top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Convex variational problems : linear, nearly linear, and anisotropic growth conditions / Michael Bildhauer
Convex variational problems : linear, nearly linear, and anisotropic growth conditions / Michael Bildhauer
Autore Bildhauer, Michael
Pubbl/distr/stampa Berlin : Springer, c2003
Descrizione fisica x, 217 p. ; 24 cm
Disciplina 515.64
Collana Lecture notes in mathematics, ISSN 0075-8434 ; 1818
Soggetto topico Calculus of variations
Differential equations, Elliptic - Numerical solutions
ISBN 3540402985
Classificazione AMS 49-02
LC QA3.L28
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001719569707536
Bildhauer, Michael  
Berlin : Springer, c2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
The Dirichlet problem with Lp-boundary data for elliptic linear equations / / Jan Chabrowski
The Dirichlet problem with Lp-boundary data for elliptic linear equations / / Jan Chabrowski
Autore Chabrowski Jan <1941->
Edizione [1st ed. 1991.]
Pubbl/distr/stampa Berlin, Heidelberg : , : Springer-Verlag, , [1991]
Descrizione fisica 1 online resource (VI, 173 p.)
Disciplina 517
Collana Lecture Notes in Mathematics
Soggetto topico Dirichlet problem
Differential equations, Elliptic - Numerical solutions
ISBN 3-540-38400-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Weighted Sobolev space -- The Dirichlet problem in a half-space -- The Dirichlet problem in a bounded domain -- Estimates of derivatives -- Harmonic measure -- Exceptional sets on the boundary -- Applications of the L 2-method -- Domains with C1,?-boundary -- The space C n?1( ) -- C n?1-estimate of the solution of the Dirichlet problem with L 2-boundary data.
Record Nr. UNISA-996466759203316
Chabrowski Jan <1941->  
Berlin, Heidelberg : , : Springer-Verlag, , [1991]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells
Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells
Autore Eells James
Pubbl/distr/stampa Princeton, NJ : , : Princeton University Press, , [2016]
Descrizione fisica 1 online resource (235 pages) : illustrations
Disciplina 514/.7
Collana Annals of Mathematics Studies
Soggetto topico Harmonic maps
Immersions (Mathematics)
Differential equations, Elliptic - Numerical solutions
Soggetto non controllato Arc length
Catenary
Clifford algebra
Codimension
Coefficient
Compact space
Complex projective space
Connected sum
Constant curvature
Corollary
Covariant derivative
Curvature
Cylinder (geometry)
Degeneracy (mathematics)
Diagram (category theory)
Differential equation
Differential geometry
Elliptic partial differential equation
Embedding
Energy functional
Equation
Existence theorem
Existential quantification
Fiber bundle
Gauss map
Geometry and topology
Geometry
Gravitational field
Harmonic map
Hyperbola
Hyperplane
Hypersphere
Hypersurface
Integer
Iterative method
Levi-Civita connection
Lie group
Mathematics
Maximum principle
Mean curvature
Normal (geometry)
Numerical analysis
Open set
Ordinary differential equation
Parabola
Quadratic form
Sign (mathematics)
Special case
Stiefel manifold
Submanifold
Suggestion
Surface of revolution
Symmetry
Tangent bundle
Theorem
Vector bundle
Vector space
Vertical tangent
Winding number
ISBN 1-4008-8250-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- INTRODUCTION -- TABLE OF CONTENTS -- PART 1. BASIC VARIATIONAL AND GEOMETRICAL PROPERTIES -- PART 2. G-INVARIANT MINIMAL AND CONSTANT MEAN CURVATURE IMMERSIONS -- PART 3. HARMONIC MAPS BETWEEN SPHERES -- APPENDIX 1. SECOND VARIATIONS -- APPENDIX 2. RIEMANNIAN IMMERSIONS Sm → Sn -- APPENDIX 3. MINIMAL GRAPHS AND PENDENT DROPS -- APPENDIX 4. FURTHER ASPECTS OF PENDULUM TYPE EQUATIONS -- REFERENCES -- INDEX
Record Nr. UNINA-9910154754703321
Eells James  
Princeton, NJ : , : Princeton University Press, , [2016]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
Autore Mitrea Dorina <1965->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2001
Descrizione fisica 1 online resource (137 p.)
Disciplina 510 s
516.3/73
Collana Memoirs of the American Mathematical Society
Soggetto topico Riemannian manifolds
Boundary value problems
Differential equations, Elliptic - Numerical solutions
Soggetto genere / forma Electronic books.
ISBN 1-4704-0306-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms""
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography""
Record Nr. UNINA-9910481000603321
Mitrea Dorina <1965->  
Providence, Rhode Island : , : American Mathematical Society, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
Autore Mitrea Dorina <1965->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2001
Descrizione fisica 1 online resource (137 p.)
Disciplina 510 s
516.3/73
Collana Memoirs of the American Mathematical Society
Soggetto topico Riemannian manifolds
Boundary value problems
Differential equations, Elliptic - Numerical solutions
ISBN 1-4704-0306-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms""
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography""
Record Nr. UNINA-9910788843203321
Mitrea Dorina <1965->  
Providence, Rhode Island : , : American Mathematical Society, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
Autore Mitrea Dorina <1965->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2001
Descrizione fisica 1 online resource (137 p.)
Disciplina 510 s
516.3/73
Collana Memoirs of the American Mathematical Society
Soggetto topico Riemannian manifolds
Boundary value problems
Differential equations, Elliptic - Numerical solutions
ISBN 1-4704-0306-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms""
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography""
Record Nr. UNINA-9910807035303321
Mitrea Dorina <1965->  
Providence, Rhode Island : , : American Mathematical Society, , 2001
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Morrey spaces : introduction and applications to integral operators and PDE's . Volume I / / Yoshihiro Sawano, Chuo University, Giuseppe Di Fazio, University of Catania, Denny Ivanal Hakim, Bandung Institute of Technology
Morrey spaces : introduction and applications to integral operators and PDE's . Volume I / / Yoshihiro Sawano, Chuo University, Giuseppe Di Fazio, University of Catania, Denny Ivanal Hakim, Bandung Institute of Technology
Autore Sawano Yoshihiro
Edizione [1st ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, Taylor & Francis Group, , 2020
Descrizione fisica 1 online resource
Disciplina 515/.732
Collana Monographs and research notes in mathematics
Soggetto topico Banach spaces
Harmonic analysis
Differential equations, Partial - Numerical solutions
Differential equations, Elliptic - Numerical solutions
Integral operators
MATHEMATICS / General
MATHEMATICS / Differential Equations
MATHEMATICS / Functional Analysis
ISBN 0-429-53202-4
0-429-08592-3
1-4987-6552-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Notation in this book -- 1. Banach function lattices -- 1.1 Lp spaces -- 1.1.1 Measure space -- 1.1.2 Integration theorems -- 1.1.3 Fubini theorem and Lebesgue spaces -- 1.1.4 Exercises -- 1.2 Morrey spaces -- 1.2.1 Morrey norms -- 1.2.2 Examples of functions in Morrey spaces -- 1.2.3 The role of the parameters -- 1.2.4 Inclusions in Morrey spaces -- 1.2.5 Weak Morrey spaces -- 1.2.6 Morrey spaces and ball Banach function spaces -- 1.2.7 Exercises -- 1.3 Local Morrey spaces, Bσ-spaces, Herz spaces and Herz-Morrey spaces -- 1.3.1 Local Morrey spaces -- 1.3.2 Herz spaces and Herz-Morrey spaces -- 1.3.3 Exercises -- 1.4 Distributions and Lorentz spaces -- 1.4.1 Distribution function -- 1.4.2 Lorentz spaces -- 1.4.3 Hardy operators and Hardy's inequality -- 1.4.4 Inequalities for monotone functions and their applications to Lorentz norms -- 1.4.5 Exercises -- 1.5 Young functions and Orlicz spaces -- 1.5.1 Young functions -- 1.5.2 Orlicz spaces -- 1.5.3 Orlicz-averages -- 1.5.4 Lebesgue spaces with a variable exponent -- 1.5.5 Exercises -- 1.6 Smoothness function spaces -- 1.6.1 Sobolev spaces -- 1.6.2 Hölder-Zygmund spaces -- 1.7 Notes -- 2. Fundamental facts in functional analysis -- 2.1 Normed spaces and Banach spaces -- 2.1.1 Hahn-Banach theorem and Banach-Alaoglu theorem -- 2.1.2 Refinement of the triangle inequality -- 2.1.3 Sum and intersection of Banach spaces -- 2.1.4 Exercises -- 2.2 Hilbert spaces -- 2.2.1 Komlos theorem -- 2.2.2 Cotlar's lemma -- 2.2.3 Exercises -- 2.3 Bochner integral -- 2.3.1 Measurable functions -- 2.3.2 Convergence theorems -- 2.3.3 Fubini's theorem for Bochner integral -- 2.3.4 Exercises -- 2.4 Notes -- 3. Polynomials and harmonic functions -- 3.1 Preliminary facts on polynomials -- 3.1.1 The space Pk (Rn).
3.1.2 Moment inequalities -- 3.1.3 Control of derivatives by integrals -- 3.1.4 Best approximation -- 3.1.5 Exercises -- 3.2 Spherical harmonic functions -- 3.2.1 The spaces Hk (Rn) and Hk(Rn) -- 3.2.2 Norm estimates for spherical harmonics -- 3.2.3 Laplacian and integration by parts formula -- 3.2.4 Exercises -- 3.3 Notes -- 4. Various operators in Lebesgue spaces -- 4.1 Maximal operators -- 4.1.1 Hardy-Littlewood maximal operator -- 4.1.2 Hardy-Littlewood maximal inequality -- 4.1.3 Local estimates for the Hardy-Littlewood maximal operator -- 4.1.4 Fefferman-Stein vector-valued maximal inequality -- 4.1.5 Orlicz-maximal operators -- 4.1.6 Composition of the maximal operators -- 4.1.7 Local boundednss of the Φ-maximal operators -- 4.1.8 Estimates for convolutions -- 4.1.9 Exercises -- 4.2 Sharp maximal operators -- 4.2.1 Sharp-maximal inequalities -- 4.2.2 Distributional maximal function and median -- 4.2.3 Generalized dyadic grid and the Lerner-Hyt onen decomposition -- 4.2.4 Exercises -- 4.3 Fractional maximal operators -- 4.3.1 Fractional maximal operators -- 4.3.2 Local estimates for the maximal operators and the fractional maximal operators -- 4.3.3 Sparse estimate for fractional maximal operators -- 4.3.4 Exercises -- 4.4 Fractional integral operators -- 4.4.1 Fractional integral operators on Lebesgue spaces -- 4.4.2 Local estimates for the fractional integral operators -- 4.4.3 Sparse estimate of the fractional integral operators -- 4.4.4 Fundamental solution to the elliptic differential operators -- 4.4.5 The Bessel potential operator (1 - Δ)- 2, s > -- 0 -- 4.4.6 Morrey's lemma -- 4.4.7 Exercises -- 4.5 Singular integral operators -- 4.5.1 Riesz transform -- 4.5.2 Calderón-Zygmund operators -- 4.5.3 Calderón-Zgymund decomposition -- 4.5.4 Weak-(1, 1) boundedness and strong-(p, p) boundedness -- 4.5.5 Truncation and pointwise convergence.
4.5.6 Examples of singular integral operators -- 4.5.7 Sparse estimate of singular integral operators -- 4.5.8 Local estimates for singular integral operators -- 4.5.9 Exercises -- 4.6 Notes -- 5. BMO spaces and Morrey-Campanato spaces -- 5.1 The space BMO(Rn) and commutators -- 5.1.1 The space BMO -- 5.1.2 John-Nirenberg inequality -- 5.1.3 Exercises -- 5.2 Commutators -- 5.2.1 Commutators generated by BMO and singular integral operators -- 5.2.2 Commutators generated by BMO and fractional integral operators -- 5.2.3 Exercises -- 5.3 Morrey-Campanato spaces -- 5.3.1 Morrey-Campanato spaces -- 5.3.2 Morrey-Campanato spaces and Hölder-Zygmund spaces -- 5.3.3 Exercises -- 5.4 Notes -- 6. General metric measure spaces -- 6.1 Maximal operators on Euclidean spaces with general Radon measures -- 6.1.1 Covering lemmas on Euclidean spaces -- 6.1.2 Maximal operators on Euclidean spaces with general Radon measures -- 6.1.3 Differentiation theorem -- 6.1.4 Universal estimates -- 6.1.5 Examples of metric measure spaces -- 6.1.6 Exercises -- 6.2 Maximal operators on metric measure spaces with general Radon measures -- 6.2.1 Weak-(1, 1) estimate and strong-(p, p) estimate -- 6.2.2 Vector-valued boundedness of the Hardy-Littlewood maximal operators -- 6.2.3 Examples of metric measure spaces which require modification -- 6.2.4 Exercises -- 6.3 Notes -- 7. Weighted Lebesgue spaces -- 7.1 One-weighted norm inequality -- 7.1.1 The class A1 -- 7.1.2 The class Ap -- 7.1.3 The class A∞ -- 7.1.4 The class Ap,q -- 7.1.5 Extrapolation -- 7.1.6 A2-theorem -- 7.1.7 Exercises -- 7.2 Two-weight norm inequality -- 7.2.1 Weighted estimates for the Hardy operator -- 7.2.2 Two-weight norm inequality for fractional maximal operators -- 7.2.3 Two-weight norm inequality for singular integral operators -- 7.2.4 Exercises -- 7.3 Notes -- 8. Approximations in Morrey spaces.
8.1 Various closed subspaces of Morrey spaces -- 8.1.1 Closed subspaces generated by linear lattices -- 8.1.2 Closed subspaces generated by the translation -- 8.1.3 Inclusions in closed subspaces of Morrey spaces -- 8.1.4 Exercises -- 8.2 Approximation in Morrey spaces -- 8.2.1 Characterization of Mp(Rn) -- 8.2.2 Approximations and closed subspaces -- 8.2.3 Examples of functions in closed subspaces -- 8.2.4 Exercises -- 8.3 Notes -- 9. Predual of Morrey spaces -- 9.1 Predual of Morrey spaces -- 9.1.1 Definition of block spaces and examples -- 9.1.2 Finite decomposition and a dense subspace -- 9.1.3 Duality-block spaces and Morrey spaces -- 9.1.4 Fatou property of block spaces -- 9.1.5 Köthe dual of Morrey spaces -- 9.1.6 Decomposition and averaging technique in Morrey spaces -- 9.1.7 Exercises -- 9.2 Choquet integral and predual spaces -- 9.2.1 Hausdorff capacity -- 9.2.2 Choquet integral -- 9.2.3 Predual spaces of Morrey spaces by way of the Choquet integral -- 9.2.4 Exercises -- 9.3 Notes -- 10. Linear and sublinear operators in Morrey spaces -- 10.1 Maximal operators in Morrey spaces -- 10.1.1 Maximal operator in Morrey spaces -- 10.1.2 Maximal operator in local Morrey spaces -- 10.1.3 Exercises -- 10.2 Sharp maximal operators in Morrey spaces -- 10.2.1 Sharp maximal inequalities for Morrey spaces -- 10.2.2 Sharp maximal inequalities for local Morrey spaces -- 10.2.3 Exercises -- 10.3 Fractional integral operators in Morrey spaces -- 10.3.1 Fractional integral operators in Morrey spaces -- 10.3.2 Fractional integral operators in local Morrey spaces -- 10.3.3 Exercises -- 10.4 Singular integral operators in Morrey spaces -- 10.4.1 Singular integral operators in Morrey spaces -- 10.4.2 Singular integral operators in local Morrey spaces -- 10.4.3 Exercises -- 10.5 Commutators in Morrey spaces -- 10.5.1 Commutators in Morrey spaces.
10.5.2 Commutators in local Morrey spaces -- 10.5.3 Exercises -- 10.6 Notes -- Bibliography -- Index.
Record Nr. UNINA-9910987815103321
Sawano Yoshihiro  
Boca Raton : , : CRC Press, Taylor & Francis Group, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Multivariate polysplines [e-book] : applications to numerical and wavelet analysis / Ognyan Kounchev
Multivariate polysplines [e-book] : applications to numerical and wavelet analysis / Ognyan Kounchev
Autore Kounchev, Ognyan
Pubbl/distr/stampa San Diego, Calif. : Academic Press, c2001
Descrizione fisica xiv, 498 p. : ill. ; 24 cm
Disciplina 511.42
Soggetto topico Spline theory
Polyharmonic functions
Differential equations, Elliptic - Numerical solutions
ISBN 9780124224902
0124224903
Formato Risorse elettroniche
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991003278569707536
Kounchev, Ognyan  
San Diego, Calif. : Academic Press, c2001
Risorse elettroniche
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi
Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi
Autore Drabek P (Pavel), <1953->
Pubbl/distr/stampa Berlin ; ; New York, : W. de Gruyter, 1997
Descrizione fisica 1 online resource (231 p.)
Disciplina 515/.353
Altri autori (Persone) KufnerAlois
NicolosiFrancesco <1938->
Collana De Gruyter Series in Nonlinear Analysis and Applications
Soggetto topico Differential equations, Elliptic - Numerical solutions
Boundary value problems - Numerical solutions
Bifurcation theory
Soggetto genere / forma Electronic books.
ISBN 3-11-080477-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- List of symbols, theorems, definitions, assumptions, examples -- Chapter 0 Introduction -- Chapter 1 Preliminaries -- Chapter 2 Solvability of nonlinear boundary value problems -- Chapter 3 The degenerated p-Laplacian on a bounded domain -- Chapter 4 The p-Laplacian in RN -- Bibliography -- Index
Record Nr. UNINA-9910462476603321
Drabek P (Pavel), <1953->  
Berlin ; ; New York, : W. de Gruyter, 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi
Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi
Autore Drabek P (Pavel), <1953->
Pubbl/distr/stampa Berlin ; ; New York, : W. de Gruyter, 1997
Descrizione fisica 1 online resource (231 p.)
Disciplina 515/.353
Altri autori (Persone) KufnerAlois
NicolosiFrancesco <1938->
Collana De Gruyter Series in Nonlinear Analysis and Applications
Soggetto topico Differential equations, Elliptic - Numerical solutions
Boundary value problems - Numerical solutions
Bifurcation theory
ISBN 3-11-080477-8
Classificazione SK 560
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front matter -- List of symbols, theorems, definitions, assumptions, examples -- Chapter 0 Introduction -- Chapter 1 Preliminaries -- Chapter 2 Solvability of nonlinear boundary value problems -- Chapter 3 The degenerated p-Laplacian on a bounded domain -- Chapter 4 The p-Laplacian in RN -- Bibliography -- Index
Record Nr. UNINA-9910785528803321
Drabek P (Pavel), <1953->  
Berlin ; ; New York, : W. de Gruyter, 1997
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui