Analytic properties of Feynman diagrams in quantum field theory / I.T. Todorov
| Analytic properties of Feynman diagrams in quantum field theory / I.T. Todorov |
| Autore | Todorov, I.T. |
| Pubbl/distr/stampa | Oxford : Pergamon, 1971 |
| Descrizione fisica | xvi, 152 p. : ill. ; 22 cm. |
| Collana | International series of monographs in natural philosophy ; 38 |
| Soggetto topico | Dispersion relations |
| ISBN | 0080165443 |
| Classificazione |
53.3.12
53.3.15 53.3.16 530.1'43 QC174.5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000811239707536 |
Todorov, I.T.
|
||
| Oxford : Pergamon, 1971 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Causality Rules (Second Edition) : Dispersion Theory in Non-Elementary Particle Physics
| Causality Rules (Second Edition) : Dispersion Theory in Non-Elementary Particle Physics |
| Autore | Pascalutsa Vladimir |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2024 |
| Descrizione fisica | 1 online resource (125 pages) |
| Collana | IOP Ebooks Series |
| Soggetto topico |
Causality (Physics)
Dispersion relations |
| ISBN |
9780750344838
0750344830 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- < -- named-book-part-body& -- #62 -- < -- p& -- #62 -- It is the theory that decides what we can observe.< -- /p& -- #62 -- < -- p& -- #62 -- & -- #x02013 -- < -- italic& -- #62 -- Albert Einstein< -- /italic& -- #62 -- < -- /p& -- #62 -- < -- p& -- #62 -- This book is about powerful relations due to causality, often in combination with other general principles, such as unitarity and space& -- #x02013 -- time symmetries. These general relations are widely used in many fields of physics, from optics and atomic theory to gaining insights into quantum gravity. Yet, they are rarely a part of the sta -- Acknowledgements -- Author biography -- Vladimir Pascalutsa -- Chapter Introduction -- References -- Chapter Some rules for sum rules -- 2.1 Causality and analyticity -- 2.2 Derivation of dispersion relations -- 2.2.1 An elementary example: the inverse square root -- 2.3 Crossing symmetry -- 2.4 Unitarity -- 2.5 Low-energy theorems and sum rules -- 2.5.1 The good, the bad, and the ugly? -- 2.6 Relaxing the convergence condition -- 2.6.1 An elementary example: the logarithm -- 2.7 Divergencies, subtractions, and renormalization -- 2.8 An approximate sum rule for the proton charge -- References -- Chapter The Kramers-Kronig relation -- 3.1 Refraction in a relativistic medium -- 3.2 The low-frequency limit: the Lorentz-Lorenz relation -- 3.3 CMB refraction index -- Chapter Sum rules for Compton scattering -- 4.1 Forward kinematics: helicity amplitudes for any spin -- 4.2 Optical theorem: dispersion relation -- 4.3 Low-energy expansion and sum rules -- 4.4 Empirical evaluations for the nucleon -- References -- Chapter Virtual Compton scattering and quasi-real sum rules -- 5.1 VVCS and structure functions -- 5.2 Elastic versus Born contributions -- 5.3 The Burkhardt-Cottingham sum rule.
5.4 The Schwinger sum rule -- 5.5 Generalized Baldin sum rules -- 5.6 Longitudinal amplitude: to subtract or unsubtract? -- 5.7 The Bernabéu-Tarrach sum rule -- 5.8 Validation in the parton model -- 5.9 Further spin-dependent relations -- References -- Chapter Sum rules for light-by-light scattering -- 6.1 Compton scattering off a photon -- 6.2 Symmetries, unitarity, and dispersion relations -- 6.3 Effective field theorems -- 6.4 The sum rules -- 6.5 Perturbative verification -- 6.6 Non-perturbative verification: bound state -- 6.7 Implications for mesons -- 6.8 Composite Higgs -- References -- Chapter Virtual light-by-light scattering -- 7.1 Forward scattering amplitudes -- 7.1.1 General decomposition of the forward LbL amplitude -- 7.1.2 Unitarity -- 7.1.3 Dispersion relations -- 7.1.4 Low-energy expansion via an effective Lagrangian -- 7.2 Sum rules in perturbation theory -- 7.2.1 Scalar QED -- 7.2.2 Spinor QED -- References -- Chapter Compton-scattering sum rules for vector bosons -- 8.1 Electromagnetic moments: natural values -- 8.2 Gauge symmetries and spin degrees of freedom -- 8.3 Tree-level unitarity: GDH sum rule -- 8.4 Forward VVCS and virtual LbL scattering -- References -- Chapter Vacuum polarization and g−2 of the muon -- 9.1 Vacuum polarization in QED -- 9.2 Unitarity and sum rules -- 9.3 Introduction to the muon anomaly -- 9.4 Hadronic vacuum polarization in the muon anomaly -- 9.5 Muon anomaly via the Schwinger sum rule -- References -- Chapter Dispersion theory of hydrogen-like atoms -- 10.1 Quantum-mechanical Coulomb problem -- 10.2 One-photon exchange in dispersive representation -- 10.3 Vacuum polarization contributions to the Lamb shift -- 10.3.1 The first-order effect -- 10.3.2 Second-order effect -- 10.4 Finite-size effects -- 10.4.1 Lamb shift -- 10.4.2 Hyperfine splitting. 10.5 Two-photon exchange and polarizability effects -- 10.6 Radiative corrections -- 10.6.1 VP2 correction -- 10.6.2 VP1 correction to the Lamb shift -- 10.6.3 VP1 correction to HFS (figure 10.1(c)) -- 10.6.4 Combining VP1 and VP2 -- 10.7 Proton self-energy and the charge-radius definition -- References. |
| Record Nr. | UNINA-9910985693603321 |
Pascalutsa Vladimir
|
||
| Bristol : , : Institute of Physics Publishing, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Dispersion theory in high-energy physics / N.M. Queen, G. Violini
| Dispersion theory in high-energy physics / N.M. Queen, G. Violini |
| Autore | Queen, N.M. |
| Pubbl/distr/stampa | New York : MacMillan Co., 1974 |
| Descrizione fisica | xi, 202 p. : ill. ; 25 cm. |
| Altri autori (Persone) | Violini, G. |
| Soggetto topico | Dispersion relations |
| ISBN | 0470702575 |
| Classificazione |
53.3.15
539.7'21 QC793.3.H5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991000895169707536 |
Queen, N.M.
|
||
| New York : MacMillan Co., 1974 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia
| Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia |
| Autore | Anisovich A. V. |
| Pubbl/distr/stampa | [Hackensack] New Jersey, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (xvi, 325 pages) : illustrations |
| Disciplina | 539.725 |
| Collana | Gale eBooks. |
| Soggetto topico |
Particles (Nuclear physics)
Dispersion relations |
| ISBN |
1-299-46283-9
981-4478-81-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; References; Contents; 8.4.5 Overlapping of baryon resonances; 1. Introduction; 1.1 Non-relativistic three-nucleon and three-quark systems; 1.1.1 Description of three-nucleon systems; 1.1.2 Three-quark systems; 1.2 Dispersion relation technique for three particle systems; 1.2.1 Elements of the dispersion relation technique for two-particle systems; 1.2.2 Interconnection of three particle decay amplitudes and two-particle scattering ones in hadron physics; 1.2.3 Quark-gluon language for processes in regions I, III and IV; 1.2.4 Spectral integral equation for three particles
1.2.5 Isobar models1.2.5.1 Amplitude poles; 1.2.5.2 D-matrix propagator for an unstable particle and the K matrix amplitude; 1.2.5.3 K-matrix and D-matrix masses and the amplitude pole; 1.2.5.4 Accumulation of widths of overlapping resonances; 1.2.5.5 Loop diagrams with resonances in the intermediate states; 1.2.5.6 Isobar model for high energy peripheral production processes; 1.2.6 Quark-diquark model for baryons and group theory approach; 1.2.6.1 Quark-diquark model for baryons; References; 2. Elements of Dispersion Relation Technique for Two-Body Scattering Reactions 2.2.2 Scattering amplitude and energy non-conservation in the spectral integral representation2.2.3 Composite system wave function and its form factors; 2.2.4 Scattering amplitude with multivertex representation of separable interaction; 2.2.4.1 Generalization for an arbitrary angular momentum state, L = J; 2.3 Instantaneous interaction and spectral integral equation for two-body systems; 2.3.1 Instantaneous interaction; 2.3.1.1 Coordinate representation; 2.3.1.2 Instantaneous interaction - transformation into a set of separable vertices |
| Record Nr. | UNINA-9910779565403321 |
Anisovich A. V.
|
||
| [Hackensack] New Jersey, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia
| Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia |
| Autore | Anisovich A. V. |
| Pubbl/distr/stampa | [Hackensack] New Jersey, : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (xvi, 325 pages) : illustrations |
| Disciplina | 539.725 |
| Collana | Gale eBooks. |
| Soggetto topico |
Particles (Nuclear physics)
Dispersion relations |
| ISBN |
1-299-46283-9
981-4478-81-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; References; Contents; 8.4.5 Overlapping of baryon resonances; 1. Introduction; 1.1 Non-relativistic three-nucleon and three-quark systems; 1.1.1 Description of three-nucleon systems; 1.1.2 Three-quark systems; 1.2 Dispersion relation technique for three particle systems; 1.2.1 Elements of the dispersion relation technique for two-particle systems; 1.2.2 Interconnection of three particle decay amplitudes and two-particle scattering ones in hadron physics; 1.2.3 Quark-gluon language for processes in regions I, III and IV; 1.2.4 Spectral integral equation for three particles
1.2.5 Isobar models1.2.5.1 Amplitude poles; 1.2.5.2 D-matrix propagator for an unstable particle and the K matrix amplitude; 1.2.5.3 K-matrix and D-matrix masses and the amplitude pole; 1.2.5.4 Accumulation of widths of overlapping resonances; 1.2.5.5 Loop diagrams with resonances in the intermediate states; 1.2.5.6 Isobar model for high energy peripheral production processes; 1.2.6 Quark-diquark model for baryons and group theory approach; 1.2.6.1 Quark-diquark model for baryons; References; 2. Elements of Dispersion Relation Technique for Two-Body Scattering Reactions 2.2.2 Scattering amplitude and energy non-conservation in the spectral integral representation2.2.3 Composite system wave function and its form factors; 2.2.4 Scattering amplitude with multivertex representation of separable interaction; 2.2.4.1 Generalization for an arbitrary angular momentum state, L = J; 2.3 Instantaneous interaction and spectral integral equation for two-body systems; 2.3.1 Instantaneous interaction; 2.3.1.1 Coordinate representation; 2.3.1.2 Instantaneous interaction - transformation into a set of separable vertices |
| Record Nr. | UNINA-9910821333003321 |
Anisovich A. V.
|
||
| [Hackensack] New Jersey, : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Three-particle physics and dispersion relation theory [[electronic resource] /] / A.V. Anisovich ... [et al.]
| Three-particle physics and dispersion relation theory [[electronic resource] /] / A.V. Anisovich ... [et al.] |
| Pubbl/distr/stampa | [Hackensack] N.J., : World Scientific, c2013 |
| Descrizione fisica | 1 online resource (342 p.) |
| Disciplina | 539.725 |
| Altri autori (Persone) | AnisovichA. V |
| Soggetto topico |
Particles (Nuclear physics)
Dispersion relations |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-299-46283-9
981-4478-81-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Preface; References; Contents; 8.4.5 Overlapping of baryon resonances; 1. Introduction; 1.1 Non-relativistic three-nucleon and three-quark systems; 1.1.1 Description of three-nucleon systems; 1.1.2 Three-quark systems; 1.2 Dispersion relation technique for three particle systems; 1.2.1 Elements of the dispersion relation technique for two-particle systems; 1.2.2 Interconnection of three particle decay amplitudes and two-particle scattering ones in hadron physics; 1.2.3 Quark-gluon language for processes in regions I, III and IV; 1.2.4 Spectral integral equation for three particles
1.2.5 Isobar models1.2.5.1 Amplitude poles; 1.2.5.2 D-matrix propagator for an unstable particle and the K matrix amplitude; 1.2.5.3 K-matrix and D-matrix masses and the amplitude pole; 1.2.5.4 Accumulation of widths of overlapping resonances; 1.2.5.5 Loop diagrams with resonances in the intermediate states; 1.2.5.6 Isobar model for high energy peripheral production processes; 1.2.6 Quark-diquark model for baryons and group theory approach; 1.2.6.1 Quark-diquark model for baryons; References; 2. Elements of Dispersion Relation Technique for Two-Body Scattering Reactions 2.2.2 Scattering amplitude and energy non-conservation in the spectral integral representation2.2.3 Composite system wave function and its form factors; 2.2.4 Scattering amplitude with multivertex representation of separable interaction; 2.2.4.1 Generalization for an arbitrary angular momentum state, L = J; 2.3 Instantaneous interaction and spectral integral equation for two-body systems; 2.3.1 Instantaneous interaction; 2.3.1.1 Coordinate representation; 2.3.1.2 Instantaneous interaction - transformation into a set of separable vertices |
| Record Nr. | UNINA-9910452372803321 |
| [Hackensack] N.J., : World Scientific, c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||