top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Analytic properties of Feynman diagrams in quantum field theory / I.T. Todorov
Analytic properties of Feynman diagrams in quantum field theory / I.T. Todorov
Autore Todorov, I.T.
Pubbl/distr/stampa Oxford : Pergamon, 1971
Descrizione fisica xvi, 152 p. : ill. ; 22 cm.
Collana International series of monographs in natural philosophy ; 38
Soggetto topico Dispersion relations
ISBN 0080165443
Classificazione 53.3.12
53.3.15
53.3.16
530.1'43
QC174.5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000811239707536
Todorov, I.T.  
Oxford : Pergamon, 1971
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Causality Rules (Second Edition) : Dispersion Theory in Non-Elementary Particle Physics
Causality Rules (Second Edition) : Dispersion Theory in Non-Elementary Particle Physics
Autore Pascalutsa Vladimir
Edizione [2nd ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2024
Descrizione fisica 1 online resource (125 pages)
Collana IOP Ebooks Series
Soggetto topico Causality (Physics)
Dispersion relations
ISBN 9780750344838
0750344830
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- < -- named-book-part-body& -- #62 -- < -- p& -- #62 -- It is the theory that decides what we can observe.< -- /p& -- #62 -- < -- p& -- #62 -- & -- #x02013 -- < -- italic& -- #62 -- Albert Einstein< -- /italic& -- #62 -- < -- /p& -- #62 -- < -- p& -- #62 -- This book is about powerful relations due to causality, often in combination with other general principles, such as unitarity and space& -- #x02013 -- time symmetries. These general relations are widely used in many fields of physics, from optics and atomic theory to gaining insights into quantum gravity. Yet, they are rarely a part of the sta -- Acknowledgements -- Author biography -- Vladimir Pascalutsa -- Chapter Introduction -- References -- Chapter Some rules for sum rules -- 2.1 Causality and analyticity -- 2.2 Derivation of dispersion relations -- 2.2.1 An elementary example: the inverse square root -- 2.3 Crossing symmetry -- 2.4 Unitarity -- 2.5 Low-energy theorems and sum rules -- 2.5.1 The good, the bad, and the ugly? -- 2.6 Relaxing the convergence condition -- 2.6.1 An elementary example: the logarithm -- 2.7 Divergencies, subtractions, and renormalization -- 2.8 An approximate sum rule for the proton charge -- References -- Chapter The Kramers-Kronig relation -- 3.1 Refraction in a relativistic medium -- 3.2 The low-frequency limit: the Lorentz-Lorenz relation -- 3.3 CMB refraction index -- Chapter Sum rules for Compton scattering -- 4.1 Forward kinematics: helicity amplitudes for any spin -- 4.2 Optical theorem: dispersion relation -- 4.3 Low-energy expansion and sum rules -- 4.4 Empirical evaluations for the nucleon -- References -- Chapter Virtual Compton scattering and quasi-real sum rules -- 5.1 VVCS and structure functions -- 5.2 Elastic versus Born contributions -- 5.3 The Burkhardt-Cottingham sum rule.
5.4 The Schwinger sum rule -- 5.5 Generalized Baldin sum rules -- 5.6 Longitudinal amplitude: to subtract or unsubtract? -- 5.7 The Bernabéu-Tarrach sum rule -- 5.8 Validation in the parton model -- 5.9 Further spin-dependent relations -- References -- Chapter Sum rules for light-by-light scattering -- 6.1 Compton scattering off a photon -- 6.2 Symmetries, unitarity, and dispersion relations -- 6.3 Effective field theorems -- 6.4 The sum rules -- 6.5 Perturbative verification -- 6.6 Non-perturbative verification: bound state -- 6.7 Implications for mesons -- 6.8 Composite Higgs -- References -- Chapter Virtual light-by-light scattering -- 7.1 Forward scattering amplitudes -- 7.1.1 General decomposition of the forward LbL amplitude -- 7.1.2 Unitarity -- 7.1.3 Dispersion relations -- 7.1.4 Low-energy expansion via an effective Lagrangian -- 7.2 Sum rules in perturbation theory -- 7.2.1 Scalar QED -- 7.2.2 Spinor QED -- References -- Chapter Compton-scattering sum rules for vector bosons -- 8.1 Electromagnetic moments: natural values -- 8.2 Gauge symmetries and spin degrees of freedom -- 8.3 Tree-level unitarity: GDH sum rule -- 8.4 Forward VVCS and virtual LbL scattering -- References -- Chapter Vacuum polarization and g−2 of the muon -- 9.1 Vacuum polarization in QED -- 9.2 Unitarity and sum rules -- 9.3 Introduction to the muon anomaly -- 9.4 Hadronic vacuum polarization in the muon anomaly -- 9.5 Muon anomaly via the Schwinger sum rule -- References -- Chapter Dispersion theory of hydrogen-like atoms -- 10.1 Quantum-mechanical Coulomb problem -- 10.2 One-photon exchange in dispersive representation -- 10.3 Vacuum polarization contributions to the Lamb shift -- 10.3.1 The first-order effect -- 10.3.2 Second-order effect -- 10.4 Finite-size effects -- 10.4.1 Lamb shift -- 10.4.2 Hyperfine splitting.
10.5 Two-photon exchange and polarizability effects -- 10.6 Radiative corrections -- 10.6.1 VP2 correction -- 10.6.2 VP1 correction to the Lamb shift -- 10.6.3 VP1 correction to HFS (figure 10.1(c)) -- 10.6.4 Combining VP1 and VP2 -- 10.7 Proton self-energy and the charge-radius definition -- References.
Record Nr. UNINA-9910985693603321
Pascalutsa Vladimir  
Bristol : , : Institute of Physics Publishing, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dispersion theory in high-energy physics / N.M. Queen, G. Violini
Dispersion theory in high-energy physics / N.M. Queen, G. Violini
Autore Queen, N.M.
Pubbl/distr/stampa New York : MacMillan Co., 1974
Descrizione fisica xi, 202 p. : ill. ; 25 cm.
Altri autori (Persone) Violini, G.
Soggetto topico Dispersion relations
ISBN 0470702575
Classificazione 53.3.15
539.7'21
QC793.3.H5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000895169707536
Queen, N.M.  
New York : MacMillan Co., 1974
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia
Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia
Autore Anisovich A. V.
Pubbl/distr/stampa [Hackensack] New Jersey, : World Scientific, c2013
Descrizione fisica 1 online resource (xvi, 325 pages) : illustrations
Disciplina 539.725
Collana Gale eBooks.
Soggetto topico Particles (Nuclear physics)
Dispersion relations
ISBN 1-299-46283-9
981-4478-81-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; References; Contents; 8.4.5 Overlapping of baryon resonances; 1. Introduction; 1.1 Non-relativistic three-nucleon and three-quark systems; 1.1.1 Description of three-nucleon systems; 1.1.2 Three-quark systems; 1.2 Dispersion relation technique for three particle systems; 1.2.1 Elements of the dispersion relation technique for two-particle systems; 1.2.2 Interconnection of three particle decay amplitudes and two-particle scattering ones in hadron physics; 1.2.3 Quark-gluon language for processes in regions I, III and IV; 1.2.4 Spectral integral equation for three particles
1.2.5 Isobar models1.2.5.1 Amplitude poles; 1.2.5.2 D-matrix propagator for an unstable particle and the K matrix amplitude; 1.2.5.3 K-matrix and D-matrix masses and the amplitude pole; 1.2.5.4 Accumulation of widths of overlapping resonances; 1.2.5.5 Loop diagrams with resonances in the intermediate states; 1.2.5.6 Isobar model for high energy peripheral production processes; 1.2.6 Quark-diquark model for baryons and group theory approach; 1.2.6.1 Quark-diquark model for baryons; References; 2. Elements of Dispersion Relation Technique for Two-Body Scattering Reactions
2.2.2 Scattering amplitude and energy non-conservation in the spectral integral representation2.2.3 Composite system wave function and its form factors; 2.2.4 Scattering amplitude with multivertex representation of separable interaction; 2.2.4.1 Generalization for an arbitrary angular momentum state, L = J; 2.3 Instantaneous interaction and spectral integral equation for two-body systems; 2.3.1 Instantaneous interaction; 2.3.1.1 Coordinate representation; 2.3.1.2 Instantaneous interaction - transformation into a set of separable vertices
Record Nr. UNINA-9910779565403321
Anisovich A. V.  
[Hackensack] New Jersey, : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia
Three-particle physics and dispersion relation theory / / A.V. Anisovich, V.V. Anisovich, M.A. Matveev, V.A. Nikonov, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia, J. Nyiri, Institute for Particle and Nuclear Physics, Wigner RCP, Hungarian Academy of Sciences, Hungary, A.V. Sarantsev, Petersburg Nuclear Physics Institute, Russian Academy of Science, Russia
Autore Anisovich A. V.
Pubbl/distr/stampa [Hackensack] New Jersey, : World Scientific, c2013
Descrizione fisica 1 online resource (xvi, 325 pages) : illustrations
Disciplina 539.725
Collana Gale eBooks.
Soggetto topico Particles (Nuclear physics)
Dispersion relations
ISBN 1-299-46283-9
981-4478-81-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; References; Contents; 8.4.5 Overlapping of baryon resonances; 1. Introduction; 1.1 Non-relativistic three-nucleon and three-quark systems; 1.1.1 Description of three-nucleon systems; 1.1.2 Three-quark systems; 1.2 Dispersion relation technique for three particle systems; 1.2.1 Elements of the dispersion relation technique for two-particle systems; 1.2.2 Interconnection of three particle decay amplitudes and two-particle scattering ones in hadron physics; 1.2.3 Quark-gluon language for processes in regions I, III and IV; 1.2.4 Spectral integral equation for three particles
1.2.5 Isobar models1.2.5.1 Amplitude poles; 1.2.5.2 D-matrix propagator for an unstable particle and the K matrix amplitude; 1.2.5.3 K-matrix and D-matrix masses and the amplitude pole; 1.2.5.4 Accumulation of widths of overlapping resonances; 1.2.5.5 Loop diagrams with resonances in the intermediate states; 1.2.5.6 Isobar model for high energy peripheral production processes; 1.2.6 Quark-diquark model for baryons and group theory approach; 1.2.6.1 Quark-diquark model for baryons; References; 2. Elements of Dispersion Relation Technique for Two-Body Scattering Reactions
2.2.2 Scattering amplitude and energy non-conservation in the spectral integral representation2.2.3 Composite system wave function and its form factors; 2.2.4 Scattering amplitude with multivertex representation of separable interaction; 2.2.4.1 Generalization for an arbitrary angular momentum state, L = J; 2.3 Instantaneous interaction and spectral integral equation for two-body systems; 2.3.1 Instantaneous interaction; 2.3.1.1 Coordinate representation; 2.3.1.2 Instantaneous interaction - transformation into a set of separable vertices
Record Nr. UNINA-9910821333003321
Anisovich A. V.  
[Hackensack] New Jersey, : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Three-particle physics and dispersion relation theory [[electronic resource] /] / A.V. Anisovich ... [et al.]
Three-particle physics and dispersion relation theory [[electronic resource] /] / A.V. Anisovich ... [et al.]
Pubbl/distr/stampa [Hackensack] N.J., : World Scientific, c2013
Descrizione fisica 1 online resource (342 p.)
Disciplina 539.725
Altri autori (Persone) AnisovichA. V
Soggetto topico Particles (Nuclear physics)
Dispersion relations
Soggetto genere / forma Electronic books.
ISBN 1-299-46283-9
981-4478-81-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; References; Contents; 8.4.5 Overlapping of baryon resonances; 1. Introduction; 1.1 Non-relativistic three-nucleon and three-quark systems; 1.1.1 Description of three-nucleon systems; 1.1.2 Three-quark systems; 1.2 Dispersion relation technique for three particle systems; 1.2.1 Elements of the dispersion relation technique for two-particle systems; 1.2.2 Interconnection of three particle decay amplitudes and two-particle scattering ones in hadron physics; 1.2.3 Quark-gluon language for processes in regions I, III and IV; 1.2.4 Spectral integral equation for three particles
1.2.5 Isobar models1.2.5.1 Amplitude poles; 1.2.5.2 D-matrix propagator for an unstable particle and the K matrix amplitude; 1.2.5.3 K-matrix and D-matrix masses and the amplitude pole; 1.2.5.4 Accumulation of widths of overlapping resonances; 1.2.5.5 Loop diagrams with resonances in the intermediate states; 1.2.5.6 Isobar model for high energy peripheral production processes; 1.2.6 Quark-diquark model for baryons and group theory approach; 1.2.6.1 Quark-diquark model for baryons; References; 2. Elements of Dispersion Relation Technique for Two-Body Scattering Reactions
2.2.2 Scattering amplitude and energy non-conservation in the spectral integral representation2.2.3 Composite system wave function and its form factors; 2.2.4 Scattering amplitude with multivertex representation of separable interaction; 2.2.4.1 Generalization for an arbitrary angular momentum state, L = J; 2.3 Instantaneous interaction and spectral integral equation for two-body systems; 2.3.1 Instantaneous interaction; 2.3.1.1 Coordinate representation; 2.3.1.2 Instantaneous interaction - transformation into a set of separable vertices
Record Nr. UNINA-9910452372803321
[Hackensack] N.J., : World Scientific, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui