top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Digital twin development : an introduction to Simcenter Amesim / / Frank U. Rückert [and three others]
Digital twin development : an introduction to Simcenter Amesim / / Frank U. Rückert [and three others]
Autore Rückert Frank U.
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Descrizione fisica 1 online resource (129 pages)
Disciplina 381
Soggetto topico Digital twins (Computer simulation)
ISBN 3-031-25692-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Introduction -- 2. Mathematics, Signals and Control Library -- 3. The Mechanical Twin -- 4. The Thermal Twin -- 5. The Hydraulic Twin -- 6. The Pneumatic Twin -- 7. The Electric Twin -- 8. Analysis of Complex Technical Systems -- 9. Digital Twins and Artificial Intelligence -- 10. Conclusions.
Record Nr. UNINA-9910682591503321
Rückert Frank U.  
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Digital twins : basics and applications / / Zhihan Lv, Elena Fersman, editors
Digital twins : basics and applications / / Zhihan Lv, Elena Fersman, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (102 pages)
Disciplina 003.3
Soggetto topico Digital twins (Computer simulation)
ISBN 3-031-11401-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Digital Twins Architecture -- 1 Why to Talk About Digital Twins? -- 2 The Main Digital Twin's Components -- 2.1 Physical System (PS) -- 2.2 Virtual System (VS) -- 2.3 Systems Data (SD) -- 2.4 Communication Interface (CI) -- 3 Is This a Digital Twin? -- 4 Practical Case Studies -- 4.1 Case Study I -- 4.2 Case Study II -- References -- Digital Twins for Physical Asset Lifecycle Management -- 1 Introduction -- 2 Digital Twin Asset Lifecycle Management (DTALM) -- 3 Digital Twin Essence -- 4 Digital Twin Systems -- 4.1 Physical Domain -- 4.2 Digital Domain -- 4.3 Physics-Based Generative Models for Digital Twins -- 4.4 Advances in Parameter Identifiability -- 5 Data-Driven Digital Twins -- 5.1 Statistical Learning Models -- 5.2 Machine Learning Models -- 5.3 Deep Learning Models -- 5.4 Industrial Digital Twin Applications for PALM -- References -- Digital Twins and Additive Manufacturing -- 1 Additive Manufacturing -- 2 Digital Twins -- 3 DTs for AM Needs and Challenges -- 3.1 Real Time Monitoring -- 3.2 Database and Models -- 3.3 Machine Learning -- 3.4 Internet of Things -- 4 Conclusions and Outlook -- References -- Agricultural Digital Twins -- 1 The Digital Twins of Agriculture -- 2 Digital Twins Build Smart Farms -- 2.1 Artificial Intelligence Predicts Plant Growth -- 2.2 Virtual Reality Simulation of 3D Digital Farm -- 2.3 Blockchain Technology Realizes Supply Chain Management -- 2.4 Problems that Still Exist in the Application of Digital Twins in the Agricultural Field -- 3 Conclusion -- References -- The Application of Digital Twins in the Field of Fashion -- 1 Digital Twins of Human Bodies -- 1.1 Virtual Human Models in Fashion Industry -- 1.2 Source Information for Generating Virtual Human Model -- 1.3 Tools for Virtual Body Model Digitalization -- 1.4 Virtual Fit Mannequin Generating -- 2 Digital Twins of Garment.
2.1 Structure of Virtual Fitting System -- 2.2 Generating Virtual Garment from Virtual Patterns -- 2.3 Generating Virtual Garment Directly on Virtual Human Model -- 3 Future Development -- References -- Digital Twins Collaboration in Industrial Manufacturing -- 1 Introduction -- 1.1 Contribution -- 1.2 Chapter Organization -- 2 Lightweight Framework of Digital Twins Collaboration for Industrial Manufacturing -- 2.1 Physical Layer -- 2.2 Digital Twins Layer -- 2.3 Industrial Technologies Layer -- 2.4 Application Layer -- 3 Digital Twins Collaboration in Industrial Manufacturing Use Cases -- 3.1 Energy Industry-Fault Diagnosis of Wind Turbines -- 3.2 Railway Industry-Predictive Maintenance -- 3.3 Logistics Industry-Dynamic Routing -- 4 Future Directions -- 4.1 Security and Privacy -- 4.2 Connectivity -- 4.3 Timing, Speed, and Response -- 4.4 Data Modelling -- 5 Conclusion -- References -- Social Media Perspectives on Digital Twins and the Digital Twins Maturity Model -- 1 Defining Digital Twins -- 2 Use of Social Media Analytics in Research -- 2.1 Social Media Analytics Methodology -- 2.2 Time Series Analysis of Tweets About Digital Twins -- 2.3 Unsupervised Clustering of the Digital Twin Tweets -- 2.4 Twitter Analysis by Industry -- 3 Background on Maturity Models -- 4 The Digital Twin Maturity Model -- 5 Conclusion and Future Work -- References.
Record Nr. UNISA-996499855103316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Digital twins : basics and applications / / Zhihan Lv, Elena Fersman, editors
Digital twins : basics and applications / / Zhihan Lv, Elena Fersman, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (102 pages)
Disciplina 003.3
Soggetto topico Digital twins (Computer simulation)
ISBN 3-031-11401-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Digital Twins Architecture -- 1 Why to Talk About Digital Twins? -- 2 The Main Digital Twin's Components -- 2.1 Physical System (PS) -- 2.2 Virtual System (VS) -- 2.3 Systems Data (SD) -- 2.4 Communication Interface (CI) -- 3 Is This a Digital Twin? -- 4 Practical Case Studies -- 4.1 Case Study I -- 4.2 Case Study II -- References -- Digital Twins for Physical Asset Lifecycle Management -- 1 Introduction -- 2 Digital Twin Asset Lifecycle Management (DTALM) -- 3 Digital Twin Essence -- 4 Digital Twin Systems -- 4.1 Physical Domain -- 4.2 Digital Domain -- 4.3 Physics-Based Generative Models for Digital Twins -- 4.4 Advances in Parameter Identifiability -- 5 Data-Driven Digital Twins -- 5.1 Statistical Learning Models -- 5.2 Machine Learning Models -- 5.3 Deep Learning Models -- 5.4 Industrial Digital Twin Applications for PALM -- References -- Digital Twins and Additive Manufacturing -- 1 Additive Manufacturing -- 2 Digital Twins -- 3 DTs for AM Needs and Challenges -- 3.1 Real Time Monitoring -- 3.2 Database and Models -- 3.3 Machine Learning -- 3.4 Internet of Things -- 4 Conclusions and Outlook -- References -- Agricultural Digital Twins -- 1 The Digital Twins of Agriculture -- 2 Digital Twins Build Smart Farms -- 2.1 Artificial Intelligence Predicts Plant Growth -- 2.2 Virtual Reality Simulation of 3D Digital Farm -- 2.3 Blockchain Technology Realizes Supply Chain Management -- 2.4 Problems that Still Exist in the Application of Digital Twins in the Agricultural Field -- 3 Conclusion -- References -- The Application of Digital Twins in the Field of Fashion -- 1 Digital Twins of Human Bodies -- 1.1 Virtual Human Models in Fashion Industry -- 1.2 Source Information for Generating Virtual Human Model -- 1.3 Tools for Virtual Body Model Digitalization -- 1.4 Virtual Fit Mannequin Generating -- 2 Digital Twins of Garment.
2.1 Structure of Virtual Fitting System -- 2.2 Generating Virtual Garment from Virtual Patterns -- 2.3 Generating Virtual Garment Directly on Virtual Human Model -- 3 Future Development -- References -- Digital Twins Collaboration in Industrial Manufacturing -- 1 Introduction -- 1.1 Contribution -- 1.2 Chapter Organization -- 2 Lightweight Framework of Digital Twins Collaboration for Industrial Manufacturing -- 2.1 Physical Layer -- 2.2 Digital Twins Layer -- 2.3 Industrial Technologies Layer -- 2.4 Application Layer -- 3 Digital Twins Collaboration in Industrial Manufacturing Use Cases -- 3.1 Energy Industry-Fault Diagnosis of Wind Turbines -- 3.2 Railway Industry-Predictive Maintenance -- 3.3 Logistics Industry-Dynamic Routing -- 4 Future Directions -- 4.1 Security and Privacy -- 4.2 Connectivity -- 4.3 Timing, Speed, and Response -- 4.4 Data Modelling -- 5 Conclusion -- References -- Social Media Perspectives on Digital Twins and the Digital Twins Maturity Model -- 1 Defining Digital Twins -- 2 Use of Social Media Analytics in Research -- 2.1 Social Media Analytics Methodology -- 2.2 Time Series Analysis of Tweets About Digital Twins -- 2.3 Unsupervised Clustering of the Digital Twin Tweets -- 2.4 Twitter Analysis by Industry -- 3 Background on Maturity Models -- 4 The Digital Twin Maturity Model -- 5 Conclusion and Future Work -- References.
Record Nr. UNINA-9910631094203321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Implementation and Benefits of Digital Twin on Decision Making and Data Quality Management
Implementation and Benefits of Digital Twin on Decision Making and Data Quality Management
Autore Blaschke Florian
Edizione [1st ed.]
Pubbl/distr/stampa Wiesbaden : , : Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH, , 2024
Descrizione fisica 1 online resource (188 pages)
Soggetto topico Digital twins (Computer simulation)
Data integrity
ISBN 3-658-44453-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword by Atilla Wohllebe -- Foreword by Stefan Waitzinger -- Acknowledgment -- Contents -- Abbreviations -- List of Figures -- List of Tables -- 1 Introduction -- 2 Literature Review -- 2.1 Basic Definitions -- 2.1.1 Data and Big Data -- 2.1.2 Analytics -- 2.1.3 Digital Twin -- 2.1.4 Decision Making -- 2.2 Data Quality Management -- 2.2.1 Data Quality -- 2.2.2 Data Quality Management -- 2.2.3 Corporate Data Quality Management -- 2.2.4 Data Quality Dimensions -- 2.3 Digital Twin -- 2.3.1 Digital Twin for Decision Making -- 2.3.2 Process Digital Twin -- 2.3.3 Five-Dimensional Digital Twin -- 2.3.4 Requirements -- 2.3.5 Industry Dissemination -- 2.3.6 Benefits -- 2.4 Decision Support System -- 2.4.1 Decision Support System -- 2.4.2 Model-Driven Decision Support System -- 2.4.3 Characteristics -- 2.5 Summary-Digital Twin-Driven Decision-Making Model -- 3 Objectives -- 3.1 Strategic Positioning -- 3.2 Digital Twin-Driven Decision-Making Model -- 3.3 Operational Effectiveness -- 4 Materials and Methods of Dissertation -- 4.1 Research Design -- 4.2 Data Collection and Sample Description -- 4.2.1 Data Collection Procedure -- 4.2.2 Sample Description -- 4.3 Methods for Data Analysis -- 5 Results and Evaluation -- 5.1 Data Analysis-Preliminary Study -- 5.1.1 Strategic Positioning -- 5.1.2 The Digital Twin-Driven Decision-Making Model -- 5.2 Data Analysis-Main Study -- 5.2.1 Strategic Positioning -- 5.2.2 The Digital Twin-Driven Decision-Making Model -- 5.2.3 Operational Effectiveness -- 6 Conclusions and Recommendations -- 6.1 Conclusion of Hypotheses -- 6.2 Recommendations -- 6.3 Practical Implications -- 6.4 Limitations -- 7 New Scientific Results -- 8 Summary -- References.
Record Nr. UNINA-9910847595903321
Blaschke Florian  
Wiesbaden : , : Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Parallel services : intelligent systems of digital twins and metaverses for services science / / Lefei Li and Fei-Yue Wang
Parallel services : intelligent systems of digital twins and metaverses for services science / / Lefei Li and Fei-Yue Wang
Autore Li Lefei
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (88 pages)
Disciplina 381
Collana SpringerBriefs in Service Science
Soggetto topico Digital twins (Computer simulation)
Human-computer interaction
Metaverse
ISBN 3-031-25333-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- References -- 2 Motivation: Complexity of Service in the Digital Age -- 2.1 Trends of Services in the Digital Age -- 2.1.1 Smart Services with Smart Sensors -- 2.1.2 Retailing, Logistics, and Financial Services Based on Artificial Intelligence Technology -- 2.1.3 Technology Applications in Services for Emergencies -- 2.2 Complexity of Services System -- 2.3 Challenges in the Digital Age -- References -- 3 Opportunity: The Actual-Artificial Duality of Services -- 3.1 Three Worlds and Three Axial Ages -- 3.2 The ``Cognitive Gap'' Between Two Worlds -- 3.3 Parallel Services as a Bridge -- 3.4 From CPS to CPSS -- 3.5 The Future of Parallel Services Based on True DAO -- References -- 4 Framework of Parallel Services -- 4.1 Definition and Vision of Parallel Services -- 4.2 Framework of Parallel Services -- Reference -- 5 Enabling Methodology -- 5.1 ACP Method -- 5.2 Artificial Services System Design -- 5.2.1 The Services Need-Demand Model -- 5.2.2 The Services Network -- 5.2.3 Parallel Learning and Optimization -- 5.3 Design Thinking -- 5.4 Systems Engineering -- References -- 6 Enabling Technology -- 6.1 Decentralized Technology -- 6.2 Multi-Agent Simulation -- 6.3 Data Fusion Techniques -- References -- 7 Research on Parallel Services -- 7.1 Parallel Transportation Management Systems -- 7.1.1 Background -- 7.1.2 Parallel Transportation Management Systems -- 7.1.3 Applications -- 7.2 Parallel Healthcare Services -- 7.2.1 Background -- 7.2.2 Design of Hybrid Services System -- 7.2.3 Computational Experiments -- 7.2.4 Parallel Execution of the Internet Hospitals -- 7.3 Parallel Retailing Services -- 7.3.1 Background -- 7.3.2 Design of the Artificial Services Systems -- 7.3.3 Computational Experiments -- 7.3.4 Extensions -- 7.4 Parallel Logistics Services -- 7.4.1 Background.
7.4.2 Parallel Logistics Systems -- References -- 8 Parallel Services and Digital Twins -- 8.1 Introduction of Digital Twins -- 8.2 Parallel Services and Digital Twins -- References -- 9 Parallel Services Metaverses -- 9.1 Introduction of Metaverses -- 9.1.1 The Basic Concept of Metaverses -- 9.1.2 The Value Proposition Behind Metaverses -- 9.2 CPSS for Metaverses -- 9.2.1 Parallel Intelligence for Metaverses -- 9.2.2 The Essence of Parallel Services Metaverses -- 9.3 DAOs for Parallel Services Metaverses -- 9.3.1 ``TRUE DAO'' Toward Deep Intelligence -- 9.3.2 Enabling Technologies for DAOs -- References.
Record Nr. UNINA-9910686790703321
Li Lefei  
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sensing, modeling and optimization of cardiac systems : a new generation of digital twin for heart health informatics / / Hui Yang, Bing Yao
Sensing, modeling and optimization of cardiac systems : a new generation of digital twin for heart health informatics / / Hui Yang, Bing Yao
Autore Yang Hui (Professor of industrial engineering)
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (x, 88 pages) : illustrations (some color)
Disciplina 611.120113
Altri autori (Persone) YaoBing (Professor of industrial engineering)
Collana SpringerBriefs in Service Science
Soggetto topico Digital twins (Computer simulation)
Heart - Computer simulation
Heart - Mathematical models
Medical informatics
ISBN 3-031-35952-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- 1 Introduction -- 1.1 Cardiac Electrical Signaling -- 1.2 Spatiotemporal Heterogeneity of Heart Diseases -- 1.3 Multi-scale Modeling of Cardiac Systems -- 1.4 Summary -- References -- 2 Multi-scale Simulation Modeling of Cardiac Systems -- 2.1 Computer Modeling of Ion Channels and Tissues -- 2.2 Statistical Metamodeling and Experiments in Cardiac Ion Channel Simulation -- 2.3 Whole-Heart Computer Simulation -- 2.4 Calibration of 3D Cardiac Simulation -- References -- 3 Sensor-Based Modeling and Analysis of Cardiac Systems -- 3.1 Electrocardiogram (ECG) Sensing -- 3.2 Modeling Incomplete and Uncertain Data -- 3.2.1 Introduction -- 3.2.2 Modeling Approaches -- 3.2.3 Summary -- 3.3 Computationally Identify Sensory Biomarkers -- 3.3.1 Introduction -- 3.3.2 Modeling Approaches -- 3.3.3 Summary -- 3.4 Spatiotemporal Monitoring and Modeling -- 3.4.1 Introduction -- 3.4.2 Modeling Approaches -- 3.4.3 Summary -- 3.5 Automatic Disease Detection from ECG Signals -- 3.5.1 Introduction -- 3.5.2 Two-level DNN with Generative Adversarial Network -- First-Level Model: MadeGAN for Anomaly Detection -- Second-Level Model: Transfer-Learning- and Multi-Branching-Enhanced Classification -- 3.5.3 Summary -- 3.6 Characterization of Myocardial Infarction Using Inverse ECG Modeling -- 3.6.1 Introduction -- 3.6.2 Robust Inverse ECG Modeling -- 3.6.3 Characterization of MI on the Heart Surface -- 3.6.4 Summary -- References -- 4 Simulation Optimization of Medical Decision Making -- 4.1 Introduction to Simulation Optimization -- 4.1.1 Rank and Selection -- 4.1.2 Response Surface Methodology -- 4.1.3 Stochastic Kriging -- 4.1.4 Simulation Optimization in Healthcare -- 4.2 Sequential Medical Decision Making -- 4.2.1 Model-Based Sequential Decision Making -- 4.2.2 Model-Free Sequential Decision Making -- 4.3 Optimal Cardiac Surgical Planning -- 4.3.1 Sequential Decision Making Formulation of Cardiac Surgery Problems -- 4.3.2 Bayesian Learning-Enhanced Tree Search for Optimal Cardiac Surgical Planning -- 4.4 Conclusions -- References -- 5 Outlook and Future Research.
Record Nr. UNINA-9910739412903321
Yang Hui (Professor of industrial engineering)  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Simulation Techniques of Digital Twin in Real-Time Applications : Design Modeling and Implementation
Simulation Techniques of Digital Twin in Real-Time Applications : Design Modeling and Implementation
Autore Anand Abhineet
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (372 pages)
Disciplina 003/.3
Altri autori (Persone) SardanaAnita
KumarAbhishek
MohapatraSrikanta Kumar
GuptaShikha
Soggetto topico Digital twins (Computer simulation)
ISBN 1-394-25700-7
1-394-25699-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Dedication -- Contents -- Preface -- Part 1: A Guide to Simulated Techniques in Digital Twin -- Chapter 1 Introduction to Different Simulation Techniques of Digital Twin Development -- 1.1 Introduction -- 1.2 Literature Review -- 1.3 Digital Twin Simulation Techniques -- 1.3.1 Finite Element Analysis Simulation -- 1.3.2 Computational Fluid Dynamics Simulation -- 1.3.3 Discrete Event Simulation -- 1.3.4 Agent-Based Modeling Simulation -- 1.3.5 Multi-Body Dynamics Simulation -- 1.3.6 Monte Carlo Simulation -- 1.4 Conclusion -- References -- Chapter 2 Comprehensive Analysis of Error Rate and Channel Capacity of Fisher Snedecor Composite Fading Model -- 2.1 Introduction -- 2.2 Fisher Snedecor Composite Fading -- 2.3 Mathematical Analysis -- 2.3.1 Error Rate Analysis -- 2.3.1.1 NCBFSK and BDPSK -- 2.3.1.2 BPSK, BFSK, and QPSK -- 2.3.1.3 MQAM -- 2.3.1.4 MPSK -- 2.3.1.5 MDPSK -- 2.3.1.6 NCMFSK -- 2.3.1.7 DQPSK -- 2.3.2 Channel Capacity Analysis -- 2.3.2.1 ORA -- 2.3.2.2 OPRA -- 2.3.2.3 CIFR -- 2.3.2.4 TIFR -- 2.4 Numerical Results -- 2.5 Conclusion -- References -- Chapter 3 Implementation of Automatic Driving Car Test Approach Based on a Digital Twinning Technology and by Embedding Artificial Intelligence -- 3.1 Introduction -- 3.2 Literature Review -- 3.3 Comparative Analysis -- 3.4 Result -- 3.5 Concluding Remarks and Future Scope -- References -- Chapter 4 Intelligent Monitoring of Transformer Equipment in Terms of Earlier Fault Diagnosis Based on Digital Twins -- 4.1 Introduction -- 4.2 Methodology -- 4.2.1 Arduino Uno -- 4.2.2 ESP32 Microcontroller -- 4.2.3 Data Acquisition -- 4.2.4 Blynk App -- 4.3 Machine Learning-Based Predictive Maintenance -- 4.4 Results and Discussion -- 4.5 Conclusion and Future Work -- References.
Chapter 5 Digital Twin System for Intelligent Construction of Large Span Assembly Type Steel Bridge -- 5.1 Introduction -- 5.1.1 Digital Twin Technology -- 5.1.2 Technologies Used -- 5.1.3 Why Digital Twin? -- 5.1.4 Types of Digital Twins -- 5.2 Deep Learning -- 5.2.1 Types of Deep Neural Networks -- 5.2.2 Learning or Training in Neural Networks -- 5.3 Simulation vs. Digital Twin Technology -- 5.3.1 Integrating Deep Learning in Simulation Models -- 5.3.2 Benefits of Deep Learning Digital Twin -- 5.3.3 Applications of Digital Twin Technology -- 5.4 Literature Review -- 5.5 Conclusion -- References -- Chapter 6 Digital Twin Application on System Identification and Control -- 6.1 Introduction -- 6.2 Digital Twin Technology and Its Application -- 6.2.1 Related Work on Digital Twin -- 6.2.2 DT Application -- 6.2.3 Different Levels of DT Models -- 6.2.3.1 Pre-Digital Twin -- 6.2.3.2 Model Design -- 6.2.3.3 Adaptive Model With DT Technology -- 6.2.3.4 The Process of Intelligent DT -- 6.2.4 Dynamic Model -- 6.2.5 Digital Twin and Machine Learning -- 6.3 Control and Identification: A Survey -- 6.3.1 Hierarchy of System Identification Methods -- 6.3.1.1 Parametric Methods -- 6.3.1.2 Nonparametric Methods -- 6.3.2 Machine Learning Approach -- 6.3.3 Deep Neural Network Approach -- 6.4 Proposed Methodology -- 6.4.1 DT Technology Application in Identification and Control -- 6.5 Result Analysis and Discussion -- 6.5.1 Case Study: Control Application -- 6.6 Conclusion and Future Work -- References -- Part 2: Real Time Applications of Digital Twin -- Chapter 7 Digital Twinning-Based Autonomous Take-Off, Landing, and Cruising for Unmanned Aerial Vehicles -- 7.1 Introduction -- 7.1.1 Problem Statement -- 7.1.2 Research Objectives -- 7.2 Digital Twinning for UAV Autonomy -- 7.3 Challenges and Limitations -- 7.3.1 Manual Control and Pre-Programmed Flight Paths.
7.3.2 Limited Adaptability to Dynamic Environments -- 7.3.3 Lack of Real-Time Decision-Making -- 7.3.4 Limited Perception and Situational Awareness -- 7.3.5 Computational Complexity and Processing Power -- 7.3.6 Calibration and Validation -- 7.4 Proposed Framework -- 7.4.1 Digital Twin Creation -- 7.4.2 Sensor Fusion and Data Acquisition -- 7.4.3 Environmental Analysis -- 7.4.4 Decision-Making and Control -- 7.4.5 Communication and Synchronization -- 7.4.6 Validation and Calibration -- 7.4.7 Iterative Improvement -- 7.5 Benefits and Feasibility -- 7.5.1 Improved Adaptability -- 7.5.2 Real-Time Decision-Making -- 7.5.3 Enhanced Safety -- 7.5.4 Feasibility Considerations -- 7.6 Conclusion and Future Directions -- References -- Chapter 8 Execution of Fully Automated Coal Mining Face With Transparent Digital Twin Self-Adaptive Mining System -- 8.1 Introduction -- 8.2 Simulation Methods in Digital Twins -- 8.2.1 Computational Fluid Dynamics -- 8.2.1.1 Software Tools That are Being Used in Today's Domain for CFD -- 8.2.1.2 Real-World Applications of CFD -- 8.2.2 Multibody Dynamics -- 8.2.3 Kinematics for Multibody Systems -- 8.3 Literature Review -- 8.3.1 Classification of MBD Simulations -- 8.3.2 Finite Element Analysis -- 8.4 Proposed Work -- 8.5 Conclusion -- References -- Chapter 9 MGF-Based BER and Channel Capacity Analysis of Fisher Snedecor Composite Fading Model -- 9.1 Introduction -- 9.2 Fisher Snedecor Composite Fading Model -- 9.3 Performance Analysis Using MGF -- 9.3.1 ABER -- 9.3.1.1 BDPSK and NBFSK -- 9.3.1.2 BPSK and BFSK -- 9.3.1.3 MAM -- 9.3.1.4 Square MQAM -- 9.3.1.5 MPSK -- 9.3.2 NMFSK -- 9.3.3 Adaptive Channel Capacity -- 9.3.3.1 ORA -- 9.3.3.2 CIFR -- 9.4 Numerical Results -- 9.5 Conclusion -- References.
Chapter 10 Precision Agriculture: An Augmented Datasets and CNN Model-Based Approach to Diagnose Diseases in Fruits and Vegetable Crops -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 Major Fruit Diseases in the Valley -- 10.4 Methodology -- 10.5 Results and Discussion -- 10.6 Extended Experiment -- 10.7 Concluding Remarks -- References -- Chapter 11 A Simulation-Based Study of a Digital Twin Model of the Air Purifier System in Chandigarh Using LabVIEW -- 11.1 Introduction -- 11.1.1 Background Information on Chandigarh's Air Pollution Problem -- 11.1.2 Digital Twin Technology and Its Relevance to Air Quality Monitoring -- 11.2 Literature Review -- 11.3 Methodology -- 11.4 Results -- 11.5 Discussion -- 11.6 Conclusion -- References -- Chapter 12 Use of Digital Twin in Predicting the Life of Aircraft Main Bearing -- 12.1 Introduction -- 12.1.1 Background -- 12.1.2 Importance of Predictive Maintenance -- 12.1.3 Challenges in Aircraft Main Bearing Life Prediction -- 12.1.4 Digital Twin Technology in Aviation -- 12.2 Fundamentals of Digital Twin Technology -- 12.2.1 Components of a Digital Twin -- 12.2.2 Enabling Technologies for Digital Twin -- 12.3 Benefits of Digital Twin Technology -- 12.3.1 Aircraft Main Bearings: Structure and Failure Modes -- 12.4 Developing a Digital Twin for Aircraft Main Bearings -- 12.5 Predictive Analytics for Main Bearing Life Prediction -- 12.5.1 Machine Learning Algorithms for Predictive Modeling -- 12.5.2 Challenges of Digital Twin for Aircraft Health -- 12.5.3 Security Threats of the Digital Twin in Aircraft Virtualization -- 12.6 Future Prospects and Conclusion of Digital Twin for Aircraft Health -- References -- Chapter 13 Power Energy System Consumption Analysis in Urban Railway by Digital Twin Method -- 13.1 Introduction -- 13.2 Literature Review -- 13.3 Method -- 13.4 Implementation -- 13.5 Conclusion.
References -- Chapter 14 Based on Digital Twin Technology, an Early Warning System and Strategy for Predicting Urban Waterlogging -- 14.1 Introduction -- 14.1.1 Definition -- 14.1.2 Application Areas of Digital Twin Technology -- 14.2 Literature Review -- 14.3 Methodology -- 14.4 Discussion and Conclusion -- References -- Chapter 15 Advanced Real-Time Simulation Framework for the Physical Interaction Dynamics of Production Lines Leveraging Digital Twin Paradigms -- 15.1 Introduction -- 15.2 Introduction to Advanced Simulation Frameworks -- 15.2.1 The Evolution of Production Line Simulations -- 15.2.2 The Promise of Real-Time Analysis -- 15.3 Digital Twins: A Comprehensive Analysis -- 15.3.1 What Defines a Digital Twin? -- 15.3.2 The Architecture and Components of Digital Twins -- 15.3.3 Advantages of Integrating Digital Twins in Manufacturing -- 15.4 Physical Interaction Dynamics in Production Lines -- 15.4.1 The Nature of Physical Interactions -- 15.4.2 The Role of Dynamics in Production Efficiency -- 15.4.3 Challenges in Traditional Simulation Methods -- 15.5 Building the Advanced Real-Time Simulation Framework -- 15.5.1 Core Principles and Design Objectives -- 15.5.2 Data Integration and Processing -- 15.5.2.1 Role of Sensors and IoT -- 15.5.2.2 Algorithmic Foundations for Feedback -- 15.6 Types of Algorithms -- 15.6.1 Pseudocode for Real-Time Adjustments -- 15.6.1.1 Initialization -- 15.6.1.2 Data Collection and Pre-Processing -- 15.6.1.3 Analysis Using Bayesian Inference -- 15.6.1.4 Anomaly Detection and Root Cause Analysis -- 15.6.1.5 Corrective Action Using Gradient Boosting -- 15.6.1.6 Update and Implement -- 15.6.1.7 Continuous Monitoring -- 15.7 Practical Implementations and Case Studies -- 15.7.1 Implementing the Framework: A Step-by-Step Guide -- 15.7.2 Measurable Benefits and Outcomes -- 15.8 Overcoming Challenges and Limitations.
15.8.1 Potential Roadblocks in Framework Implementation.
Record Nr. UNINA-9910877738403321
Anand Abhineet  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui