Augmented Humanity : Being and Remaining Agentic in a Digitalized World |
Autore | Bryant Peter T |
Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2021 |
Descrizione fisica | 1 online resource (325 p.) |
Disciplina | 004.019 |
Soggetto topico |
Digitalització
Psicologia aplicada Tecnologia i civilització |
Soggetto genere / forma | Llibres electrònics |
Soggetto non controllato |
behavioral science
applied psychology social cognitive psychology organizational design and management microeconomics and preferential choice artificial intelligence cognitive bias rationality digitization bounded rationality agency problem solving trust collaboration metacognition freedom of thought cognitive empathy cognitive plasticity |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | Augmented Humanity |
Record Nr. | UNINA-9910493732203321 |
Bryant Peter T | ||
Cham, : Springer International Publishing AG, 2021 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Data analytics for cultural heritage : current trends and concepts / / Abdelhak Belhi [and three others] editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (288 pages) |
Disciplina | 363.69 |
Soggetto topico |
Cultural property - Data processing
Patrimoni cultural Digitalització Processament de dades Aprenentatge automàtic |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-030-66777-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Preface -- Acknowledgment -- Contents -- About the Editors -- NoisyArt: Exploiting the Noisy Web for Zero-shot Classification and Artwork Instance Recognition -- 1 Introduction -- 2 Related Work -- 3 The NoisyArt Dataset -- 3.1 Data Sources -- 3.2 Data Collection -- 3.3 Discussion -- 4 Webly-Supervised Artwork Recognition -- 4.1 Baseline Classifier Model -- 4.2 Labelflip Noise -- 4.3 Entropy Scaling for Outlier Mitigation -- 4.4 Gradual Bootstrapping -- 4.5 Domain Shift Mitigation and L2 Normalization -- 5 Zero-Shot Artwork Recognition -- 5.1 Compatibility Models -- 5.2 Zero-shot Learning with Webly-Labeled Data -- 6 Experimental Results: Artwork Instance Recognition -- 6.1 Datasets -- 6.2 Webly-Supervised Classification -- 6.3 Identifying Problem Classes -- 7 Experimental Results: Zero-Shot Recognition -- 7.1 Zero-shot Recognition with Webly-Labeled Data -- 8 Conclusions and Future Work -- References -- Cultural Heritage Image Classification -- 1 Introduction -- 1.1 Artificial Neural Networks -- 2 CNN Architectures -- 3 Data and Methodology -- 3.1 Data -- 3.2 Methodology -- 3.3 Model Configuration -- 4 Results and Discussion -- References -- Study and Evaluation of Pre-trained CNN Networks for Cultural Heritage Image Classification -- 1 Introduction -- 2 Related Work -- 2.1 Feature Extraction Approaches -- 2.2 Feature Learning Approaches -- 3 The Cultural Heritage Image Classification Problem -- 3.1 Architectural Heritage Elements Dataset (AHE) -- 3.2 The WikiArt Dataset -- 4 The CNN-Based Pre-trained Networks -- 4.1 The Oxford Visual Geometry Group Models (VGG16 and VGG19) -- 4.2 Residual Networks -- 4.3 The Inception-V3 Model -- 5 Transfer Learning of the Pre-trained Networks to CH Image Classification -- 6 The Experimental Study -- 6.1 Experimental Setup -- 6.2 Experimental Results -- 6.3 Discussion -- 7 Conclusion.
References -- Visual Classification of Intangible Cultural Heritage Images in the Mekong Delta -- 1 Background and Purpose -- 2 Approach -- 2.1 Data Collection of Intangible Cultural Heritage Images -- 2.2 Visual Approaches for Classifying Intangible Cultural Heritage Images -- 3 Results -- 3.1 Tuning Parameters -- 3.2 Classification Results for 17 ICH Categories -- 4 Conclusions -- References -- Digital Image Inpainting Techniques for Cultural Heritage Preservation and Restoration -- 1 Introduction -- 1.1 The Importance of Inpainting in Cultural Heritage -- 1.2 The Image Inpainting Problem -- 2 Interpolation -- 3 Digital Image Inpainting Methods -- 3.1 Diffusion-Based Methods -- 3.2 Texture Synthesis-Based Inpainting -- 3.3 Exemplar-Based Methods -- 3.4 Hybrid Inpainting Methods -- 3.5 Semiautomatic and Fast Inpainting Technique -- 3.6 Deep Learning-Based Technique -- 3.6.1 CNN-Based Inpainting Method -- 3.6.2 GAN-Based Inpainting Method -- 4 A Two-Stage Method for CH Digital Image Inpainting -- 5 Results and Comparisons -- 6 Conclusion -- References -- Crowd Source Framework for Indian Digital Heritage Space -- 1 Introduction -- 2 Crowd Source Framework for IHDS -- 3 Data Preprocessing -- 3.1 Redundancy Removal -- 3.2 Blur Removal -- 3.3 Super-Resolution -- 3.3.1 GAN Network Architecture -- 3.3.2 Generator Network -- 3.3.3 Discriminator Network -- 3.3.4 Perceptual Loss Function -- 4 Classification -- 4.1 Deep Neural Network -- 4.2 MobileNet Architecture -- 4.3 Transfer Learning -- 5 Results -- 5.1 IHDS Dataset -- 5.2 Blur Removal -- 5.3 Super-Resolution -- 5.3.1 Training Details -- 5.4 Transfer Learning Classification Results -- 5.5 Screenshots of Framework Working (GUI) -- 6 Conclusions -- References -- A Robust Method for Text, Line, and Word Segmentation for Historical Arabic Manuscripts -- 1 Introduction -- 2 Related Works. 2.1 Text Segmentation Methods -- 2.2 Line Segmentation Methods -- 2.3 Word Segmentation Methods -- 3 Proposed Method -- 3.1 Texture Component Extraction -- 3.2 Encoder-Decoder Architecture -- 3.3 Line Segmentation -- 3.3.1 Smoothing -- 3.4 Word Segmentation -- 3.4.1 The Smoothed Generalized Chamfer Distance -- 3.4.2 Classification of Inter/intra-Word Distances -- 3.5 Classification of Beginning and Ending of Words -- 3.6 Classification of First and Last Characters -- 4 Experimental Results -- 4.1 Datasets -- 4.2 Metrics -- 4.3 Analysis -- 5 Conclusion -- References -- Aesthetical Issues with Stochastic Evaluation -- 1 Introduction -- 1.1 Aesthetical Issues and Mathematics -- 1.2 Aesthetical Issues and Stochastic Analysis -- 2 Methodology -- 2.1 Stochastic Analysis in 2D -- 2.2 Illustration of Stochastic Analysis in 2D -- 3 Examples of Stochastic Analysis -- 3.1 Range of Fluctuations in Groups of Images -- 3.1.1 Data Analysis -- 3.1.2 Evaluation -- 3.2 Evaluation of Urban and Natural Landscapes Transformed by Technological and Civil Infrastructure through Climacogram Subtraction -- 3.2.1 Data Analysis -- 3.2.2 Evaluation -- 3.3 Qualitative Evaluation Aspect of Climacogram Curves -- 3.3.1 Data Analysis -- 4 Conclusions -- References -- 3D Visual Interaction for Cultural Heritage Sector -- 1 Introduction -- 2 Human-Computer Interaction -- 3 Visual Interaction in Cultural Heritage -- 4 Human-Computer Gesture Recognition -- 5 Hand Gesture Visual Processing Techniques -- 5.1 Hand Detection -- 5.1.1 3D Modelling -- 5.1.2 Pixel Values -- 5.1.3 Shape -- 5.1.4 Skin Colour -- 5.2 Hand Tracking -- 5.2.1 Estimation Based -- 5.2.2 Template Based -- 5.3 Gesture Recognition -- 6 Product Markets of Vision-Based Sensing Devices -- 6.1 Microsoft Kinect -- 6.2 Leap Motion Controller -- 7 Software Development Environments -- 7.1 Unity 3D -- 7.2 OpenCV. 8 Proposed Approach -- 8.1 Data Acquisition -- 8.2 Data Pre-processing -- 8.2.1 Motion Interpolation -- 8.2.2 Super-Resolution -- 8.3 Photogrammetry -- 8.4 3D Model Adaptation -- 8.5 3D Model Visualisation -- 8.6 3D Interaction -- 9 Evaluation Work and Discussion -- 9.1 Evaluation Methodology -- 9.2 Results and Discussions -- 10 Summary and Conclusions -- References -- Retrieving Visually Linked Digitized Paintings -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 4 Experiment -- 4.1 Time Period Classification -- 4.2 Link Retrieval -- 5 Conclusion -- References -- Named Entity Recognition for Cultural Heritage Preservation -- 1 Introduction -- 1.1 Natural Language Processing in Cultural Heritage Domain -- 2 Named Entity Recognition -- 2.1 NER Process -- 2.2 NER Approaches -- 2.2.1 Rule-Based Approaches -- 2.2.2 Machine Learning Approaches -- 2.2.3 Deep Learning Approaches -- 2.3 Pre-trained NER Tools -- 2.4 Performance Measures for NER -- 3 Named Entity Recognition in Cultural Heritage Domain and Historical Texts -- 4 Discussion -- 4.1 NLP Challenges in Cultural Heritage Domain -- 4.1.1 Lack of Consistent Orthography -- 4.1.2 Solution Methods -- 5 Conclusion -- References -- Index. |
Record Nr. | UNINA-9910484619103321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Digital transformation in Norwegian Enterprises / / editors, Patrick Mikalef, Elena Parmiggiani |
Autore | Mikalef Patrick |
Pubbl/distr/stampa | Cham, : Springer Nature, 2022 |
Descrizione fisica | 1 online resource (xiv, 196 pages) : illustrations (some color) |
Altri autori (Persone) |
MikalefPatrick
ParmiggianiElena |
Soggetto topico |
Business enterprises - Norway
Technological innovations - Norway - Management Digitalització Innovacions tecnològiques |
Soggetto genere / forma | Llibres electrònics |
ISBN | 3-031-05276-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | An Introduction to Digital Transformation The Case of Norway and Digital Transformation over the Years Part I: Private Enterprises From Integrated to Remote Operations: Digital Transformation in the Energy Industry as Infrastructuring The Norwegian Mobile Telephony and Internet Markets Digital Transformation in Renewable Energy: Use Cases and Experiences from a Nordic Power Producer From Intention to Use to Active Use of a Mobile Application in Norwegian ETO Manufacturing Part II: Public Enterprises Digital Transformation in NAV IT 2016–2020: Key Factors for the Journey of Change Improving Digitization of Urban Mobility Services with Enterprise Architecture Operating Room of the Future (FOR) Digital Healthcare Transformation in the Age of Artificial Intelligence Part III: Synthesis A Framework for Digital Transformation for Research and Practice: Putting Things into Perspective The Way Forward: A Practical Guideline for Successful Digital Transformation Concluding Remarks and Final Thoughts on Digital Transformation |
Record Nr. | UNINA-9910578689403321 |
Mikalef Patrick | ||
Cham, : Springer Nature, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|