4.2 Image Denoising and Patch Determination.
12.4.3 Feature Extraction -- 12.4.4 Patch Clustering -- 12.4.5 Implementation -- 12.5 Results -- 12.6 Conclusion and Outlook -- References -- 13 Clustering and Symptom Analysis in Binary Datawith Application -- 13.1 Introduction -- 13.2 The Symptom Analysis -- 13.2.1 The Symptom and Syndrome Definition -- 13.2.2 Impulse Vector and Super-symptoms -- 13.2.3 Prefigurations of Super-symptom -- 13.2.4 The Super-symptom Recovery by Vector β -- 13.2.5 Clustering in Dichotomous Space and Symptom Analysis -- 13.3 The Medical Application of the Clustering and Symptom Analysis in Binary Data -- 13.3.1 Dataset -- 13.3.2 Result and Discussion -- 13.4 Conclusion -- References -- 14 Big Data for Credit Risk Analysis: Efficient Machine Learning Models Using PySpark -- 14.1 Introduction -- 14.2 Data Processing -- 14.2.1 Data Treatment -- 14.2.2 Data Storage and Distribution -- 14.2.3 Munge Data -- 14.2.4 Creating New Measures -- 14.2.5 Missing Values Imputation and Outliers Treatment -- 14.2.6 One-Hot Code and Dummy Variables -- 14.2.7 Final Dataset -- 14.3 Method and Models -- 14.3.1 Method -- 14.3.2 Model Building -- 14.4 Results and Credit Scorecard Conversion -- 14.5 Conclusion -- Appendix 1 -- Appendix 2 -- References.
Record Nr. UNINA-9910754092903321
Pilz Jürgen  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui