Convex variational problems : linear, nearly linear, and anisotropic growth conditions / Michael Bildhauer
| Convex variational problems : linear, nearly linear, and anisotropic growth conditions / Michael Bildhauer |
| Autore | Bildhauer, Michael |
| Pubbl/distr/stampa | Berlin : Springer, c2003 |
| Descrizione fisica | x, 217 p. ; 24 cm |
| Disciplina | 515.64 |
| Collana | Lecture notes in mathematics, ISSN 0075-8434 ; 1818 |
| Soggetto topico |
Calculus of variations
Differential equations, Elliptic - Numerical solutions |
| ISBN | 3540402985 |
| Classificazione |
AMS 49-02
LC QA3.L28 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001719569707536 |
Bildhauer, Michael
|
||
| Berlin : Springer, c2003 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
The Dirichlet problem with Lp-boundary data for elliptic linear equations / / Jan Chabrowski
| The Dirichlet problem with Lp-boundary data for elliptic linear equations / / Jan Chabrowski |
| Autore | Chabrowski Jan <1941-> |
| Edizione | [1st ed. 1991.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer-Verlag, , [1991] |
| Descrizione fisica | 1 online resource (VI, 173 p.) |
| Disciplina | 517 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Dirichlet problem
Differential equations, Elliptic - Numerical solutions |
| ISBN | 3-540-38400-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Weighted Sobolev space -- The Dirichlet problem in a half-space -- The Dirichlet problem in a bounded domain -- Estimates of derivatives -- Harmonic measure -- Exceptional sets on the boundary -- Applications of the L 2-method -- Domains with C1,?-boundary -- The space C n?1( ) -- C n?1-estimate of the solution of the Dirichlet problem with L 2-boundary data. |
| Record Nr. | UNISA-996466759203316 |
Chabrowski Jan <1941->
|
||
| Berlin, Heidelberg : , : Springer-Verlag, , [1991] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells
| Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130) / / Andrea Ratto, James Eells |
| Autore | Eells James |
| Pubbl/distr/stampa | Princeton, NJ : , : Princeton University Press, , [2016] |
| Descrizione fisica | 1 online resource (235 pages) : illustrations |
| Disciplina | 514/.7 |
| Collana | Annals of Mathematics Studies |
| Soggetto topico |
Harmonic maps
Immersions (Mathematics) Differential equations, Elliptic - Numerical solutions |
| Soggetto non controllato |
Arc length
Catenary Clifford algebra Codimension Coefficient Compact space Complex projective space Connected sum Constant curvature Corollary Covariant derivative Curvature Cylinder (geometry) Degeneracy (mathematics) Diagram (category theory) Differential equation Differential geometry Elliptic partial differential equation Embedding Energy functional Equation Existence theorem Existential quantification Fiber bundle Gauss map Geometry and topology Geometry Gravitational field Harmonic map Hyperbola Hyperplane Hypersphere Hypersurface Integer Iterative method Levi-Civita connection Lie group Mathematics Maximum principle Mean curvature Normal (geometry) Numerical analysis Open set Ordinary differential equation Parabola Quadratic form Sign (mathematics) Special case Stiefel manifold Submanifold Suggestion Surface of revolution Symmetry Tangent bundle Theorem Vector bundle Vector space Vertical tangent Winding number |
| ISBN | 1-4008-8250-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Frontmatter -- INTRODUCTION -- TABLE OF CONTENTS -- PART 1. BASIC VARIATIONAL AND GEOMETRICAL PROPERTIES -- PART 2. G-INVARIANT MINIMAL AND CONSTANT MEAN CURVATURE IMMERSIONS -- PART 3. HARMONIC MAPS BETWEEN SPHERES -- APPENDIX 1. SECOND VARIATIONS -- APPENDIX 2. RIEMANNIAN IMMERSIONS Sm → Sn -- APPENDIX 3. MINIMAL GRAPHS AND PENDENT DROPS -- APPENDIX 4. FURTHER ASPECTS OF PENDULUM TYPE EQUATIONS -- REFERENCES -- INDEX |
| Record Nr. | UNINA-9910154754703321 |
Eells James
|
||
| Princeton, NJ : , : Princeton University Press, , [2016] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
| Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor |
| Autore | Mitrea Dorina <1965-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2001 |
| Descrizione fisica | 1 online resource (137 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Riemannian manifolds
Boundary value problems Differential equations, Elliptic - Numerical solutions |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0306-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms""
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography"" |
| Record Nr. | UNINA-9910481000603321 |
Mitrea Dorina <1965->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
| Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor |
| Autore | Mitrea Dorina <1965-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2001 |
| Descrizione fisica | 1 online resource (137 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Riemannian manifolds
Boundary value problems Differential equations, Elliptic - Numerical solutions |
| ISBN | 1-4704-0306-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms""
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography"" |
| Record Nr. | UNINA-9910788843203321 |
Mitrea Dorina <1965->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor
| Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds / / Dorina Mitrea, Marius Mitrea, Michael Taylor |
| Autore | Mitrea Dorina <1965-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2001 |
| Descrizione fisica | 1 online resource (137 p.) |
| Disciplina |
510 s
516.3/73 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Riemannian manifolds
Boundary value problems Differential equations, Elliptic - Numerical solutions |
| ISBN | 1-4704-0306-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""Chapter 1. Singular integrals on Lipschitz submanifolds of codimension one""; ""Chapter 2. Estimates on fundamental solutions""; ""Chapter 3. General second-order strongly elliptic systems""; ""Chapter 4. The Dirichlet problem for the Hodge Laplacian and related operators""; ""Chapter 5. Natural boundary problems for the Hodge Laplacian in Lipschitz domains""; ""Chapter 6. Layer potential operators on Lipschitz domains""; ""Chapter 7. Rellich type estimates for differential forms""
""Chapter 8. Fredholm properties of boundary integral operators on regular spaces""""Chapter 9. Weak extensions of boundary derivative operators""; ""Chapter 10. Localization arguments and the end of the proof of Theorem 6.2""; ""Chapter 11. Harmonic fields on Lipschitz domains""; ""Chapter 12. The proofs of the Theorems 5.1-5.5""; ""Chapter 13. The proofs of the auxiliary lemmas""; ""Chapter 14. Applications to Maxwell's equations on Lipschitz domains""; ""Appendix A. Analysis on Lipschitz manifolds""; ""Appendix B. The connection between dâ??and dâ??Ω""; ""Bibliography"" |
| Record Nr. | UNINA-9910807035303321 |
Mitrea Dorina <1965->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Morrey spaces : introduction and applications to integral operators and PDE's . Volume I / / Yoshihiro Sawano, Chuo University, Giuseppe Di Fazio, University of Catania, Denny Ivanal Hakim, Bandung Institute of Technology
| Morrey spaces : introduction and applications to integral operators and PDE's . Volume I / / Yoshihiro Sawano, Chuo University, Giuseppe Di Fazio, University of Catania, Denny Ivanal Hakim, Bandung Institute of Technology |
| Autore | Sawano Yoshihiro |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, Taylor & Francis Group, , 2020 |
| Descrizione fisica | 1 online resource |
| Disciplina | 515/.732 |
| Collana | Monographs and research notes in mathematics |
| Soggetto topico |
Banach spaces
Harmonic analysis Differential equations, Partial - Numerical solutions Differential equations, Elliptic - Numerical solutions Integral operators MATHEMATICS / General MATHEMATICS / Differential Equations MATHEMATICS / Functional Analysis |
| ISBN |
0-429-53202-4
0-429-08592-3 1-4987-6552-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- Notation in this book -- 1. Banach function lattices -- 1.1 Lp spaces -- 1.1.1 Measure space -- 1.1.2 Integration theorems -- 1.1.3 Fubini theorem and Lebesgue spaces -- 1.1.4 Exercises -- 1.2 Morrey spaces -- 1.2.1 Morrey norms -- 1.2.2 Examples of functions in Morrey spaces -- 1.2.3 The role of the parameters -- 1.2.4 Inclusions in Morrey spaces -- 1.2.5 Weak Morrey spaces -- 1.2.6 Morrey spaces and ball Banach function spaces -- 1.2.7 Exercises -- 1.3 Local Morrey spaces, Bσ-spaces, Herz spaces and Herz-Morrey spaces -- 1.3.1 Local Morrey spaces -- 1.3.2 Herz spaces and Herz-Morrey spaces -- 1.3.3 Exercises -- 1.4 Distributions and Lorentz spaces -- 1.4.1 Distribution function -- 1.4.2 Lorentz spaces -- 1.4.3 Hardy operators and Hardy's inequality -- 1.4.4 Inequalities for monotone functions and their applications to Lorentz norms -- 1.4.5 Exercises -- 1.5 Young functions and Orlicz spaces -- 1.5.1 Young functions -- 1.5.2 Orlicz spaces -- 1.5.3 Orlicz-averages -- 1.5.4 Lebesgue spaces with a variable exponent -- 1.5.5 Exercises -- 1.6 Smoothness function spaces -- 1.6.1 Sobolev spaces -- 1.6.2 Hölder-Zygmund spaces -- 1.7 Notes -- 2. Fundamental facts in functional analysis -- 2.1 Normed spaces and Banach spaces -- 2.1.1 Hahn-Banach theorem and Banach-Alaoglu theorem -- 2.1.2 Refinement of the triangle inequality -- 2.1.3 Sum and intersection of Banach spaces -- 2.1.4 Exercises -- 2.2 Hilbert spaces -- 2.2.1 Komlos theorem -- 2.2.2 Cotlar's lemma -- 2.2.3 Exercises -- 2.3 Bochner integral -- 2.3.1 Measurable functions -- 2.3.2 Convergence theorems -- 2.3.3 Fubini's theorem for Bochner integral -- 2.3.4 Exercises -- 2.4 Notes -- 3. Polynomials and harmonic functions -- 3.1 Preliminary facts on polynomials -- 3.1.1 The space Pk (Rn).
3.1.2 Moment inequalities -- 3.1.3 Control of derivatives by integrals -- 3.1.4 Best approximation -- 3.1.5 Exercises -- 3.2 Spherical harmonic functions -- 3.2.1 The spaces Hk (Rn) and Hk(Rn) -- 3.2.2 Norm estimates for spherical harmonics -- 3.2.3 Laplacian and integration by parts formula -- 3.2.4 Exercises -- 3.3 Notes -- 4. Various operators in Lebesgue spaces -- 4.1 Maximal operators -- 4.1.1 Hardy-Littlewood maximal operator -- 4.1.2 Hardy-Littlewood maximal inequality -- 4.1.3 Local estimates for the Hardy-Littlewood maximal operator -- 4.1.4 Fefferman-Stein vector-valued maximal inequality -- 4.1.5 Orlicz-maximal operators -- 4.1.6 Composition of the maximal operators -- 4.1.7 Local boundednss of the Φ-maximal operators -- 4.1.8 Estimates for convolutions -- 4.1.9 Exercises -- 4.2 Sharp maximal operators -- 4.2.1 Sharp-maximal inequalities -- 4.2.2 Distributional maximal function and median -- 4.2.3 Generalized dyadic grid and the Lerner-Hyt onen decomposition -- 4.2.4 Exercises -- 4.3 Fractional maximal operators -- 4.3.1 Fractional maximal operators -- 4.3.2 Local estimates for the maximal operators and the fractional maximal operators -- 4.3.3 Sparse estimate for fractional maximal operators -- 4.3.4 Exercises -- 4.4 Fractional integral operators -- 4.4.1 Fractional integral operators on Lebesgue spaces -- 4.4.2 Local estimates for the fractional integral operators -- 4.4.3 Sparse estimate of the fractional integral operators -- 4.4.4 Fundamental solution to the elliptic differential operators -- 4.4.5 The Bessel potential operator (1 - Δ)- 2, s > -- 0 -- 4.4.6 Morrey's lemma -- 4.4.7 Exercises -- 4.5 Singular integral operators -- 4.5.1 Riesz transform -- 4.5.2 Calderón-Zygmund operators -- 4.5.3 Calderón-Zgymund decomposition -- 4.5.4 Weak-(1, 1) boundedness and strong-(p, p) boundedness -- 4.5.5 Truncation and pointwise convergence. 4.5.6 Examples of singular integral operators -- 4.5.7 Sparse estimate of singular integral operators -- 4.5.8 Local estimates for singular integral operators -- 4.5.9 Exercises -- 4.6 Notes -- 5. BMO spaces and Morrey-Campanato spaces -- 5.1 The space BMO(Rn) and commutators -- 5.1.1 The space BMO -- 5.1.2 John-Nirenberg inequality -- 5.1.3 Exercises -- 5.2 Commutators -- 5.2.1 Commutators generated by BMO and singular integral operators -- 5.2.2 Commutators generated by BMO and fractional integral operators -- 5.2.3 Exercises -- 5.3 Morrey-Campanato spaces -- 5.3.1 Morrey-Campanato spaces -- 5.3.2 Morrey-Campanato spaces and Hölder-Zygmund spaces -- 5.3.3 Exercises -- 5.4 Notes -- 6. General metric measure spaces -- 6.1 Maximal operators on Euclidean spaces with general Radon measures -- 6.1.1 Covering lemmas on Euclidean spaces -- 6.1.2 Maximal operators on Euclidean spaces with general Radon measures -- 6.1.3 Differentiation theorem -- 6.1.4 Universal estimates -- 6.1.5 Examples of metric measure spaces -- 6.1.6 Exercises -- 6.2 Maximal operators on metric measure spaces with general Radon measures -- 6.2.1 Weak-(1, 1) estimate and strong-(p, p) estimate -- 6.2.2 Vector-valued boundedness of the Hardy-Littlewood maximal operators -- 6.2.3 Examples of metric measure spaces which require modification -- 6.2.4 Exercises -- 6.3 Notes -- 7. Weighted Lebesgue spaces -- 7.1 One-weighted norm inequality -- 7.1.1 The class A1 -- 7.1.2 The class Ap -- 7.1.3 The class A∞ -- 7.1.4 The class Ap,q -- 7.1.5 Extrapolation -- 7.1.6 A2-theorem -- 7.1.7 Exercises -- 7.2 Two-weight norm inequality -- 7.2.1 Weighted estimates for the Hardy operator -- 7.2.2 Two-weight norm inequality for fractional maximal operators -- 7.2.3 Two-weight norm inequality for singular integral operators -- 7.2.4 Exercises -- 7.3 Notes -- 8. Approximations in Morrey spaces. 8.1 Various closed subspaces of Morrey spaces -- 8.1.1 Closed subspaces generated by linear lattices -- 8.1.2 Closed subspaces generated by the translation -- 8.1.3 Inclusions in closed subspaces of Morrey spaces -- 8.1.4 Exercises -- 8.2 Approximation in Morrey spaces -- 8.2.1 Characterization of Mp(Rn) -- 8.2.2 Approximations and closed subspaces -- 8.2.3 Examples of functions in closed subspaces -- 8.2.4 Exercises -- 8.3 Notes -- 9. Predual of Morrey spaces -- 9.1 Predual of Morrey spaces -- 9.1.1 Definition of block spaces and examples -- 9.1.2 Finite decomposition and a dense subspace -- 9.1.3 Duality-block spaces and Morrey spaces -- 9.1.4 Fatou property of block spaces -- 9.1.5 Köthe dual of Morrey spaces -- 9.1.6 Decomposition and averaging technique in Morrey spaces -- 9.1.7 Exercises -- 9.2 Choquet integral and predual spaces -- 9.2.1 Hausdorff capacity -- 9.2.2 Choquet integral -- 9.2.3 Predual spaces of Morrey spaces by way of the Choquet integral -- 9.2.4 Exercises -- 9.3 Notes -- 10. Linear and sublinear operators in Morrey spaces -- 10.1 Maximal operators in Morrey spaces -- 10.1.1 Maximal operator in Morrey spaces -- 10.1.2 Maximal operator in local Morrey spaces -- 10.1.3 Exercises -- 10.2 Sharp maximal operators in Morrey spaces -- 10.2.1 Sharp maximal inequalities for Morrey spaces -- 10.2.2 Sharp maximal inequalities for local Morrey spaces -- 10.2.3 Exercises -- 10.3 Fractional integral operators in Morrey spaces -- 10.3.1 Fractional integral operators in Morrey spaces -- 10.3.2 Fractional integral operators in local Morrey spaces -- 10.3.3 Exercises -- 10.4 Singular integral operators in Morrey spaces -- 10.4.1 Singular integral operators in Morrey spaces -- 10.4.2 Singular integral operators in local Morrey spaces -- 10.4.3 Exercises -- 10.5 Commutators in Morrey spaces -- 10.5.1 Commutators in Morrey spaces. 10.5.2 Commutators in local Morrey spaces -- 10.5.3 Exercises -- 10.6 Notes -- Bibliography -- Index. |
| Record Nr. | UNINA-9910987815103321 |
Sawano Yoshihiro
|
||
| Boca Raton : , : CRC Press, Taylor & Francis Group, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Multivariate polysplines [e-book] : applications to numerical and wavelet analysis / Ognyan Kounchev
| Multivariate polysplines [e-book] : applications to numerical and wavelet analysis / Ognyan Kounchev |
| Autore | Kounchev, Ognyan |
| Pubbl/distr/stampa | San Diego, Calif. : Academic Press, c2001 |
| Descrizione fisica | xiv, 498 p. : ill. ; 24 cm |
| Disciplina | 511.42 |
| Soggetto topico |
Spline theory
Polyharmonic functions Differential equations, Elliptic - Numerical solutions |
| ISBN |
9780124224902
0124224903 |
| Formato | Risorse elettroniche |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991003278569707536 |
Kounchev, Ognyan
|
||
| San Diego, Calif. : Academic Press, c2001 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi
| Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi |
| Autore | Drabek P (Pavel), <1953-> |
| Pubbl/distr/stampa | Berlin ; ; New York, : W. de Gruyter, 1997 |
| Descrizione fisica | 1 online resource (231 p.) |
| Disciplina | 515/.353 |
| Altri autori (Persone) |
KufnerAlois
NicolosiFrancesco <1938-> |
| Collana | De Gruyter Series in Nonlinear Analysis and Applications |
| Soggetto topico |
Differential equations, Elliptic - Numerical solutions
Boundary value problems - Numerical solutions Bifurcation theory |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-11-080477-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- List of symbols, theorems, definitions, assumptions, examples -- Chapter 0 Introduction -- Chapter 1 Preliminaries -- Chapter 2 Solvability of nonlinear boundary value problems -- Chapter 3 The degenerated p-Laplacian on a bounded domain -- Chapter 4 The p-Laplacian in RN -- Bibliography -- Index |
| Record Nr. | UNINA-9910462476603321 |
Drabek P (Pavel), <1953->
|
||
| Berlin ; ; New York, : W. de Gruyter, 1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi
| Quasilinear elliptic equations with degenerations and singularities [[electronic resource] /] / Pavel Drábek, Alois Kufner, Francesco Nicolosi |
| Autore | Drabek P (Pavel), <1953-> |
| Pubbl/distr/stampa | Berlin ; ; New York, : W. de Gruyter, 1997 |
| Descrizione fisica | 1 online resource (231 p.) |
| Disciplina | 515/.353 |
| Altri autori (Persone) |
KufnerAlois
NicolosiFrancesco <1938-> |
| Collana | De Gruyter Series in Nonlinear Analysis and Applications |
| Soggetto topico |
Differential equations, Elliptic - Numerical solutions
Boundary value problems - Numerical solutions Bifurcation theory |
| ISBN | 3-11-080477-8 |
| Classificazione | SK 560 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front matter -- List of symbols, theorems, definitions, assumptions, examples -- Chapter 0 Introduction -- Chapter 1 Preliminaries -- Chapter 2 Solvability of nonlinear boundary value problems -- Chapter 3 The degenerated p-Laplacian on a bounded domain -- Chapter 4 The p-Laplacian in RN -- Bibliography -- Index |
| Record Nr. | UNINA-9910785528803321 |
Drabek P (Pavel), <1953->
|
||
| Berlin ; ; New York, : W. de Gruyter, 1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||