Fringe pattern analysis for optical metrology : theory, algorithms, and applications / / Manuel Servin, J. Antonio Quiroga, and J. Moises Padilla |
Autore | Servín Manuel |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2014 |
Descrizione fisica | 1 online resource (345 p.) |
Disciplina | 621.36 |
Soggetto topico |
Diffraction patterns - Data processing
Image processing - Data processing |
ISBN |
3-527-68110-8
3-527-68107-8 3-527-68108-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Fringe Pattern Analysis for Optical Metrology; Contents; Preface; List of Symbols and Acronyms; Chapter 1 Digital Linear Systems; 1.1 Introduction to Digital Phase Demodulation in Optical Metrology; 1.1.1 Fringe Pattern Demodulation as an Ill-Posed Inverse Problem; 1.1.2 Adding a priori Information to the Fringe Pattern: Carriers; 1.1.3 Classification of Phase Demodulation Methods in Digital Interferometry; 1.2 Digital Sampling; 1.2.1 Signal Classification; 1.2.2 Commonly Used Functions; 1.2.3 Impulse Sampling; 1.2.4 Nyquist-Shannon Sampling Theorem; 1.3 Linear Time-Invariant (LTI) Systems
1.3.1 Definition and Properties1.3.2 Impulse Response of LTI Systems; 1.3.3 Stability Criterion: Bounded-Input Bounded-Output; 1.4 Z-Transform Analysis of Digital Linear Systems; 1.4.1 Definition and Properties; 1.4.2 Region of Convergence (ROC); 1.4.3 Poles and Zeros of a Z-Transform; 1.4.4 Inverse Z-Transform; 1.4.5 Transfer Function of an LTI System in the Z-Domain; 1.4.6 Stability Evaluation by Means of the Z-Transform; 1.5 Fourier Analysis of Digital LTI Systems; 1.5.1 Definition and Properties of the Fourier Transform; 1.5.2 Discrete-Time Fourier Transform (DTFT) 1.5.3 Relation Between the DTFT and the Z-Transform1.5.4 Spectral Interpretation of the Sampling Theorem; 1.5.5 Aliasing: Sub-Nyquist Sampling; 1.5.6 Frequency Transfer Function (FTF) of an LTI System; 1.5.7 Stability Evaluation in the Fourier Domain; 1.6 Convolution-Based One-Dimensional (1D) Linear Filters; 1.6.1 One-Dimensional Finite Impulse Response (FIR) Filters; 1.6.2 One-Dimensional Infinite Impulse Response (IIR) Filters; 1.7 Convolution-Based two-dimensional (2D) Linear Filters; 1.7.1 Two-Dimensional (2D) Fourier and Z-Transforms; 1.7.2 Stability Analysis of 2D Linear Filters 1.8 Regularized Spatial Linear Filtering Techniques1.8.1 Classical Regularization for Low-Pass Filtering; 1.8.2 Spectral Response of 2D Regularized Low-Pass Filters; 1.9 Stochastic Processes; 1.9.1 Definitions and Basic Concepts; 1.9.2 Ergodic Stochastic Processes; 1.9.3 LTI System Response to Stochastic Signals; 1.9.4 Power Spectral Density (PSD) of a Stochastic Signal; 1.10 Summary and Conclusions; Chapter 2 Synchronous Temporal Interferometry; 2.1 Introduction; 2.1.1 Historical Review of the Theory of Phase-Shifting Algorithms (PSAs); 2.2 Temporal Carrier Interferometric Signal 2.3 Quadrature Linear Filters for Temporal Phase Estimation2.3.1 Linear PSAs Using Real-Valued Low-Pass Filtering; 2.4 The Minimum Three-Step PSA; 2.4.1 Algebraic Derivation of the Minimum Three-Step PSA; 2.4.2 Spectral FTF Analysis of the Minimum Three-Step PSA; 2.5 Least-Squares PSAs; 2.5.1 Temporal-to-Spatial Carrier Conversion: Squeezing Interferometry; 2.6 Detuning Analysis in Phase-Shifting Interferometry (PSI); 2.7 Noise in Temporal PSI; 2.7.1 Phase Estimation with Additive Random Noise; 2.7.2 Noise Rejection in N-Step Least-Squares (LS) PSAs 2.7.3 Noise Rejection of Linear Tunable PSAs |
Record Nr. | UNINA-9910132202003321 |
Servín Manuel | ||
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fringe pattern analysis for optical metrology : theory, algorithms, and applications / / Manuel Servin, J. Antonio Quiroga, and J. Moises Padilla |
Autore | Servín Manuel |
Pubbl/distr/stampa | Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2014 |
Descrizione fisica | 1 online resource (345 p.) |
Disciplina | 621.36 |
Soggetto topico |
Diffraction patterns - Data processing
Image processing - Data processing |
ISBN |
3-527-68110-8
3-527-68107-8 3-527-68108-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Fringe Pattern Analysis for Optical Metrology; Contents; Preface; List of Symbols and Acronyms; Chapter 1 Digital Linear Systems; 1.1 Introduction to Digital Phase Demodulation in Optical Metrology; 1.1.1 Fringe Pattern Demodulation as an Ill-Posed Inverse Problem; 1.1.2 Adding a priori Information to the Fringe Pattern: Carriers; 1.1.3 Classification of Phase Demodulation Methods in Digital Interferometry; 1.2 Digital Sampling; 1.2.1 Signal Classification; 1.2.2 Commonly Used Functions; 1.2.3 Impulse Sampling; 1.2.4 Nyquist-Shannon Sampling Theorem; 1.3 Linear Time-Invariant (LTI) Systems
1.3.1 Definition and Properties1.3.2 Impulse Response of LTI Systems; 1.3.3 Stability Criterion: Bounded-Input Bounded-Output; 1.4 Z-Transform Analysis of Digital Linear Systems; 1.4.1 Definition and Properties; 1.4.2 Region of Convergence (ROC); 1.4.3 Poles and Zeros of a Z-Transform; 1.4.4 Inverse Z-Transform; 1.4.5 Transfer Function of an LTI System in the Z-Domain; 1.4.6 Stability Evaluation by Means of the Z-Transform; 1.5 Fourier Analysis of Digital LTI Systems; 1.5.1 Definition and Properties of the Fourier Transform; 1.5.2 Discrete-Time Fourier Transform (DTFT) 1.5.3 Relation Between the DTFT and the Z-Transform1.5.4 Spectral Interpretation of the Sampling Theorem; 1.5.5 Aliasing: Sub-Nyquist Sampling; 1.5.6 Frequency Transfer Function (FTF) of an LTI System; 1.5.7 Stability Evaluation in the Fourier Domain; 1.6 Convolution-Based One-Dimensional (1D) Linear Filters; 1.6.1 One-Dimensional Finite Impulse Response (FIR) Filters; 1.6.2 One-Dimensional Infinite Impulse Response (IIR) Filters; 1.7 Convolution-Based two-dimensional (2D) Linear Filters; 1.7.1 Two-Dimensional (2D) Fourier and Z-Transforms; 1.7.2 Stability Analysis of 2D Linear Filters 1.8 Regularized Spatial Linear Filtering Techniques1.8.1 Classical Regularization for Low-Pass Filtering; 1.8.2 Spectral Response of 2D Regularized Low-Pass Filters; 1.9 Stochastic Processes; 1.9.1 Definitions and Basic Concepts; 1.9.2 Ergodic Stochastic Processes; 1.9.3 LTI System Response to Stochastic Signals; 1.9.4 Power Spectral Density (PSD) of a Stochastic Signal; 1.10 Summary and Conclusions; Chapter 2 Synchronous Temporal Interferometry; 2.1 Introduction; 2.1.1 Historical Review of the Theory of Phase-Shifting Algorithms (PSAs); 2.2 Temporal Carrier Interferometric Signal 2.3 Quadrature Linear Filters for Temporal Phase Estimation2.3.1 Linear PSAs Using Real-Valued Low-Pass Filtering; 2.4 The Minimum Three-Step PSA; 2.4.1 Algebraic Derivation of the Minimum Three-Step PSA; 2.4.2 Spectral FTF Analysis of the Minimum Three-Step PSA; 2.5 Least-Squares PSAs; 2.5.1 Temporal-to-Spatial Carrier Conversion: Squeezing Interferometry; 2.6 Detuning Analysis in Phase-Shifting Interferometry (PSI); 2.7 Noise in Temporal PSI; 2.7.1 Phase Estimation with Additive Random Noise; 2.7.2 Noise Rejection in N-Step Least-Squares (LS) PSAs 2.7.3 Noise Rejection of Linear Tunable PSAs |
Record Nr. | UNINA-9910812150403321 |
Servín Manuel | ||
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2014 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|