Acoustic array development for wind turbine noise characterization / / S. Buck [and three others]
| Acoustic array development for wind turbine noise characterization / / S. Buck [and three others] |
| Autore | Buck S. |
| Pubbl/distr/stampa | Golden, CO : , : National Renewable Energy Laboratory, , 2013 |
| Descrizione fisica | 1 online resource (viii, 20 pages) : color illustrations |
| Collana | NREL/TP |
| Soggetto topico |
Wind turbines - Noise - Measurement
Acoustic emission testing Detectors - Design and construction |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910705362403321 |
Buck S.
|
||
| Golden, CO : , : National Renewable Energy Laboratory, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Additively Manufactured Electrochemical Sensors : Design, Performance and Applications
| Additively Manufactured Electrochemical Sensors : Design, Performance and Applications |
| Autore | Manjunatha Jamballi G |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (450 pages) |
| Disciplina | 681/.2 |
| Altri autori (Persone) | HussainChaudhery Mustansar |
| Soggetto topico | Detectors - Design and construction |
| ISBN |
1-394-30343-2
1-394-30338-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Evaluation of 3D-Printed Technology and Essential of Electrochemical Sensing -- 1.1 Introduction -- 1.2 Types of 3D Printing Techniques for Electrochemical Sensors -- 1.2.1 Stereolithography -- 1.2.2 Fused Deposition Modeling -- 1.2.3 Selective Laser Sintering -- 1.2.4 Inkjet 3D Printing -- 1.3 Materials for 3D Printing Electrochemical Sensors -- 1.3.1 Conductive Polymers -- 1.3.2 Nanomaterials -- 1.4 Case Studies -- 1.4.1 Real-World Examples of 3D Printed Electrochemical Sensors -- 1.4.2 Applications in Healthcare -- 1.4.3 Environmental Monitoring, Industrial Uses -- 1.5 Future Challenges in 3D Printed Electrode -- 1.6 Conclusions -- References -- Chapter 2 Materials, Design Principles, and Need for 3D-Printed Electrochemical Sensors for Monitoring Toxicity -- 2.1 Introduction -- 2.1.1 Electrochemical Sensors -- 2.1.2 Principle of Electrochemical Sensors -- 2.1.3 Electrochemical Sensors for Environmental Monitoring -- 2.2 3D-Printed Electrochemical Sensor -- 2.2.1 Strategies for Fabrication of 3D-Printed Electrodes -- 2.2.2 Hazardous Materials Detectable by Electrochemical Sensors -- 2.3 3D-Printed Fabrication for Making Electrochemical Sensors -- 2.3.1 3D Printing Fabrication Techniques -- 2.3.1.1 Fused Deposition Modeling -- 2.3.1.2 Digital Light Processing -- 2.3.1.3 Direct Ink Writing -- 2.3.1.4 Inkjet Printing -- 2.3.1.5 Other Printing Methods -- 2.3.2 Application of 3D Printing Technology in Environmental Monitoring -- 2.3.2.1 Detection of Per and Polyfluorinated Alkyl Compounds -- 2.3.2.2 Pesticides Detection -- 2.3.2.3 Detection of Chlorophenols and Nitrophenols -- 2.3.2.4 Other Pollutants -- 2.4 Conclusions -- References -- Chapter 3 Nexus of Additive Manufacturing and Sensing for 3D-Printed Electrochemical Sensors -- 3.1 Introduction.
3.2 3D Printed Material Types -- 3.2.1 Materials for Medical Applications of AM -- 3.3 3D Printing Process -- 3.4 Additive Manufacturing Technologies for Polymers -- 3.5 Additive Manufacturing Technologies for Metals -- 3.6 Additive Manufacturing Technologies for Ceramics -- 3.7 Application of AM -- 3.7.1 Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technology -- 3.7.2 The 3D Printing of Nanocomposites for Wearable Biosensors -- 3.7.3 Medical Applications of AM -- References -- Chapter 4 Designing for Optimal Sensing and Microfluidics in Sensor Design for 3D Printed Electrochemical Sensors -- 4.1 Introduction -- 4.2 Methods for Fabrication of 3D Printed Electrode -- 4.3 Three-Dimensional Printing Technologies -- 4.3.1 Fused Deposition Modeling (FDM) -- 4.3.2 Selective Laser Melting (SLM) -- 4.3.3 Stereolithography (SLA) -- 4.3.4 Direct Ink Writing (DIW) -- 4.3.5 Photopolymer Jetting (Polyjet) -- 4.4 Methods of Enhanced Devices for Sensing -- 4.4.1 Single-Step Fabrication -- 4.5 Optimization of Printing Parameters -- 4.5.1 Electrochemical Pretreatment -- 4.5.2 Chemical Pretreatment -- 4.5.3 Biological Pretreatment -- 4.6 Uses of Microfluidic 3D Electrode Sensors -- 4.6.1 Environmental Applications -- 4.6.2 Biological Applications -- 4.7 Conclusion and Prospects for the Future -- References -- Chapter 5 Multi-Material Printing and CAD Tools Usage for 3D-Printed Electrochemical Sensors -- 5.1 Introduction -- 5.2 Materials for Multi-Material Printing -- 5.3 Conductive Materials -- 5.4 Insulating Materials -- 5.5 Sensitive Materials -- 5.6 Printing Techniques -- 5.6.1 Fused Deposition Modeling (FDM) -- 5.7 Stereolithography (SLA) -- 5.8 Direct Ink Writing (DIW) -- 5.9 Inkjet Printing -- 5.10 Design Process Using CAD Tools -- 5.11 Simulation and Optimization -- 5.12 Prototyping and Testing -- 5.13 Applications of 3D-Printed Sensors. 5.14 Challenges and Future Directions -- 5.15 Conclusion -- References -- Chapter 6 Optimization Techniques for 3D-Printed Electrochemical Sensors -- 6.1 Introduction -- 6.2 Design of Optimization -- 6.3 Selection of Materials for 3D-Printed Electrochemical Sensors -- 6.4 Printing Techniques and Parameters -- 6.4.1 Parameters Involved in Techniques for 3D-Printed Electrochemical Sensors -- 6.4.2 3D Printing Technologies -- 6.5 Applications and Future Scope -- 6.6 Conclusion -- References -- Chapter 7 Performance and Validation for 3D-Printed Electrochemical Sensors -- 7.1 Introduction: Overview of Electrochemical Sensors -- 7.2 Fundamentals of 3D Printing for Electrochemical Sensors -- 7.2.1 Basic Principles of 3D Printing Technologies -- 7.2.2 Materials Used in 3D Printing Electrochemical Sensors -- 7.2.3 Design Considerations for 3D-Printed Sensors -- 7.2.4 Fabrication Techniques -- 7.2.4.1 Fused Deposition Modeling -- 7.2.4.2 Stereolithography -- 7.2.4.3 Digital Light Processing -- 7.2.4.4 Selective Laser Sintering -- 7.2.5 Other 3D Printing Techniques -- 7.2.5.1 Inkjet Printing -- 7.2.5.2 Aerosol Jet Printing -- 7.2.5.3 Binder Jetting -- 7.2.6 Characterization of 3D-Printed Electrochemical Sensors -- 7.2.7 Analysis of Surface Morphology -- 7.2.8 Measurements of Electrical Conductivity -- 7.2.9 Electrochemical Performance Evaluation -- 7.2.9.1 Cyclic Voltammetry -- 7.2.9.2 Chronoamperometry -- 7.2.9.3 Electrochemical Impedance Spectroscopy -- 7.2.9.4 Limits of Detection and Sensitivity -- 7.3 Functionalization of 3D-Printed Sensors -- 7.3.1 Surface Modification Techniques -- 7.3.2 Integration with Biological and Chemical Receptors -- 7.3.3 Enhancing Sensor Selectivity and Specificity -- 7.3.4 Validation and Calibration of Sensors -- 7.3.4.1 Calibration Methods -- 7.3.4.2 Reproducibility and Repeatability Studies. 7.3.4.3 Standard Protocols for Sensor Validation -- 7.3.5 Applications of 3D-Printed Electrochemical Sensors -- 7.3.5.1 Environmental Monitoring -- 7.3.5.2 Biomedical Diagnostics -- 7.3.5.3 Food and Beverage Analysis -- 7.3.5.4 Industrial Process Control -- 7.4 Challenges and Future Directions -- 7.5 Conclusion -- Acknowledgement -- References -- Chapter 8 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- Abbreviations -- 8.1 Introduction -- 8.1.1 3D Printing Techniques -- 8.1.1.1 Vat Photopolymerization -- 8.1.1.2 Material Extrusion -- 8.1.1.3 Inkjet Printing -- 8.1.1.4 Bioprinting -- 8.1.2 Electrochemical Methods -- 8.1.2.1 Cyclic Voltammetry -- 8.1.2.2 Differential Pulse Voltammetry -- 8.1.2.3 Square Wave Voltammetry -- 8.1.2.4 Electrochemical Impedance Spectroscopy -- 8.1.2.5 Chronoamperometry -- 8.2 Applications of 3D-Printed Electrochemical Sensors in Medical Diagnostics -- 8.2.1 3D-Printed Electrochemical Sensors Integrated in Point-of-Care Diagnostics -- 8.2.2 Integration of 3D-Printed Electrochemical Sensors in Wearable and Implantable Devices -- 8.2.3 Integration of 3D-Printed Electrochemical Sensors in Lab-on-a-Chip Platforms -- 8.2.4 Pharmaceutical and Biologically Important Compound Detection Sensors Based on 3D-Printed Electrochemical Sensors -- 8.3 Emerging Trends and Future Applications -- 8.4 Conclusion -- References -- Chapter 9 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.1 Introduction -- 9.1.1 3D Printing Techniques -- 9.1.2 Application of 3D-Printed Electrochemical Sensors in Environmental Monitoring -- 9.2 Conclusion -- References -- Chapter 10 Applications of 3D-Printed Electrochemical Sensors in Food Quality Control -- 10.1 Introduction to 3D-Printed Electrochemical Sensors -- 10.1.1 Basics of Electrochemical Sensors. 10.1.2 Integration of 3D Printing with Electrochemical Sensing -- 10.2 Principles of Electrochemical Sensing in Food Quality Control -- 10.2.1 Electrochemical Detection Methods -- 10.2.1.1 Voltammetry -- 10.2.1.2 Amperometry -- 10.2.1.3 Potentiometry -- 10.2.1.4 Conductometry -- 10.2.1.5 Electrochemical Impedance Spectroscopy -- 10.2.2 Target Analytes in Food Quality -- 10.2.2.1 Pesticides -- 10.2.2.2 Pathogens -- 10.2.2.3 Heavy Metals -- 10.2.2.4 Mycotoxin -- 10.2.2.5 Food Spoilage -- 10.3 Mechanisms of Detection and Measurement -- 10.4 Applications in Food Quality Control -- 10.4.1 Detection of Contaminants -- 10.4.2 Monitoring Freshness and Spoilage -- 10.4.3 Analysis of Nutritional Content -- 10.5 Case Studies -- 10.5.1 Detection of Pesticide Residue Contamination -- 10.5.2 Bacterial Detection in Food -- 10.5.3 Antioxidant Sensing and Monitoring -- 10.6 Advantages and Limitations of 3D-Printed Electrochemical Sensors -- 10.7 Future Trends and Innovations -- 10.7.1 Current Trends -- 10.7.2 Future Innovations -- 10.8 Summary -- References -- Chapter 11 Applications of 3D-Printed Electrochemical Sensors in Energy and Industrial Processes -- 11.1 Introduction -- 11.2 Types of 3D Printing Techniques -- 11.2.1 Stereolithography -- 11.2.1.1 The Stereolithography Gives a Summary of the Advantages and Limitations -- 11.2.1.2 Examples of Electrochemical Sensors Fabricated Using SLA -- 11.2.2 Fused Deposition Modeling -- 11.2.2.1 Operation of the FDM Equipment -- 11.2.3 Selective Laser Sintering -- 11.2.4 Inkjet 3D Printing -- 11.3 Materials for 3D Printing Electrochemical Sensors -- 11.3.1 Conductive Polymers -- 11.3.1.1 Applications of Conducting Polymers -- 11.3.1.2 3D Printing of Conducting Polymers -- 11.3.2 Nanomaterials -- 11.4 Applications in Electrochemical Energy Storage -- 11.5 Applications in Environmental Analysis. 11.5.1 Detection of a Small Organic Materials. |
| Record Nr. | UNINA-9911022470903321 |
Manjunatha Jamballi G
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
CMOS circuit design for RF sensors
| CMOS circuit design for RF sensors |
| Autore | Gudnason Gunnar |
| Pubbl/distr/stampa | Boston, MA : , : Springer US, , 2002 |
| Descrizione fisica | 1 online resource (VII, 176 p.) |
| Disciplina | 621.39/732 |
| Collana | The Kluwer international series in engineering and computer science CMOS circuit design for RF sensors |
| Soggetto topico |
Detectors - Design and construction
Electronic circuit design - Power supply Metal oxide semiconductors, Complementary - Design and construction Very high speed integrated circuits Electrical & Computer Engineering Engineering & Applied Sciences Electrical Engineering |
| ISBN |
1-280-20015-4
9786610200153 0-306-47528-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Link Design -- Receivers -- Power Supply Management -- Reference Circuits -- Case Studies. |
| Record Nr. | UNINA-9910450618803321 |
Gudnason Gunnar
|
||
| Boston, MA : , : Springer US, , 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
CMOS circuit design for RF sensors
| CMOS circuit design for RF sensors |
| Autore | Gudnason Gunnar |
| Pubbl/distr/stampa | Boston, MA : , : Springer US, , 2002 |
| Descrizione fisica | 1 online resource (VII, 176 p.) |
| Disciplina | 621.39/732 |
| Collana | The Kluwer international series in engineering and computer science CMOS circuit design for RF sensors |
| Soggetto topico |
Detectors - Design and construction
Electronic circuit design - Power supply Metal oxide semiconductors, Complementary - Design and construction Very high speed integrated circuits Electrical & Computer Engineering Engineering & Applied Sciences Electrical Engineering |
| ISBN |
1-280-20015-4
9786610200153 0-306-47528-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Link Design -- Receivers -- Power Supply Management -- Reference Circuits -- Case Studies. |
| Record Nr. | UNINA-9910783251303321 |
Gudnason Gunnar
|
||
| Boston, MA : , : Springer US, , 2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intelligent sensor design using the microchip dsPIC [[electronic resource] /] / by Creed Huddleston
| Intelligent sensor design using the microchip dsPIC [[electronic resource] /] / by Creed Huddleston |
| Autore | Huddleston Creed |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier/Newnes, c2007 |
| Descrizione fisica | 1 online resource (304 p.) |
| Disciplina |
681.2
681/.2 22 |
| Collana | Embedded technology series |
| Soggetto topico |
Detectors - Design and construction
Intelligent control systems Signal processing - Digital techniques |
| Soggetto genere / forma | Electronic books. |
| ISBN |
978-0-0805-9157-8
1-281-00680-7 9786611006808 0-08-049157-X 9780080591578 0-08-059157-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Chapter 2. Intuitive Digital Signal Processing2.1 Foundational Concepts for Signal Processing; 2.2 Issues Related to Signal Sampling; 2.3 How to Analyze a Sensor Signal Application; 2.4 A General Sensor Signal-processing Framework; 2.5 Summary; Chapter 3. Underneath the Hood of the dsPIC DSC; 3.1 The dsPIC DSC's Data Processing Architecture; 3.2 Interrupt Structure; 3.3 The On-chip Peripherals; 3.4 Summary; Chapter 4: Learning to be a Good Communicator; 4.1 Types of Communications; 4.2 Communication Options Available on the dsPIC30F; 4.3 High-level Protocols; 4.4 Summary
C.3 Reading Data From the InterfaceC.4 Writing Data to the Interface; Index |
| Record Nr. | UNINA-9910451080303321 |
Huddleston Creed
|
||
| Amsterdam ; ; Boston, : Elsevier/Newnes, c2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intelligent sensor design using the microchip dsPIC [[electronic resource] /] / by Creed Huddleston
| Intelligent sensor design using the microchip dsPIC [[electronic resource] /] / by Creed Huddleston |
| Autore | Huddleston Creed |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier/Newnes, c2007 |
| Descrizione fisica | 1 online resource (304 p.) |
| Disciplina |
681.2
681/.2 22 |
| Collana | Embedded technology series |
| Soggetto topico |
Detectors - Design and construction
Intelligent control systems Signal processing - Digital techniques |
| ISBN |
978-0-0805-9157-8
1-281-00680-7 9786611006808 0-08-049157-X 9780080591578 0-08-059157-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Chapter 2. Intuitive Digital Signal Processing2.1 Foundational Concepts for Signal Processing; 2.2 Issues Related to Signal Sampling; 2.3 How to Analyze a Sensor Signal Application; 2.4 A General Sensor Signal-processing Framework; 2.5 Summary; Chapter 3. Underneath the Hood of the dsPIC DSC; 3.1 The dsPIC DSC's Data Processing Architecture; 3.2 Interrupt Structure; 3.3 The On-chip Peripherals; 3.4 Summary; Chapter 4: Learning to be a Good Communicator; 4.1 Types of Communications; 4.2 Communication Options Available on the dsPIC30F; 4.3 High-level Protocols; 4.4 Summary
C.3 Reading Data From the InterfaceC.4 Writing Data to the Interface; Index |
| Record Nr. | UNINA-9910784060803321 |
Huddleston Creed
|
||
| Amsterdam ; ; Boston, : Elsevier/Newnes, c2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Intelligent sensor design using the microchip dsPIC / / by Creed Huddleston
| Intelligent sensor design using the microchip dsPIC / / by Creed Huddleston |
| Autore | Huddleston Creed |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier/Newnes, c2007 |
| Descrizione fisica | 1 online resource (xix, 283 pages) : illustrations |
| Disciplina |
681.2
681/.2 22 |
| Collana | Embedded technology series |
| Soggetto topico |
Detectors - Design and construction
Intelligent control systems Signal processing - Digital techniques |
| ISBN |
9786611006808
9781281006806 1281006807 008049157X 9780080491578 9780080591575 0080591574 978-0-0805-9157-8 9780080591578 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Chapter 2. Intuitive Digital Signal Processing2.1 Foundational Concepts for Signal Processing; 2.2 Issues Related to Signal Sampling; 2.3 How to Analyze a Sensor Signal Application; 2.4 A General Sensor Signal-processing Framework; 2.5 Summary; Chapter 3. Underneath the Hood of the dsPIC DSC; 3.1 The dsPIC DSC's Data Processing Architecture; 3.2 Interrupt Structure; 3.3 The On-chip Peripherals; 3.4 Summary; Chapter 4: Learning to be a Good Communicator; 4.1 Types of Communications; 4.2 Communication Options Available on the dsPIC30F; 4.3 High-level Protocols; 4.4 Summary
C.3 Reading Data From the InterfaceC.4 Writing Data to the Interface; Index |
| Record Nr. | UNINA-9910953335603321 |
Huddleston Creed
|
||
| Amsterdam ; ; Boston, : Elsevier/Newnes, c2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Motion vision : design of compact motion sensing solutions for autonomous systems navigation / / by Julian Kolodko and Ljubo Vlacic
| Motion vision : design of compact motion sensing solutions for autonomous systems navigation / / by Julian Kolodko and Ljubo Vlacic |
| Autore | Kolodko Julian |
| Pubbl/distr/stampa | London, : Institution of Electrical Engineers, c2005 |
| Descrizione fisica | 1 online resource (458 p.) |
| Disciplina | 629.8315 |
| Altri autori (Persone) | VlacicLjubo |
| Collana | IEE control engineering series |
| Soggetto topico |
Motion - Measurement
Detectors - Design and construction Motion control devices - Design and construction |
| ISBN |
1-281-97095-6
9786611970956 0-86341-158-4 1-60119-089-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Contents; Preface; List of abbreviations; Symbols; Typographical conventions; Acknowledgements; 1 Introduction; PART 1 - BACKGROUND; 2 Mathematical preliminaries; 3 Motion estimation; PART2 - ALGORITHM DEVELOPMENT; 4 Real-time motion processing; 5 Motion estimation for autonomous navigation; PART3 - HARDWARE; 6 Digital design; 7 Sensor implementation; PART4 - APPENDICES; A System timing; B SDRAM timing; C FPGA design; D Simulation of range data; Bibliography; Index |
| Record Nr. | UNINA-9911006975403321 |
Kolodko Julian
|
||
| London, : Institution of Electrical Engineers, c2005 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Nanoscale sensors / / Shibin Li [and three others], editors
| Nanoscale sensors / / Shibin Li [and three others], editors |
| Edizione | [1st ed. 2013.] |
| Pubbl/distr/stampa | Cham [Switzerland] : , : Springer, , 2013 |
| Descrizione fisica | 1 online resource (xii, 281 pages) : illustrations (some color) |
| Disciplina | 681.2 |
| Collana | Lecture Notes in Nanoscale Science and Technology |
| Soggetto topico |
Detectors - Design and construction
Nanostructured materials |
| ISBN | 3-319-02772-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- Chapter 1: Recent progress in the development of novel nanostructured biosensors for detection of water borne contaminants -- Chapter 2: Nanosensors for intracellular Raman studies -- Chapter 3: BioFET-SIM: a Tool for the Analysis and Prediction of Signal Changes in Nanowire Based Field Effect Transistor Biosensors -- Chapter 4: Semiconductor-Based Nanostructures for Photoelectrochemical Sensors and Biosensors -- Chapter 5: ZnO hydrogen nanoscale sensors -- Chapter 6: Recent advances in the design of photodetectors based on thin film and nanostructured ZnO -- Chapter 7: Thin Film Gas Sensors Based on Nanocarbon Materials -- Chapter 8: A Do-it-Yourself (DIY) Guide to using carbon nanotubes for stretchable electronics and sensors -- Chapter 9: Ultra-Sensitive In-Plane Resonant Nano-Electro-Mechanical Sensors -- Index. |
| Record Nr. | UNINA-9910437814103321 |
| Cham [Switzerland] : , : Springer, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Proceedings of the 2012 international conference on detection and classification of underwater targets / / edited by Isabelle Quidu, Vincent Myers and Benoit Zerr ; Andreja Abina [and fifty six others], contributors
| Proceedings of the 2012 international conference on detection and classification of underwater targets / / edited by Isabelle Quidu, Vincent Myers and Benoit Zerr ; Andreja Abina [and fifty six others], contributors |
| Pubbl/distr/stampa | Newcastle upon Tyne, England : , : Cambridge Scholars Publishing, , 2014 |
| Descrizione fisica | 1 online resource (291 p.) |
| Disciplina | 681.2 |
| Soggetto topico |
Detectors - Computer simulation
Detectors - Design and construction Environmental engineering Sensor networks |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4438-6152-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910464654803321 |
| Newcastle upon Tyne, England : , : Cambridge Scholars Publishing, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||