top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Cech cohomological dimensions for commutative rings / / David E. Dobbs
Cech cohomological dimensions for commutative rings / / David E. Dobbs
Autore Dobbs David E.
Edizione [1st ed. 1970.]
Pubbl/distr/stampa Berlin ; ; Heidelberg : , : Springer-Verlag, , [1970]
Descrizione fisica 1 online resource (VIII, 180 p.)
Disciplina 510
Collana Lecture Notes in Mathematics
Soggetto topico Dimension theory (Topology)
Homology theory
Rings (Algebra)
ISBN 3-540-36310-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cohomological dimension of fields -- On Cech dimension theories for rings -- A generalization of cohomological dimension for rings -- Number theoretic applications of a cech dimension theory.
Record Nr. UNISA-996466652703316
Dobbs David E.  
Berlin ; ; Heidelberg : , : Springer-Verlag, , [1970]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dimension and recurrence in hyperbolic dynamics [[electronic resource] /] / Luis Barreira
Dimension and recurrence in hyperbolic dynamics [[electronic resource] /] / Luis Barreira
Autore Barreira Luis <1968->
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Basel, : Birkhäuser
Descrizione fisica 1 online resource (309 p.)
Disciplina 514.7
Collana Progress in mathematics
Soggetto topico Differentiable dynamical systems
Hyperbolic groups
Dimension theory (Topology)
Soggetto genere / forma Electronic books.
ISBN 1-281-87243-1
9786611872434
3-7643-8882-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Dimension theory -- 2. Multifractal analysis : core theory -- 3. Multifractal analysis : further developments -- 4. Hyperbolicity and recurrence.
Record Nr. UNINA-9910453447103321
Barreira Luis <1968->  
Basel, : Birkhäuser
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dimension and recurrence in hyperbolic dynamics [[electronic resource] /] / Luis Barreira
Dimension and recurrence in hyperbolic dynamics [[electronic resource] /] / Luis Barreira
Autore Barreira Luís <1968->
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Basel, : Birkhäuser
Descrizione fisica 1 online resource (309 p.)
Disciplina 514.7
Collana Progress in mathematics
Soggetto topico Differentiable dynamical systems
Hyperbolic groups
Dimension theory (Topology)
ISBN 1-281-87243-1
9786611872434
3-7643-8882-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Dimension theory -- 2. Multifractal analysis : core theory -- 3. Multifractal analysis : further developments -- 4. Hyperbolicity and recurrence.
Record Nr. UNINA-9910782363603321
Barreira Luís <1968->  
Basel, : Birkhäuser
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dimension and recurrence in hyperbolic dynamics / / Luis Barreira
Dimension and recurrence in hyperbolic dynamics / / Luis Barreira
Autore Barreira Luís <1968->
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Basel, : Birkhäuser
Descrizione fisica 1 online resource (309 p.)
Disciplina 514.7
Collana Progress in mathematics
Soggetto topico Differentiable dynamical systems
Hyperbolic groups
Dimension theory (Topology)
ISBN 1-281-87243-1
9786611872434
3-7643-8882-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Dimension theory -- 2. Multifractal analysis : core theory -- 3. Multifractal analysis : further developments -- 4. Hyperbolicity and recurrence.
Record Nr. UNINA-9910816647503321
Barreira Luís <1968->  
Basel, : Birkhäuser
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dimension theory in dynamical systems [[electronic resource] ] : contemporary views and applications / / Yakov B. Pesin
Dimension theory in dynamical systems [[electronic resource] ] : contemporary views and applications / / Yakov B. Pesin
Autore Pesin Ya. B
Pubbl/distr/stampa Chicago, : University of Chicago Press, 1997
Descrizione fisica 1 online resource (320 p.)
Disciplina 515/.352
Collana Chicago lectures in mathematics series
Soggetto topico Dimension theory (Topology)
Differentiable dynamical systems
Soggetto genere / forma Electronic books.
ISBN 0-226-66223-3
1-299-10465-7
Classificazione SK 290
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Carathéodory dimension characteristics -- pt. 2. Applications to dimension theory and dynamical systems.
Record Nr. UNINA-9910451027703321
Pesin Ya. B  
Chicago, : University of Chicago Press, 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dimension theory in dynamical systems [[electronic resource] ] : contemporary views and applications / / Yakov B. Pesin
Dimension theory in dynamical systems [[electronic resource] ] : contemporary views and applications / / Yakov B. Pesin
Autore Pesin Ya. B
Pubbl/distr/stampa Chicago, : University of Chicago Press, 1997
Descrizione fisica 1 online resource (320 p.)
Disciplina 515/.352
Collana Chicago lectures in mathematics series
Soggetto topico Dimension theory (Topology)
Differentiable dynamical systems
Soggetto non controllato theory, theoretical, academic, scholarly, research, contemporary, modern, dynamics, math, mathematics, textbook, college, university, higher education, classroom, teacher, professor, student, symmetry, self similarity, nature, natural world, phenomenon, fractals, geometry, geometric, dimensional, chaos, chaotic, behavior, invariant, stochastic
ISBN 0-226-66223-3
1-299-10465-7
Classificazione SK 290
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Carathéodory dimension characteristics -- pt. 2. Applications to dimension theory and dynamical systems.
Record Nr. UNINA-9910785090903321
Pesin Ya. B  
Chicago, : University of Chicago Press, 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dimension theory in dynamical systems : contemporary views and applications / / Yakov B. Pesin
Dimension theory in dynamical systems : contemporary views and applications / / Yakov B. Pesin
Autore Pesin Ya. B
Edizione [1st ed.]
Pubbl/distr/stampa Chicago, : University of Chicago Press, 1997
Descrizione fisica 1 online resource (320 p.)
Disciplina 515/.352
Collana Chicago lectures in mathematics series
Soggetto topico Dimension theory (Topology)
Differentiable dynamical systems
ISBN 0-226-66223-3
1-299-10465-7
Classificazione SK 290
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto pt. 1. Caratheodory dimension characteristics -- pt. 2. Applications to dimension theory and dynamical systems.
Record Nr. UNINA-9910815627503321
Pesin Ya. B  
Chicago, : University of Chicago Press, 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractal geometry : mathematical foundations and applications / / Kenneth Falconer
Fractal geometry : mathematical foundations and applications / / Kenneth Falconer
Autore Falconer K. J. <1952->
Edizione [Third edition.]
Pubbl/distr/stampa Hoboken : , : John Wiley & Sons, , 2014
Descrizione fisica 1 online resource (400 p.)
Disciplina 514/.742
Soggetto topico Fractals
Dimension theory (Topology)
Soggetto genere / forma Electronic books.
ISBN 1-118-76286-X
1-118-76285-1
Classificazione MAT031000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title Page; Copyright; Contents; Preface to the first edition; Preface to the second edition; Preface to the third edition; Course suggestions; Introduction; Part I Foundations; Chapter 1 Mathematical background; 1.1 Basic set theory; 1.2 Functions and limits; 1.3 Measures and mass distributions; 1.4 Notes on probability theory; 1.5 Notes and references; Exercises; Chapter 2 Box-counting dimension; 2.1 Box-counting dimensions; 2.2 Properties and problems of box-counting dimension; 2.3 Modified box-counting dimensions; 2.4 Some other definitions of dimension; 2.5 Notes and references
ExercisesChapter 3 Hausdorff and packing measures and dimensions; 3.1 Hausdorff measure; 3.2 Hausdorff dimension; 3.3 Calculation of Hausdorff dimension-simple examples; 3.4 Equivalent definitions of Hausdorff dimension; 3.5 Packing measure and dimensions; 3.6 Finer definitions of dimension; 3.7 Dimension prints; 3.8 Porosity; 3.9 Notes and references; Exercises; Chapter 4 Techniques for calculating dimensions; 4.1 Basic methods; 4.2 Subsets of finite measure; 4.3 Potential theoretic methods; 4.4 Fourier transform methods; 4.5 Notes and references; Exercises
Chapter 5 Local structure of fractals5.1 Densities; 5.2 Structure of 1-sets; 5.3 Tangents to s-sets; 5.4 Notes and references; Exercises; Chapter 6 Projections of fractals; 6.1 Projections of arbitrary sets; 6.2 Projections of s-sets of integral dimension; 6.3 Projections of arbitrary sets of integral dimension; 6.4 Notes and references; Exercises; Chapter 7 Products of fractals; 7.1 Product formulae; 7.2 Notes and references; Exercises; Chapter 8 Intersections of fractals; 8.1 Intersection formulae for fractals; 8.2 Sets with large intersection; 8.3 Notes and references; Exercises
Part II Applications and ExamplesChapter 9 Iterated function systems-self-similar and self-affine sets; 9.1 Iterated function systems; 9.2 Dimensions of self-similar sets; 9.3 Some variations; 9.4 Self-affine sets; 9.5 Applications to encoding images; 9.6 Zeta functions and complex dimensions; 9.7 Notes and references; Exercises; Chapter 10 Examples from number theory; 10.1 Distribution of digits of numbers; 10.2 Continued fractions; 10.3 Diophantine approximation; 10.4 Notes and references; Exercises; Chapter 11 Graphs of functions; 11.1 Dimensions of graphs
11.2 Autocorrelation of fractal functions11.3 Notes and references; Exercises; Chapter 12 Examples from pure mathematics; 12.1 Duality and the Kakeya problem; 12.2 Vitushkin's conjecture; 12.3 Convex functions; 12.4 Fractal groups and rings; 12.5 Notes and references; Exercises; Chapter 13 Dynamical systems; 13.1 Repellers and iterated function systems; 13.2 The logistic map; 13.3 Stretching and folding transformations; 13.4 The solenoid; 13.5 Continuous dynamical systems; 13.6 Small divisor theory; 13.7 Lyapunov exponents and entropies; 13.8 Notes and references; Exercises
Chapter 14 Iteration of complex functions-Julia sets and the Mandelbrot set
Record Nr. UNINA-9910453807903321
Falconer K. J. <1952->  
Hoboken : , : John Wiley & Sons, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractal Geometry : Mathematical Foundations and Applications
Fractal Geometry : Mathematical Foundations and Applications
Autore Falconer Kenneth
Edizione [3rd ed.]
Pubbl/distr/stampa New York : , : John Wiley & Sons, Incorporated, , 2014
Descrizione fisica 1 online resource (400 pages)
Disciplina 514/.742
Altri autori (Persone) FalconerKenneth
Soggetto topico Fractals
Dimension theory (Topology)
Soggetto genere / forma Electronic books.
ISBN 9781118762851
9781119942399
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface to the first edition -- Preface to the second edition -- Preface to the third edition -- Course suggestions -- Introduction -- Part I Foundations -- Chapter 1 Mathematical background -- 1.1 Basic set theory -- 1.2 Functions and limits -- 1.3 Measures and mass distributions -- 1.4 Notes on probability theory -- 1.5 Notes and references -- Exercises -- Chapter 2 Box-counting dimension -- 2.1 Box-counting dimensions -- 2.2 Properties and problems of box-counting dimension -- 2.3 Modified box-counting dimensions -- 2.4 Some other definitions of dimension -- 2.5 Notes and references -- Exercises -- Chapter 3 Hausdorff and packing measures and dimensions -- 3.1 Hausdorff measure -- 3.2 Hausdorff dimension -- 3.3 Calculation of Hausdorff dimension-simple examples -- 3.4 Equivalent definitions of Hausdorff dimension -- 3.5 Packing measure and dimensions -- 3.6 Finer definitions of dimension -- 3.7 Dimension prints -- 3.8 Porosity -- 3.9 Notes and references -- Exercises -- Chapter 4 Techniques for calculating dimensions -- 4.1 Basic methods -- 4.2 Subsets of finite measure -- 4.3 Potential theoretic methods -- 4.4 Fourier transform methods -- 4.5 Notes and references -- Exercises -- Chapter 5 Local structure of fractals -- 5.1 Densities -- 5.2 Structure of 1-sets -- 5.3 Tangents to s-sets -- 5.4 Notes and references -- Exercises -- Chapter 6 Projections of fractals -- 6.1 Projections of arbitrary sets -- 6.2 Projections of s-sets of integral dimension -- 6.3 Projections of arbitrary sets of integral dimension -- 6.4 Notes and references -- Exercises -- Chapter 7 Products of fractals -- 7.1 Product formulae -- 7.2 Notes and references -- Exercises -- Chapter 8 Intersections of fractals -- 8.1 Intersection formulae for fractals -- 8.2 Sets with large intersection -- 8.3 Notes and references.
Exercises -- Part II Applications and Examples -- Chapter 9 Iterated function systems-self-similar and self-affine sets -- 9.1 Iterated function systems -- 9.2 Dimensions of self-similar sets -- 9.3 Some variations -- 9.4 Self-affine sets -- 9.5 Applications to encoding images -- 9.6 Zeta functions and complex dimensions -- 9.7 Notes and references -- Exercises -- Chapter 10 Examples from number theory -- 10.1 Distribution of digits of numbers -- 10.2 Continued fractions -- 10.3 Diophantine approximation -- 10.4 Notes and references -- Exercises -- Chapter 11 Graphs of functions -- 11.1 Dimensions of graphs -- 11.2 Autocorrelation of fractal functions -- 11.3 Notes and references -- Exercises -- Chapter 12 Examples from pure mathematics -- 12.1 Duality and the Kakeya problem -- 12.2 Vitushkin's conjecture -- 12.3 Convex functions -- 12.4 Fractal groups and rings -- 12.5 Notes and references -- Exercises -- Chapter 13 Dynamical systems -- 13.1 Repellers and iterated function systems -- 13.2 The logistic map -- 13.3 Stretching and folding transformations -- 13.4 The solenoid -- 13.5 Continuous dynamical systems -- 13.6 Small divisor theory -- 13.7 Lyapunov exponents and entropies -- 13.8 Notes and references -- Exercises -- Chapter 14 Iteration of complex functions-Julia sets and the Mandelbrot set -- 14.1 General theory of Julia sets -- 14.2 Quadratic functions-the Mandelbrot set -- 14.3 Julia sets of quadratic functions -- 14.4 Characterisation of quasi-circles by dimension -- 14.5 Newton's method for solving polynomial equations -- 14.6 Notes and references -- Exercises -- Chapter 15 Random fractals -- 15.1 A random Cantor set -- 15.2 Fractal percolation -- 15.3 Notes and references -- Exercises -- Chapter 16 Brownian motion and Brownian surfaces -- 16.1 Brownian motion in R -- 16.2 Brownian motion in Rn -- 16.3 Fractional Brownian motion.
16.4 Fractional Brownian surfaces -- 16.5 Lévy stable processes -- 16.6 Notes and references -- Exercises -- Chapter 17 Multifractal measures -- 17.1 Coarse multifractal analysis -- 17.2 Fine multifractal analysis -- 17.3 Self-similar multifractals -- 17.4 Notes and references -- Exercises -- Chapter 18 Physical applications -- 18.1 Fractal fingering -- 18.2 Singularities of electrostatic and gravitational potentials -- 18.3 Fluid dynamics and turbulence -- 18.4 Fractal antennas -- 18.5 Fractals in finance -- 18.6 Notes and references -- Exercises -- References -- Index.
Record Nr. UNINA-9910795832003321
Falconer Kenneth  
New York : , : John Wiley & Sons, Incorporated, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Fractal Geometry : Mathematical Foundations and Applications
Fractal Geometry : Mathematical Foundations and Applications
Autore Falconer Kenneth
Edizione [3rd ed.]
Pubbl/distr/stampa New York : , : John Wiley & Sons, Incorporated, , 2014
Descrizione fisica 1 online resource (400 pages)
Disciplina 514/.742
Altri autori (Persone) FalconerKenneth
Soggetto topico Fractals
Dimension theory (Topology)
ISBN 9781118762851
9781119942399
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface to the first edition -- Preface to the second edition -- Preface to the third edition -- Course suggestions -- Introduction -- Part I Foundations -- Chapter 1 Mathematical background -- 1.1 Basic set theory -- 1.2 Functions and limits -- 1.3 Measures and mass distributions -- 1.4 Notes on probability theory -- 1.5 Notes and references -- Exercises -- Chapter 2 Box-counting dimension -- 2.1 Box-counting dimensions -- 2.2 Properties and problems of box-counting dimension -- 2.3 Modified box-counting dimensions -- 2.4 Some other definitions of dimension -- 2.5 Notes and references -- Exercises -- Chapter 3 Hausdorff and packing measures and dimensions -- 3.1 Hausdorff measure -- 3.2 Hausdorff dimension -- 3.3 Calculation of Hausdorff dimension-simple examples -- 3.4 Equivalent definitions of Hausdorff dimension -- 3.5 Packing measure and dimensions -- 3.6 Finer definitions of dimension -- 3.7 Dimension prints -- 3.8 Porosity -- 3.9 Notes and references -- Exercises -- Chapter 4 Techniques for calculating dimensions -- 4.1 Basic methods -- 4.2 Subsets of finite measure -- 4.3 Potential theoretic methods -- 4.4 Fourier transform methods -- 4.5 Notes and references -- Exercises -- Chapter 5 Local structure of fractals -- 5.1 Densities -- 5.2 Structure of 1-sets -- 5.3 Tangents to s-sets -- 5.4 Notes and references -- Exercises -- Chapter 6 Projections of fractals -- 6.1 Projections of arbitrary sets -- 6.2 Projections of s-sets of integral dimension -- 6.3 Projections of arbitrary sets of integral dimension -- 6.4 Notes and references -- Exercises -- Chapter 7 Products of fractals -- 7.1 Product formulae -- 7.2 Notes and references -- Exercises -- Chapter 8 Intersections of fractals -- 8.1 Intersection formulae for fractals -- 8.2 Sets with large intersection -- 8.3 Notes and references.
Exercises -- Part II Applications and Examples -- Chapter 9 Iterated function systems-self-similar and self-affine sets -- 9.1 Iterated function systems -- 9.2 Dimensions of self-similar sets -- 9.3 Some variations -- 9.4 Self-affine sets -- 9.5 Applications to encoding images -- 9.6 Zeta functions and complex dimensions -- 9.7 Notes and references -- Exercises -- Chapter 10 Examples from number theory -- 10.1 Distribution of digits of numbers -- 10.2 Continued fractions -- 10.3 Diophantine approximation -- 10.4 Notes and references -- Exercises -- Chapter 11 Graphs of functions -- 11.1 Dimensions of graphs -- 11.2 Autocorrelation of fractal functions -- 11.3 Notes and references -- Exercises -- Chapter 12 Examples from pure mathematics -- 12.1 Duality and the Kakeya problem -- 12.2 Vitushkin's conjecture -- 12.3 Convex functions -- 12.4 Fractal groups and rings -- 12.5 Notes and references -- Exercises -- Chapter 13 Dynamical systems -- 13.1 Repellers and iterated function systems -- 13.2 The logistic map -- 13.3 Stretching and folding transformations -- 13.4 The solenoid -- 13.5 Continuous dynamical systems -- 13.6 Small divisor theory -- 13.7 Lyapunov exponents and entropies -- 13.8 Notes and references -- Exercises -- Chapter 14 Iteration of complex functions-Julia sets and the Mandelbrot set -- 14.1 General theory of Julia sets -- 14.2 Quadratic functions-the Mandelbrot set -- 14.3 Julia sets of quadratic functions -- 14.4 Characterisation of quasi-circles by dimension -- 14.5 Newton's method for solving polynomial equations -- 14.6 Notes and references -- Exercises -- Chapter 15 Random fractals -- 15.1 A random Cantor set -- 15.2 Fractal percolation -- 15.3 Notes and references -- Exercises -- Chapter 16 Brownian motion and Brownian surfaces -- 16.1 Brownian motion in R -- 16.2 Brownian motion in Rn -- 16.3 Fractional Brownian motion.
16.4 Fractional Brownian surfaces -- 16.5 Lévy stable processes -- 16.6 Notes and references -- Exercises -- Chapter 17 Multifractal measures -- 17.1 Coarse multifractal analysis -- 17.2 Fine multifractal analysis -- 17.3 Self-similar multifractals -- 17.4 Notes and references -- Exercises -- Chapter 18 Physical applications -- 18.1 Fractal fingering -- 18.2 Singularities of electrostatic and gravitational potentials -- 18.3 Fluid dynamics and turbulence -- 18.4 Fractal antennas -- 18.5 Fractals in finance -- 18.6 Notes and references -- Exercises -- References -- Index.
Record Nr. UNINA-9910822701303321
Falconer Kenneth  
New York : , : John Wiley & Sons, Incorporated, , 2014
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui