top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Applications of medical artificial intelligence : first international workshop, AMAI 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, proceedings / / edited by Shandong Wu, Behrouz Shabestari, and Lei Xing
Applications of medical artificial intelligence : first international workshop, AMAI 2022, held in conjunction with MICCAI 2022, Singapore, September 18, 2022, proceedings / / edited by Shandong Wu, Behrouz Shabestari, and Lei Xing
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (171 pages)
Disciplina 006.3
Collana Lecture Notes in Computer Science Ser.
Soggetto topico Artificial intelligence - Medical applications
Diagnostic imaging - Data processing
ISBN 3-031-17721-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Organization -- Contents -- Increasing the Accessibility of Peripheral Artery Disease Screening with Deep Learning -- 1 Problem -- 2 Related Work -- 3 Data Collection Study -- 4 System Development -- 5 Validation Study -- 6 Conclusion -- References -- Deep Learning Meets Computational Fluid Dynamics to Assess CAD in CCTA -- 1 Introduction -- 2 Automated Assessment of CAD in CCTA -- 2.1 Straightened Representation of the Coronary Vessels -- 2.2 Representing Ground-Truth Segmentation as a 3D Mesh -- 2.3 Segmentation of Vessels Using U-Nets in Upsampled CTTA -- 2.4 Blood Flow Simulation -- 3 Experimental Validation -- 4 Conclusions and Future Work -- References -- Machine Learning for Dynamically Predicting the Onset of Renal Replacement Therapy in Chronic Kidney Disease Patients Using Claims Data -- 1 Introduction -- 2 Methods -- 2.1 Dataset Description -- 2.2 Task Definition -- 2.3 Data Representation and Processing -- 2.4 Model Description -- 2.5 Model Evaluation -- 3 Experiments and Results -- 3.1 Study Population and Dataset -- 3.2 Model Performance -- 4 Conclusions -- References -- Uncertainty-Aware Geographic Atrophy Progression Prediction from Fundus Autofluorescence -- 1 Introduction -- 2 Method -- 2.1 Data -- 2.2 Model Development -- 2.3 Uncertainty Estimation Using Deep Ensemble -- 3 Results -- 4 Conclusions -- References -- Automated Assessment of Renal Calculi in Serial Computed Tomography Scans -- 1 Introduction -- 1.1 Our Contributions -- 2 Materials and Methods -- 2.1 Data -- 2.2 Calculi Detection and Segmentation -- 2.3 Registration and Stone Matching -- 2.4 Manual Review and Tracking -- 2.5 Evaluation of Performance -- 2.6 Statistical Analysis -- 3 Results -- 3.1 Cohort Characteristics -- 3.2 Performance of the Stone Detection and Segmentation -- 3.3 Performance of Stone Tracking -- 4 Discussion -- References.
Prediction of Mandibular ORN Incidence from 3D Radiation Dose Distribution Maps Using Deep Learning -- 1 Introduction -- 2 Methods and Materials -- 2.1 Data -- 2.2 Prediction Models -- 2.3 Model Evaluation -- 2.4 Statistical Analysis -- 3 Results -- 4 Discussion -- 4.1 ORN Prediction -- 4.2 Study Limitations and Future Work -- 5 Conclusion -- References -- Analysis of Potential Biases on Mammography Datasets for Deep Learning Model Development -- 1 Introduction -- 2 Materials and Methods -- 2.1 Mammography Dataset -- 2.2 Bias Analysis -- 2.3 Bias Correction Techniques -- 2.4 Experimental Setup -- 3 Results and Discussion -- 4 Conclusions -- References -- ECG-ATK-GAN: Robustness Against Adversarial Attacks on ECGs Using Conditional Generative Adversarial Networks -- 1 Introduction -- 2 Methodology -- 2.1 Generator and Discriminator -- 2.2 Objective Function and Individual Losses -- 2.3 Adversarial Attacks -- 3 Experiments -- 3.1 Data Set Preparation -- 3.2 Hyper-parameters -- 3.3 Quantitative Evaluation -- 3.4 Qualitative Evaluation -- 4 Conclusions and Future Work -- References -- CADIA: A Success Story in Breast Cancer Diagnosis with Digital Pathology and AI Image Analysis -- 1 Introduction -- 2 Methods -- 2.1 Starting Point Analysis and Functional Requirement Collection -- 2.2 Sample Selection and Collection -- 2.3 Digital Image Annotation -- 2.4 Model Development -- 2.5 Model Deployment and Integration -- 3 Results -- 4 Conclusions and Future Perspectives -- References -- Was that so Hard? Estimating Human Classification Difficulty -- 1 Introduction -- 2 Estimating Image Difficulty -- 3 Datasets -- 4 Experiments -- 5 Results -- 6 Discussion and Conclusion -- References -- A Deep Learning-Based Interactive Medical Image Segmentation Framework -- 1 Introduction -- 2 Related Work -- 3 Applicative Scope -- 4 Methodology -- 4.1 System.
4.2 Training with Dynamic Data Generation -- 5 Experimental Results -- 5.1 Setup -- 5.2 Automated Evaluation -- 5.3 User Evaluation -- 6 Conclusion -- References -- Deep Neural Network Pruning for Nuclei Instance Segmentation in Hematoxylin and Eosin-Stained Histological Images -- 1 Introduction -- 2 Method -- 2.1 Datasets -- 2.2 Segmentation and Regression Models -- 2.3 Pruning -- 2.4 Merging and Post-processing -- 2.5 Evaluation Metrics -- 3 Results and Discussion -- 4 Conclusion -- References -- Spatial Feature Conservation Networks (SFCNs) for Dilated Convolutions to Improve Breast Cancer Segmentation from DCE-MRI -- 1 Introduction -- 2 Methods -- 2.1 Compensation Module -- 2.2 Network Architecture -- 2.3 Performance Evaluation -- 2.4 Image Dataset and Data Preparation -- 3 Results -- 4 Discussion and Conclusion -- References -- The Impact of Using Voxel-Level Segmentation Metrics on Evaluating Multifocal Prostate Cancer Localisation -- 1 Introduction -- 2 Materials and Methods -- 2.1 Prostate Lesion Segmentation for Procedure Planning -- 2.2 Voxel-Level Segmentation Metrics -- 2.3 Lesion-Level Object Detection Metrics -- 2.4 Lesion Detection Metrics for Multifocal Segmentation Output -- 2.5 Correlation, Pairwise Agreement and Impact on Evaluation -- 3 Results -- 3.1 Comparison Between DSC and HD -- 3.2 Comparison Between Voxel- and Lesion-Level Metrics -- 4 Conclusion -- References -- OOOE: Only-One-Object-Exists Assumption to Find Very Small Objects in Chest Radiographs -- 1 Introduction -- 2 Methods -- 2.1 Feature Extractor -- 2.2 Point Detection Head -- 3 Experiments -- 3.1 Datasets -- 3.2 Evaluation Metrics -- 3.3 Implementation Details -- 3.4 Comparison to Other Methods -- 3.5 A Closer Look at ET-tube vs. T-tube Detection Performance -- 4 Conclusion -- References -- Wavelet Guided 3D Deep Model to Improve Dental Microfracture Detection.
1 Introduction -- 2 Materials -- 3 Methods -- 4 Results and Discussion -- References -- Author Index.
Record Nr. UNISA-996490357403316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Artificial intelligence in breast cancer early detection and diagnosis / / Khalid Shaikh, Sabitha Krishnan, Rohit Thanki
Artificial intelligence in breast cancer early detection and diagnosis / / Khalid Shaikh, Sabitha Krishnan, Rohit Thanki
Autore Shaykh Khālid
Edizione [1st ed. 2021.]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (XII, 107 p. 23 illus., 9 illus. in color.)
Disciplina 616.99449
Soggetto topico Breast - Cancer - Diagnosis - Data processing
Diagnostic imaging - Data processing
Artificial intelligence - Medical applications
ISBN 3-030-59208-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto An Introduction to Breast Cancer Diagnosis, Prognosis, and Artificial Intelligence -- Breast Cancer and Its Types -- Artificial Intelligence -- Breast Cancer Screening Using AI Methods -- Case Study for Screening of Breast Cancer.
Record Nr. UNINA-9910483153003321
Shaykh Khālid  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence in medical imaging : opportunities, applications and risks / / Erik R. Ranschaert, Sergey Morozov, Paul R. Algra, editors
Artificial intelligence in medical imaging : opportunities, applications and risks / / Erik R. Ranschaert, Sergey Morozov, Paul R. Algra, editors
Edizione [1st ed. 2019.]
Pubbl/distr/stampa New York, New York : , : Springer Berlin Heidelberg, , [2019]
Descrizione fisica 1 online resource (xv, 373 pages) : illustrations (chiefly color), charts
Disciplina 616.0757
Collana Gale eBooks
Soggetto topico Artificial intelligence - Medical applications
Diagnostic imaging - Data processing
ISBN 3-319-94878-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PART I: INTRODUCTION: Introduction: Game changers in radiology -- PART II: TECHNIQUES: The role of medical imaging computing, informatics and machine learning in healthcare -- History and evolution of A.I. in medical imaging -- Deep Learning and Neural Networks in imaging: basic principles -- PART III DEVELOPMENT of AI APPLICATIONS: Imaging biomarkers -- How to develop A.I. applications -- Validation of A.I. applications -- PART IV: BIG DATA IN RADIOLOGY: The value of enterprise imaging -- Data mining in radiology -- Image biobanks -- The quest for medical images and data -- Clearance of medical images and data -- Legal and ethical issues in AI -- PART V: CLINICAL USE OF A.I. IN RADIOLOGY: Pulmonary diseases -- Cardiac diseases -- Breast cancer -- Neurological diseases -- PART VI: IMPACT of A.I. on RADIOLOGY: Applications of A.I. beyond image analysis -- Value of structured reporting for A.I. -- The role of A.I. for clinical trials -- Market and economy of A.I.: evolution -- The role of an A.I. ecosystem for radiology -- Advantages and risks of A.I. for radiologists -- Re-thinking radiology.
Record Nr. UNINA-9910337534203321
New York, New York : , : Springer Berlin Heidelberg, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence over infrared images for medical applications and medical image assisted biomarker discovery : first MICCAI workshop, AIIIMA 2022, and first MICCAI workshop, MIABID 2022, held in conjunction with MICCAI 2022, Singapore, September 18 and 22, 2022, proceedings / / Siva Teja Kakileti [and nine others] (editors)
Artificial intelligence over infrared images for medical applications and medical image assisted biomarker discovery : first MICCAI workshop, AIIIMA 2022, and first MICCAI workshop, MIABID 2022, held in conjunction with MICCAI 2022, Singapore, September 18 and 22, 2022, proceedings / / Siva Teja Kakileti [and nine others] (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (200 pages)
Disciplina 610.28563
Collana Lecture notes in computer science
Soggetto topico Artificial intelligence - Medical applications
Diagnostic imaging - Data processing
ISBN 3-031-19660-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface AIIIMA 2022 -- Preface MIABID 2022 -- Organization -- Contents -- Artificial Intelligence over Infrared Images for Medical Applications -- Thermal Radiomics for Improving the Interpretability of Breast Cancer Detection from Thermal Images -- 1 Introduction -- 2 Methodology -- 2.1 Thermal Radiomics -- 2.2 Classification -- 3 Experimentation and Results -- 4 Conclusions -- References -- Radiomics for Breast IR-Imaging Classification -- 1 Introduction -- 2 Breast IR Classification in the Literature -- 3 Dataset Description -- 4 Region of Interest Segmentation -- 5 Radiomic Feature Extraction -- 6 Classification Methodology -- 7 Experiments and Results -- 8 Conclusion -- References -- Early Thermographic Screening of Breast Abnormality in Women with Dense Breast by Thermal, Fractal, and Statistical Analysis -- 1 Background -- 2 Methods -- 3 Results -- 3.1 Thermal Feature-Based Analysis -- 3.2 Fractal Feature-Based Analysis -- 3.3 Statistical Feature-Based Analysis -- 4 Discussion -- 5 Conclusion and Futurescope -- References -- A Novel Thermography-Based Artificial Intelligence-Powered Solution for Screening Breast Cancer -- 1 Introduction -- 1.1 Thermography -- 1.2 Related Work -- 1.3 AI-Powered Breast Cancer Prediction Tool by AI Talos -- 2 Materials and Methods -- 2.1 Dataset Description -- 2.2 CNN Methodology -- 3 Experimental Results -- 4 Conclusion -- References -- Thermographic Toothache Screening by Artificial Intelligence -- 1 Introduction, Review and Objectives -- 2 Materials and Methods -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Non-fever COVID-19 Detection by Infrared Imaging -- 1 Introduction -- 2 Materials and Methods -- 2.1 Infrared Camera Calibration and Precision Assessment -- 2.2 Standard Data Bank Construction (Phase 1) -- 2.3 Classification Algorithm -- 2.4 Prospective Study (Phase 2).
2.5 Statistical Analysis -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Automated Thermal Screening for COVID-19 Using Machine Learning -- 1 Introduction -- 2 Dataset -- 2.1 Thermal Surveillance Dataset -- 2.2 Augmented Surveillance Dataset -- 2.3 Lighting Dataset -- 3 Methodology -- 3.1 Image Preprocessing -- 3.2 Face Detection -- 3.3 Fever Detection -- 3.4 Mask Classification -- 4 Experiments and Results -- 4.1 Face Detection -- 4.2 Mask Classification -- 5 Conclusion -- References -- An Automated Approach for Screening COVID-19 from Thermal Images Using Convolutional Neural Network -- 1 Introduction -- 2 Dataset -- 3 Methodology -- 3.1 Overview -- 3.2 YOLOv5 as Mask Detection Module -- 3.3 Fever Detection Module -- 4 Results and Discussion -- 5 Conclusion -- References -- Infrared Technology for Vascular Abnormality in Finding of Abdominal Aortic Aneurysm -- 1 Introduction -- 1.1 Objective -- 2 Methodology -- 2.1 Model Setup -- 2.2 Boundary Conditions -- 2.3 Physical and Thermal Properties -- 3 Verification Studies for FSI Analysis -- 4 Result and Discussions -- 4.1 Transient FSI Analysis -- 5 Limitations -- 6 Conclusion -- References -- Non-invasive Thermal Imaging for Estimation of the Fecundity of Live Female Onchocerca Worms -- 1 Introduction -- 2 Dataset Description -- 2.1 Study Site and Population -- 2.2 Imaging Protocol -- 2.3 Histopathology and Ground truth -- 3 Methodology -- 3.1 Data Pre-processing -- 3.2 Feature Extraction -- 3.3 Classification -- 4 Experiments and Results -- 5 Conclusion -- References -- Medical Image Assisted Biomarker Discovery -- Counterfactual Image Synthesis for Discovery of Personalized Predictive Image Markers -- 1 Introduction -- 2 Methods -- 3 Experiments and Results -- 3.1 Dataset and Implementation Details -- 3.2 Evaluating Counterfactuals and Discovered Image-Based Markers.
3.3 Counterfactual Results -- 4 Conclusions -- References -- CoRe: An Automated Pipeline for the Prediction of Liver Resection Complexity from Preoperative CT Scans -- 1 Introduction -- 2 Methods -- 2.1 Liver, Lesion, and Vessel Segmentation -- 2.2 Topological Analysis of the Liver Vasculature -- 2.3 Quantitative Imaging Biomarkers for LR Complexity Prediction -- 3 Experiments -- 3.1 Datasets and Preprocessing -- 3.2 Training, Evaluation, and Inference -- 4 Results -- 4.1 Quantitative Results -- 4.2 Qualitative Results -- 5 Discussion and Conclusion -- References -- Diffusion Tensor Imaging Biomarkers for Parkinson's Disease Symptomatology -- 1 Introduction -- 1.1 Voxel-Based Diffusion Analysis and Voxel-Based Diktiometry -- 2 Materials and Methods -- 2.1 Patient Images and Clinical Scores -- 2.2 Preprocessing -- 2.3 Convolutional Neural Network -- 2.4 Diffusion Measures, Sensitivity Maps, and Statistical Processing -- 3 Results and Discussion -- 4 Conclusion -- References -- Prediction of Immune and Stromal Cell Population Abundance from Hepatocellular Carcinoma Whole Slide Images Using Weakly Supervised Learning -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Gene Expression Processing -- 2.3 Image Preprocessing -- 2.4 Deep Learning Models -- 2.5 Attention Map Generation and Statistical Analysis -- 2.6 Inflammatory Cell Density Map Generation -- 3 Results -- 3.1 Unsupervised Hierarchical Clustering of Samples -- 3.2 Evaluation of Deep Learning Models for the Prediction of Activation of Cell Populations -- 3.3 Interpretability and Relationships with Immunotherapy-Related Gene Signatures and with Inflammatory Cells -- 4 Discussion and Conclusion -- References -- Enhancing Local Context of Histology Features in Vision Transformers -- 1 Introduction -- 2 Methods -- 3 Experiments -- 4 Conclusion -- References.
DCIS AI-TIL: Ductal Carcinoma In Situ Tumour Infiltrating Lymphocyte Scoring Using Artificial Intelligence -- 1 Introduction -- 2 Materials -- 3 Methodology -- 3.1 Cell Detection, Cell Classification and Hotspot Analysis -- 3.2 DCIS Segmentation Using GAN -- 3.3 Stromal TIL Scoring Using Artificial Intelligence -- 3.4 Statistical Analysis -- 4 Results and Discussion -- References -- Predictive Biomarkers in Melanoma: Detection of BRAF Mutation Using Dermoscopy -- 1 Introduction -- 2 Methodology -- 2.1 Pre-training Phase -- 2.2 BRAF Classification -- 3 Experimental Setup -- 3.1 Dataset and Evaluation Metrics -- 3.2 Experimental Challenges -- 3.3 Network Training and Computational Environment -- 4 Results and Discussion -- 5 Conclusion -- References -- Author Index.
Record Nr. UNISA-996500063103316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Biomedical image registration, domain generalisation and out-of-distribution analysis : MICCAI 2021 Challenges, MIDOG 2021, MOOD 2021, and Learn2Reg 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27-October 1, 2021, proceedings / / Marc Aubreville, David Zimmerer, Mattias P. Heinrich, editors
Biomedical image registration, domain generalisation and out-of-distribution analysis : MICCAI 2021 Challenges, MIDOG 2021, MOOD 2021, and Learn2Reg 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27-October 1, 2021, proceedings / / Marc Aubreville, David Zimmerer, Mattias P. Heinrich, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (201 pages)
Disciplina 616.07540285
Collana Lecture notes in computer science
Soggetto topico Diagnostic imaging - Data processing
ISBN 3-030-97281-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464536003316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Biomedical image registration, domain generalisation and out-of-distribution analysis : MICCAI 2021 Challenges, MIDOG 2021, MOOD 2021, and Learn2Reg 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27-October 1, 2021, proceedings / / Marc Aubreville, David Zimmerer, Mattias P. Heinrich, editors
Biomedical image registration, domain generalisation and out-of-distribution analysis : MICCAI 2021 Challenges, MIDOG 2021, MOOD 2021, and Learn2Reg 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27-October 1, 2021, proceedings / / Marc Aubreville, David Zimmerer, Mattias P. Heinrich, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (201 pages)
Disciplina 616.07540285
Collana Lecture notes in computer science
Soggetto topico Diagnostic imaging - Data processing
ISBN 3-030-97281-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910551826103321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Autore Salditt Tim
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Descrizione fisica 1 online resource (348 pages) : illustrations, tables
Disciplina 616.07/54
Collana De Gruyter Graduate
Soggetto topico Diagnostic imaging - Methodology
Diagnostic imaging - Data processing
Biomedical engineering - Mathematical models
Medical physics
Soggetto genere / forma Electronic books.
ISBN 3-11-042351-0
3-11-042669-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface and acknowledgements -- 1. Introduction -- 2. Digital image processing -- 3. Essentials of medical x-ray physics -- 4. Tomography -- 5. Radiobiology, radiotherapy, and radiation protection -- 6. Phase contrast radiography -- 7. Object reconstruction: nonideal conditions and noise -- Index
Record Nr. UNINA-9910467062203321
Salditt Tim  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Autore Salditt Tim
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Descrizione fisica 1 online resource (348 pages) : illustrations, tables
Disciplina 616.07/54
Collana De Gruyter Graduate
Soggetto topico Diagnostic imaging - Methodology
Diagnostic imaging - Data processing
Biomedical engineering - Mathematical models
Medical physics
ISBN 3-11-042351-0
3-11-042669-2
Classificazione SCI055000MED003070COM021030MED080000COM018000MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface and acknowledgements -- 1. Introduction -- 2. Digital image processing -- 3. Essentials of medical x-ray physics -- 4. Tomography -- 5. Radiobiology, radiotherapy, and radiation protection -- 6. Phase contrast radiography -- 7. Object reconstruction: nonideal conditions and noise -- Index
Record Nr. UNINA-9910795493003321
Salditt Tim  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Biomedical imaging : principles of radiography, tomography and medical physics / / Tim Salditt, Timo Aspelmeier, Sebastian Aeffner
Autore Salditt Tim
Pubbl/distr/stampa Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Descrizione fisica 1 online resource (348 pages) : illustrations, tables
Disciplina 616.07/54
Collana De Gruyter Graduate
Soggetto topico Diagnostic imaging - Methodology
Diagnostic imaging - Data processing
Biomedical engineering - Mathematical models
Medical physics
ISBN 3-11-042351-0
3-11-042669-2
Classificazione SCI055000MED003070COM021030MED080000COM018000MAT003000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Frontmatter -- Contents -- Preface and acknowledgements -- 1. Introduction -- 2. Digital image processing -- 3. Essentials of medical x-ray physics -- 4. Tomography -- 5. Radiobiology, radiotherapy, and radiation protection -- 6. Phase contrast radiography -- 7. Object reconstruction: nonideal conditions and noise -- Index
Record Nr. UNINA-9910811882503321
Salditt Tim  
Berlin, [Germany] ; ; Boston, [Massachusetts] : , : De Gruyter, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brainlesion . Part II : glioma, multiple sclerosis, stroke and traumatic brain injuries : 4th international workshop, BrainLes 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, revised selected papers. / / Alessandro Crimi and Spyridon Bakas, editors
Brainlesion . Part II : glioma, multiple sclerosis, stroke and traumatic brain injuries : 4th international workshop, BrainLes 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, revised selected papers. / / Alessandro Crimi and Spyridon Bakas, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Descrizione fisica 1 online resource (617 pages)
Disciplina 616.99481
Collana Lecture notes in computer science
Soggetto topico Brain - Wounds and injuries
Diagnostic imaging - Data processing
Brain - Tumors
ISBN 3-031-09002-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910584480403321
Cham, Switzerland : , : Springer Nature Switzerland AG, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui