top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Correlation and dependence / Dominique Drouet Mari, Samuel Kotz
Correlation and dependence / Dominique Drouet Mari, Samuel Kotz
Autore Drouet Mari, Dominique
Pubbl/distr/stampa London : Imperial College Press
Descrizione fisica xiv, 219 p. : ill. ; 23 cm
Disciplina 519.537
Altri autori (Persone) Kotz, Samuelauthor
Soggetto topico Correlation (Statistics)
Dependence (Statistics)
ISBN 1860942644
Classificazione AMS 60E15
AMS 62H20
LC QA278.2.M36
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991001619879707536
Drouet Mari, Dominique  
London : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Correlation and dependence [[electronic resource] /] / Dominique Drouet Mari, Samuel Kotz
Correlation and dependence [[electronic resource] /] / Dominique Drouet Mari, Samuel Kotz
Autore Mari Dominique Drouet
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (236 p.)
Disciplina 519.2
Altri autori (Persone) KotzSamuel
Soggetto topico Correlation (Statistics)
Dependence (Statistics)
Soggetto genere / forma Electronic books.
ISBN 1-281-86948-1
9786611869489
1-86094-975-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents ; Preface ; Chapter 1 Notations and Definitions ; 1.1 Notations ; 1.2 Definitions ; Chapter 2 Correlation and Dependence : An Introspection ; 2.1 Independence ; 2.2 Zero Correlation Versus Dependence ; 2.3 Some Geometrical Examples ; 2.4 Some Further Historical Remarks
2.5 A Brief Tour of Early Applications and Misinterpretations Chapter 3 Concepts of Dependence and Stochastic Ordering ; 3.1 Introduction ; 3.2 Concepts of Positive Dependence ; 3.3 Negative Dependence for More than Two Variables ; 3.4 Setwise Dependence ; 3.5 Other Approaches
3.6 Positive Dependence Orderings 3.7 Bayesian Approach to Stochastic Dependence ; Chapter 4 Copulas ; 4.1 Introduction ; 4.2 Definition and Some Properties ; 4.3 The Frechet Bounds ; 4.4 Examples ; 4.5 Construction of a Copula ; 4.6 Archimedean Copulas ; 4.7 Archimax Copulas
4.8 Copulas with Discontinuity Constraints 4.9 Copulas with More than Two Variables ; 4.10 Simulation Procedures ; Chapter 5 Farlie-Gumbel-Morgenstern Models of Dependence ; 5.1 Introduction ; 5.2 Initial Definition ; 5.3 Regression and Correlation ; 5.4 Iterations
5.5 Dependence Properties 5.6 A Class of n-variate FGM Distributions ; 5.7 Further Extensions ; 5.8 FGM Sequences ; Chapter 6 Global Versus Local Dependence between Random Variables ; 6.1 Introduction ; 6.2 Global Measures of Dependence ; 6.3 Local Indices of Dependence
6.4 Non-parametric Estimation of Local Indices
Record Nr. UNINA-9910454335103321
Mari Dominique Drouet  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Correlation and dependence [[electronic resource] /] / Dominique Drouet Mari, Samuel Kotz
Correlation and dependence [[electronic resource] /] / Dominique Drouet Mari, Samuel Kotz
Autore Mari Dominique Drouet
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (236 p.)
Disciplina 519.2
Altri autori (Persone) KotzSamuel
Soggetto topico Correlation (Statistics)
Dependence (Statistics)
ISBN 1-281-86948-1
9786611869489
1-86094-975-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents ; Preface ; Chapter 1 Notations and Definitions ; 1.1 Notations ; 1.2 Definitions ; Chapter 2 Correlation and Dependence : An Introspection ; 2.1 Independence ; 2.2 Zero Correlation Versus Dependence ; 2.3 Some Geometrical Examples ; 2.4 Some Further Historical Remarks
2.5 A Brief Tour of Early Applications and Misinterpretations Chapter 3 Concepts of Dependence and Stochastic Ordering ; 3.1 Introduction ; 3.2 Concepts of Positive Dependence ; 3.3 Negative Dependence for More than Two Variables ; 3.4 Setwise Dependence ; 3.5 Other Approaches
3.6 Positive Dependence Orderings 3.7 Bayesian Approach to Stochastic Dependence ; Chapter 4 Copulas ; 4.1 Introduction ; 4.2 Definition and Some Properties ; 4.3 The Frechet Bounds ; 4.4 Examples ; 4.5 Construction of a Copula ; 4.6 Archimedean Copulas ; 4.7 Archimax Copulas
4.8 Copulas with Discontinuity Constraints 4.9 Copulas with More than Two Variables ; 4.10 Simulation Procedures ; Chapter 5 Farlie-Gumbel-Morgenstern Models of Dependence ; 5.1 Introduction ; 5.2 Initial Definition ; 5.3 Regression and Correlation ; 5.4 Iterations
5.5 Dependence Properties 5.6 A Class of n-variate FGM Distributions ; 5.7 Further Extensions ; 5.8 FGM Sequences ; Chapter 6 Global Versus Local Dependence between Random Variables ; 6.1 Introduction ; 6.2 Global Measures of Dependence ; 6.3 Local Indices of Dependence
6.4 Non-parametric Estimation of Local Indices
Record Nr. UNINA-9910782123203321
Mari Dominique Drouet  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Correlation and dependence / / Dominique Drouet Mari, Samuel Kotz
Correlation and dependence / / Dominique Drouet Mari, Samuel Kotz
Autore Mari Dominique Drouet
Edizione [1st ed.]
Pubbl/distr/stampa London, : Imperial College Press
Descrizione fisica 1 online resource (236 p.)
Disciplina 519.2
Altri autori (Persone) KotzSamuel
Soggetto topico Correlation (Statistics)
Dependence (Statistics)
ISBN 1-281-86948-1
9786611869489
1-86094-975-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents ; Preface ; Chapter 1 Notations and Definitions ; 1.1 Notations ; 1.2 Definitions ; Chapter 2 Correlation and Dependence : An Introspection ; 2.1 Independence ; 2.2 Zero Correlation Versus Dependence ; 2.3 Some Geometrical Examples ; 2.4 Some Further Historical Remarks
2.5 A Brief Tour of Early Applications and Misinterpretations Chapter 3 Concepts of Dependence and Stochastic Ordering ; 3.1 Introduction ; 3.2 Concepts of Positive Dependence ; 3.3 Negative Dependence for More than Two Variables ; 3.4 Setwise Dependence ; 3.5 Other Approaches
3.6 Positive Dependence Orderings 3.7 Bayesian Approach to Stochastic Dependence ; Chapter 4 Copulas ; 4.1 Introduction ; 4.2 Definition and Some Properties ; 4.3 The Frechet Bounds ; 4.4 Examples ; 4.5 Construction of a Copula ; 4.6 Archimedean Copulas ; 4.7 Archimax Copulas
4.8 Copulas with Discontinuity Constraints 4.9 Copulas with More than Two Variables ; 4.10 Simulation Procedures ; Chapter 5 Farlie-Gumbel-Morgenstern Models of Dependence ; 5.1 Introduction ; 5.2 Initial Definition ; 5.3 Regression and Correlation ; 5.4 Iterations
5.5 Dependence Properties 5.6 A Class of n-variate FGM Distributions ; 5.7 Further Extensions ; 5.8 FGM Sequences ; Chapter 6 Global Versus Local Dependence between Random Variables ; 6.1 Introduction ; 6.2 Global Measures of Dependence ; 6.3 Local Indices of Dependence
6.4 Non-parametric Estimation of Local Indices
Record Nr. UNINA-9910809895503321
Mari Dominique Drouet  
London, : Imperial College Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Counting statistics for dependent random events : with a focus on finance / / Enrico Bernardi and Silvia Romagnoli
Counting statistics for dependent random events : with a focus on finance / / Enrico Bernardi and Silvia Romagnoli
Autore Bernardi Enrico <1838-1900, >
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (213 pages) : illustrations
Disciplina 519.535
Soggetto topico Dependence (Statistics)
Copulas (Mathematical statistics)
Finance - Mathematical models
Dependència (Estadística)
Finances
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-64250-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- List of Common Symbols, Notations, and Acronyms -- Contents -- Part I The Main Ingredients -- 1 Clustering -- 1.1 Preliminary on Clustering -- 1.2 The Similarity Measure for Static Data -- 1.3 The Similarity Measure for Time Series -- 1.3.1 Model-Free Approaches -- 1.3.2 Model-Based Approaches -- 1.4 Hierarchical Algorithm -- 1.5 Partitioning Algorithm -- 1.5.1 k-Means Clustering -- 1.6 Neural Network Models -- 1.6.1 Clustering Algorithms -- 1.6.2 Kohonen Self-Organizing Maps -- 1.7 Search-Based Approaches -- 1.7.1 Evolutionary Approaches for Clustering -- 1.7.2 Simulated Annealing Approach -- 1.8 A Clustering Exercise on the European Banking System -- References -- 2 Copula Function and C-Volume -- 2.1 Copula Functions -- 2.1.1 Fréchet-Hoeffding Bounds of a n-Dimensional Copula and Association Measures -- 2.2 Families of Copulas -- 2.2.1 Elliptical Copulas -- Gaussian Copulas -- Student's t Copula -- 2.2.2 Archimedean Copulas -- 2.2.3 Extreme-Value Copulas -- 2.3 Pure Hierarchical Copulas -- 2.4 Hierarchical Grouping Copulas -- 2.4.1 Clusterized Homogeneous and Clusterized Hierarchical Copulas -- 2.4.2 Hierarchical Kendall Copulas -- 2.5 Volume of an n-Dimensional Copula -- 2.5.1 Clusterized Hierarchical Copulas: CHY-Volume -- 2.6 Example: Homogeneous CHY-Volume Versus CR Algorithm -- 2.6.1 Scalability of the Homogeneous CHY-Based Algorithm -- References -- 3 Combinatorics and Random Matrices: A Brief Review -- 3.1 Combinatoric Distribution of a Random Event -- 3.1.1 Permutations: Ordered Selection -- 3.1.2 Combinations: Unordered Selection -- 3.1.3 The Hardy-Ramanujan Asymptotic Partition Formula -- 3.1.4 The Combinatorial Problem in CHY-Volume Computation -- 3.1.5 Testing Compatibility with the Groups -- 3.2 Random Matrices -- 3.2.1 Gaussian Ensembles -- 3.2.2 An Illustrative Example of a Two-by-Two Random Matrix.
3.2.3 Singular Values of Rectangular Matrices -- 3.2.4 Marchenko-Pastur Distribution -- 3.2.5 The Distorted Combinatoric Distributions -- References -- Part II Mixing the Ingredients: A Recipe for a New Aggregation Algorithm -- 4 Counting a Random Event: Traditional Approach and New Perspectives -- 4.1 Counting Variables: Fundamentals in Literature -- 4.1.1 Generalized Poisson Distribution -- 4.1.2 Compound Poisson Distribution -- 4.2 Counting Process: Fundamentals in Literature -- 4.2.1 Counting Processes in Credit Risk Models: The Intensity-Based Approach -- 4.3 A New Combinatoric Approach for Counting -- 4.3.1 A Counting Variable Linked to a Clusterized Homogeneous Dependence Structure -- 4.3.2 Clusterized Homogeneous Copulas: CHC-Volume -- 4.3.3 Preparing the CHC-Computation -- 4.3.4 CHC and CHY Computation -- 4.3.5 The Volume of a Clusterized Copula: CHC and CHY -- 4.3.6 Pdf of a Counting Variable Linked to a CHC: A Formal Approach -- 4.3.7 The Boxes' Definition for the CHC-Volume Computation -- 4.3.8 The Dynamic Version of the Combinatoric-Approach -- References -- 5 A New Copula-Based Approach for Counting: The Distorted and the Limiting Case -- 5.1 The Distorted Copula-Based Approach: Fatal Event -- 5.1.1 From a Not Distorted to a Distorted Structure: A Probabilistic Discussion -- 5.1.2 Distorted Copula-Based Distribution of a Fatal Counting Variable -- 5.2 The Distorted Copula-Based Approach: Not Fatal Event -- 5.2.1 The Distorted Copula-Based Distribution of a Not Fatal Counting Variable -- 5.2.2 A Pseudo-Spectral Analysis of the Arrival Matrices -- 5.3 High-Dimensional Problems: The Pure Limiting Models -- 5.4 High-Dimensional Problems: The Limiting Clusterized Copulas -- 5.4.1 Hierarchical Limiting Model: A Credit Risk Application -- The Within Classes Computing Step -- The Between Classes Aggregation Step -- Case 1 -- Case 2 -- Case 3.
5.4.2 Hierarchical Hybrid Copulas: A Credit Risk Application -- 5.4.3 Check for the Groups' Cardinality: The HYC Model -- References -- 6 Real Data Empirical Applications -- 6.1 HYC-Based Model for a Worldwide Sovereign Debt Large Portfolio -- 6.2 Risk Evaluation Based on HYC Model: A Credit-Exposed European Investment Portfolio Analysis -- 6.2.1 Copula-Based Loss Distribution -- 6.2.2 Calibration of the Dependencies -- 6.2.3 HYC Model: Portfolio Application -- 6.2.4 HYC-VaR versus CM-VaR: an Empirical In-Sample Experiment -- Hypothesis -- CM Model -- HYC Model -- 6.3 Structural and Marginal Distortion in a Credit-Exposed Portfolio: a DHC Application -- 6.4 A Bayesian Analysis of the DHC Model -- 6.4.1 Multivariate Dependence Calibration -- 6.4.2 The Loss Function: Index Versus Replicating Portfolio -- 6.4.3 A Bayesian Analysis on the Residuals -- References -- References.
Record Nr. UNISA-996466544803316
Bernardi Enrico <1838-1900, >  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Counting statistics for dependent random events : with a focus on finance / / Enrico Bernardi and Silvia Romagnoli
Counting statistics for dependent random events : with a focus on finance / / Enrico Bernardi and Silvia Romagnoli
Autore Bernardi Enrico <1838-1900, >
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (213 pages) : illustrations
Disciplina 519.535
Soggetto topico Dependence (Statistics)
Copulas (Mathematical statistics)
Finance - Mathematical models
Dependència (Estadística)
Finances
Models matemàtics
Soggetto genere / forma Llibres electrònics
ISBN 3-030-64250-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- List of Common Symbols, Notations, and Acronyms -- Contents -- Part I The Main Ingredients -- 1 Clustering -- 1.1 Preliminary on Clustering -- 1.2 The Similarity Measure for Static Data -- 1.3 The Similarity Measure for Time Series -- 1.3.1 Model-Free Approaches -- 1.3.2 Model-Based Approaches -- 1.4 Hierarchical Algorithm -- 1.5 Partitioning Algorithm -- 1.5.1 k-Means Clustering -- 1.6 Neural Network Models -- 1.6.1 Clustering Algorithms -- 1.6.2 Kohonen Self-Organizing Maps -- 1.7 Search-Based Approaches -- 1.7.1 Evolutionary Approaches for Clustering -- 1.7.2 Simulated Annealing Approach -- 1.8 A Clustering Exercise on the European Banking System -- References -- 2 Copula Function and C-Volume -- 2.1 Copula Functions -- 2.1.1 Fréchet-Hoeffding Bounds of a n-Dimensional Copula and Association Measures -- 2.2 Families of Copulas -- 2.2.1 Elliptical Copulas -- Gaussian Copulas -- Student's t Copula -- 2.2.2 Archimedean Copulas -- 2.2.3 Extreme-Value Copulas -- 2.3 Pure Hierarchical Copulas -- 2.4 Hierarchical Grouping Copulas -- 2.4.1 Clusterized Homogeneous and Clusterized Hierarchical Copulas -- 2.4.2 Hierarchical Kendall Copulas -- 2.5 Volume of an n-Dimensional Copula -- 2.5.1 Clusterized Hierarchical Copulas: CHY-Volume -- 2.6 Example: Homogeneous CHY-Volume Versus CR Algorithm -- 2.6.1 Scalability of the Homogeneous CHY-Based Algorithm -- References -- 3 Combinatorics and Random Matrices: A Brief Review -- 3.1 Combinatoric Distribution of a Random Event -- 3.1.1 Permutations: Ordered Selection -- 3.1.2 Combinations: Unordered Selection -- 3.1.3 The Hardy-Ramanujan Asymptotic Partition Formula -- 3.1.4 The Combinatorial Problem in CHY-Volume Computation -- 3.1.5 Testing Compatibility with the Groups -- 3.2 Random Matrices -- 3.2.1 Gaussian Ensembles -- 3.2.2 An Illustrative Example of a Two-by-Two Random Matrix.
3.2.3 Singular Values of Rectangular Matrices -- 3.2.4 Marchenko-Pastur Distribution -- 3.2.5 The Distorted Combinatoric Distributions -- References -- Part II Mixing the Ingredients: A Recipe for a New Aggregation Algorithm -- 4 Counting a Random Event: Traditional Approach and New Perspectives -- 4.1 Counting Variables: Fundamentals in Literature -- 4.1.1 Generalized Poisson Distribution -- 4.1.2 Compound Poisson Distribution -- 4.2 Counting Process: Fundamentals in Literature -- 4.2.1 Counting Processes in Credit Risk Models: The Intensity-Based Approach -- 4.3 A New Combinatoric Approach for Counting -- 4.3.1 A Counting Variable Linked to a Clusterized Homogeneous Dependence Structure -- 4.3.2 Clusterized Homogeneous Copulas: CHC-Volume -- 4.3.3 Preparing the CHC-Computation -- 4.3.4 CHC and CHY Computation -- 4.3.5 The Volume of a Clusterized Copula: CHC and CHY -- 4.3.6 Pdf of a Counting Variable Linked to a CHC: A Formal Approach -- 4.3.7 The Boxes' Definition for the CHC-Volume Computation -- 4.3.8 The Dynamic Version of the Combinatoric-Approach -- References -- 5 A New Copula-Based Approach for Counting: The Distorted and the Limiting Case -- 5.1 The Distorted Copula-Based Approach: Fatal Event -- 5.1.1 From a Not Distorted to a Distorted Structure: A Probabilistic Discussion -- 5.1.2 Distorted Copula-Based Distribution of a Fatal Counting Variable -- 5.2 The Distorted Copula-Based Approach: Not Fatal Event -- 5.2.1 The Distorted Copula-Based Distribution of a Not Fatal Counting Variable -- 5.2.2 A Pseudo-Spectral Analysis of the Arrival Matrices -- 5.3 High-Dimensional Problems: The Pure Limiting Models -- 5.4 High-Dimensional Problems: The Limiting Clusterized Copulas -- 5.4.1 Hierarchical Limiting Model: A Credit Risk Application -- The Within Classes Computing Step -- The Between Classes Aggregation Step -- Case 1 -- Case 2 -- Case 3.
5.4.2 Hierarchical Hybrid Copulas: A Credit Risk Application -- 5.4.3 Check for the Groups' Cardinality: The HYC Model -- References -- 6 Real Data Empirical Applications -- 6.1 HYC-Based Model for a Worldwide Sovereign Debt Large Portfolio -- 6.2 Risk Evaluation Based on HYC Model: A Credit-Exposed European Investment Portfolio Analysis -- 6.2.1 Copula-Based Loss Distribution -- 6.2.2 Calibration of the Dependencies -- 6.2.3 HYC Model: Portfolio Application -- 6.2.4 HYC-VaR versus CM-VaR: an Empirical In-Sample Experiment -- Hypothesis -- CM Model -- HYC Model -- 6.3 Structural and Marginal Distortion in a Credit-Exposed Portfolio: a DHC Application -- 6.4 A Bayesian Analysis of the DHC Model -- 6.4.1 Multivariate Dependence Calibration -- 6.4.2 The Loss Function: Index Versus Replicating Portfolio -- 6.4.3 A Bayesian Analysis on the Residuals -- References -- References.
Record Nr. UNINA-9910483919303321
Bernardi Enrico <1838-1900, >  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dependence modeling
Dependence modeling
Pubbl/distr/stampa Warsaw, Poland : , : Versita, , 2013-
Soggetto topico Dependence (Statistics)
Multivariate analysis
Copulas (Mathematical statistics)
Soggetto genere / forma Periodicals.
Soggetto non controllato Mathematical Statistics
ISSN 2300-2298
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti DeMo
Record Nr. UNISA-996321906503316
Warsaw, Poland : , : Versita, , 2013-
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Dependence modeling
Dependence modeling
Pubbl/distr/stampa Warsaw, Poland : , : Versita, , 2013-
Soggetto topico Dependence (Statistics)
Multivariate analysis
Copulas (Mathematical statistics)
Soggetto genere / forma Periodicals.
ISSN 2300-2298
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Altri titoli varianti DeMo
Record Nr. UNINA-9910131766103321
Warsaw, Poland : , : Versita, , 2013-
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dependence modeling [[electronic resource] ] : vine copula handbook / / editors, Dorota Kurowicka, Harry Joe
Dependence modeling [[electronic resource] ] : vine copula handbook / / editors, Dorota Kurowicka, Harry Joe
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2011
Descrizione fisica 1 online resource (368 p.)
Disciplina 519.5
Altri autori (Persone) KurowickaDorota
JoeHarry
Soggetto topico Copulas (Mathematical statistics)
Dependence (Statistics)
Distribution (Probability theory)
Soggetto genere / forma Electronic books.
ISBN 1-283-14441-7
9786613144416
981-4299-88-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction: Dependence Modeling D. Kurowicka; 2. Multivariate Copulae M. Fischer; 3. Vines Arise R. M. Cooke, H. Joe and K. Aas; 4. Sampling Count Variables with Specified Pearson Correlation: A Comparison between a Naive and a C-Vine Sampling Approach V. Erhardt and C. Czado; 5. Micro Correlations and Tail Dependence R. M. Cooke, C. Kousky and H. Joe; 6. The Copula Information Criterion and Its Implications for the Maximum Pseudo-Likelihood Estimator S. Grønneberg; 7. Dependence Comparisons of Vine Copulae with Four or More Variables H. Joe
8. Tail Dependence in Vine Copulae H. Joe9. Counting Vines O. Morales-Napoles; 10. Regular Vines: Generation Algorithm and Number of Equivalence Classes H. Joe, R. M. Cooke and D. Kurowicka; 11. Optimal Truncation of Vines D. Kurowicka; 12. Bayesian Inference for D-Vines: Estimation and Model Selection C. Czado and A. Min; 13. Analysis of Australian Electricity Loads Using Joint Bayesian Inference of D-Vines with Autoregressive Margins C. Czado, F. G ̈artner and A. Min; 14. Non-Parametric Bayesian Belief Nets versus Vines A. Hanea
15. Modeling Dependence between Financial Returns Using Pair-Copula Constructions K. Aas and D. Berg16. Dynamic D-Vine Model A. Heinen and A. Valdesogo; 17. Summary and Future Directions D. Kurowicka; Index
Record Nr. UNINA-9910463930303321
Hackensack, N.J., : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Dependence modeling [[electronic resource] ] : vine copula handbook / / editors, Dorota Kurowicka, Harry Joe
Dependence modeling [[electronic resource] ] : vine copula handbook / / editors, Dorota Kurowicka, Harry Joe
Pubbl/distr/stampa Hackensack, N.J., : World Scientific, 2011
Descrizione fisica 1 online resource (368 p.)
Disciplina 519.5
Altri autori (Persone) KurowickaDorota
JoeHarry
Soggetto topico Copulas (Mathematical statistics)
Dependence (Statistics)
Distribution (Probability theory)
ISBN 1-283-14441-7
9786613144416
981-4299-88-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction: Dependence Modeling D. Kurowicka; 2. Multivariate Copulae M. Fischer; 3. Vines Arise R. M. Cooke, H. Joe and K. Aas; 4. Sampling Count Variables with Specified Pearson Correlation: A Comparison between a Naive and a C-Vine Sampling Approach V. Erhardt and C. Czado; 5. Micro Correlations and Tail Dependence R. M. Cooke, C. Kousky and H. Joe; 6. The Copula Information Criterion and Its Implications for the Maximum Pseudo-Likelihood Estimator S. Grønneberg; 7. Dependence Comparisons of Vine Copulae with Four or More Variables H. Joe
8. Tail Dependence in Vine Copulae H. Joe9. Counting Vines O. Morales-Napoles; 10. Regular Vines: Generation Algorithm and Number of Equivalence Classes H. Joe, R. M. Cooke and D. Kurowicka; 11. Optimal Truncation of Vines D. Kurowicka; 12. Bayesian Inference for D-Vines: Estimation and Model Selection C. Czado and A. Min; 13. Analysis of Australian Electricity Loads Using Joint Bayesian Inference of D-Vines with Autoregressive Margins C. Czado, F. G ̈artner and A. Min; 14. Non-Parametric Bayesian Belief Nets versus Vines A. Hanea
15. Modeling Dependence between Financial Returns Using Pair-Copula Constructions K. Aas and D. Berg16. Dynamic D-Vine Model A. Heinen and A. Valdesogo; 17. Summary and Future Directions D. Kurowicka; Index
Record Nr. UNINA-9910788555203321
Hackensack, N.J., : World Scientific, 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui