top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Algorithmic decision theory : 7th international conference, ADT 2021, Toulouse, France, November 3-5, 2021 : proceedings / / edited by Dimitris Fotakis, David Ríos Insua
Algorithmic decision theory : 7th international conference, ADT 2021, Toulouse, France, November 3-5, 2021 : proceedings / / edited by Dimitris Fotakis, David Ríos Insua
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (446 pages)
Disciplina 519.542
Collana Lecture Notes in Computer Science
Soggetto topico Decision trees
Data mining
Decision making - Mathematical models
ISBN 3-030-87756-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464502703316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Binary decision diagrams and extensions for system reliability analysis / / Liudong Xing, Suprasad V. Amari ; cover design by Russell Richardson
Binary decision diagrams and extensions for system reliability analysis / / Liudong Xing, Suprasad V. Amari ; cover design by Russell Richardson
Autore Xing Liudong
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2015
Descrizione fisica 1 online resource (393 p.)
Disciplina 620/.00452
Collana Performability Engineering Series
Soggetto topico Reliability (Engineering) - Graphic methods
System analysis - Graphic methods
Decision trees
ISBN 1-119-17800-2
1-119-17802-9
1-119-17801-0
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface xiii Nomenclature xix 1 Introduction 1 1.1 Historical Developments 1 1.2 Reliability and Safety Applications 4 2 Basic Reliability Theory and Models 7 2.1 Probabiltiy Concepts 7 2.2 Reliability Measures 14 2.3 Fault Tree Analysis 17 3 Fundamentals of Binary Decision Diagrams 33 3.1 Preliminaries 34 3.2 Basic Concepts 34 3.3 BDD Construction 35 3.4 BDD Evaluation 42 3.5 BDD-Based Software Package 44 4 Application of BDD to Binary-State Systems 45 4.1 Network Reliability Analysis 45 4.2 Event Tree Analysis 47 4.3 Failure Frequency Analysis 50 4.4 Importance Measures and Analysis 54 4.5 Modularization Methods 60 4.6 Non-Coherent Systems 60 4.7 Disjoint Failures 65 4.8 Dependent Failures 68 5 Phased-Mission Systems 73 5.1 System Description 74 5.2 Rules of Phase Algebra 75 5.3 BDD-Based Method for PMS Analysis 76 5.4 Mission Performance Analysis 81 6 Multi-State Systems 85 6.1 Assumptions 86 6.2 An Illustrative Example 86 6.3 MSS Representation 87 6.4 Multi-State BDD (MBDD) 90 6.5 Logarithmically-Encoded BDD (LBDD) 94 6.6 Multi-State Multi-Valued Decision Diagrams (MMDD) 98 6.7 Performance Evaluation and Benchmarks 102 6.8 Summary 117 7 Fault Tolerant Systems and Coverage Models 119 7.1 Basic Types 120 7.2 Imperfect Coverage Model 122 7.3 Applications to Binary-State Systems 123 7.4 Applications to Multi-State Systems 129 7.5 Applications to Phased-Mission Systems 133 7.6 Summary 139 8 Shared Decision Diagrams 143 8.1 Multi-Rooted Decision Diagrams 144 8.2 Multi-Terminal Decision Diagrams 148 8.3 Performance Study on Multi-State Systems 151 8.4 Application to Phased-Mission Systems 163 8.5 Application to Multi-State k-out-of-n Systems 168 8.6 Importance Measures 176 8.7 Failure Frequency Based Measures 180 8.8 Summary 183 Conclusions 185 References 187 Index 205 .
Record Nr. UNINA-9910131431103321
Xing Liudong  
Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Binary decision diagrams and extensions for system reliability analysis / / Liudong Xing, Suprasad V. Amari ; cover design by Russell Richardson
Binary decision diagrams and extensions for system reliability analysis / / Liudong Xing, Suprasad V. Amari ; cover design by Russell Richardson
Autore Xing Liudong
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2015
Descrizione fisica 1 online resource (393 p.)
Disciplina 620/.00452
Collana Performability Engineering Series
Soggetto topico Reliability (Engineering) - Graphic methods
System analysis - Graphic methods
Decision trees
ISBN 1-119-17800-2
1-119-17802-9
1-119-17801-0
Classificazione TEC008000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Machine generated contents note: Preface xiii Nomenclature xix 1 Introduction 1 1.1 Historical Developments 1 1.2 Reliability and Safety Applications 4 2 Basic Reliability Theory and Models 7 2.1 Probabiltiy Concepts 7 2.2 Reliability Measures 14 2.3 Fault Tree Analysis 17 3 Fundamentals of Binary Decision Diagrams 33 3.1 Preliminaries 34 3.2 Basic Concepts 34 3.3 BDD Construction 35 3.4 BDD Evaluation 42 3.5 BDD-Based Software Package 44 4 Application of BDD to Binary-State Systems 45 4.1 Network Reliability Analysis 45 4.2 Event Tree Analysis 47 4.3 Failure Frequency Analysis 50 4.4 Importance Measures and Analysis 54 4.5 Modularization Methods 60 4.6 Non-Coherent Systems 60 4.7 Disjoint Failures 65 4.8 Dependent Failures 68 5 Phased-Mission Systems 73 5.1 System Description 74 5.2 Rules of Phase Algebra 75 5.3 BDD-Based Method for PMS Analysis 76 5.4 Mission Performance Analysis 81 6 Multi-State Systems 85 6.1 Assumptions 86 6.2 An Illustrative Example 86 6.3 MSS Representation 87 6.4 Multi-State BDD (MBDD) 90 6.5 Logarithmically-Encoded BDD (LBDD) 94 6.6 Multi-State Multi-Valued Decision Diagrams (MMDD) 98 6.7 Performance Evaluation and Benchmarks 102 6.8 Summary 117 7 Fault Tolerant Systems and Coverage Models 119 7.1 Basic Types 120 7.2 Imperfect Coverage Model 122 7.3 Applications to Binary-State Systems 123 7.4 Applications to Multi-State Systems 129 7.5 Applications to Phased-Mission Systems 133 7.6 Summary 139 8 Shared Decision Diagrams 143 8.1 Multi-Rooted Decision Diagrams 144 8.2 Multi-Terminal Decision Diagrams 148 8.3 Performance Study on Multi-State Systems 151 8.4 Application to Phased-Mission Systems 163 8.5 Application to Multi-State k-out-of-n Systems 168 8.6 Importance Measures 176 8.7 Failure Frequency Based Measures 180 8.8 Summary 183 Conclusions 185 References 187 Index 205 .
Record Nr. UNINA-9910811661403321
Xing Liudong  
Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Autore Rokach Lior
Pubbl/distr/stampa Singapore, : World Scientific, c2008
Descrizione fisica 1 online resource (263 p.)
Disciplina 006.312
Altri autori (Persone) MaimonOded Z
Collana Series in machine perception and artificial intelligence
Soggetto topico Data mining
Decision trees
Soggetto genere / forma Electronic books.
ISBN 1-281-91179-8
9786611911799
981-277-172-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match
2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate
3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria
4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning
5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets
6.1.10 Online Adaptive Decision Trees
Record Nr. UNINA-9910450810803321
Rokach Lior  
Singapore, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Data mining with decision trees [[electronic resource] /] : theory and applications / / Lior Rokach, Oded Maimon
Autore Rokach Lior
Pubbl/distr/stampa Singapore, : World Scientific, c2008
Descrizione fisica 1 online resource (263 p.)
Disciplina 006.312
Altri autori (Persone) MaimonOded Z
Collana Series in machine perception and artificial intelligence
Soggetto topico Data mining
Decision trees
ISBN 1-281-91179-8
9786611911799
981-277-172-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match
2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate
3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria
4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning
5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets
6.1.10 Online Adaptive Decision Trees
Record Nr. UNINA-9910784996003321
Rokach Lior  
Singapore, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Data mining with decision trees : theroy and applications / / Lior Rokach, Oded Maimon
Data mining with decision trees : theroy and applications / / Lior Rokach, Oded Maimon
Autore Rokach Lior
Edizione [1st ed.]
Pubbl/distr/stampa Singapore, : World Scientific, c2008
Descrizione fisica 1 online resource (263 p.)
Disciplina 006.312
Altri autori (Persone) MaimonOded
Collana Series in machine perception and artificial intelligence
Soggetto topico Data mining
Decision trees
ISBN 9786611911799
9781281911797
1281911798
9789812771728
9812771727
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction to Decision Trees; 1.1 Data Mining and Knowledge Discovery; 1.2 Taxonomy of Data Mining Methods; 1.3 Supervised Methods; 1.3.1 Overview; 1.4 Classification Trees; 1.5 Characteristics of Classification Trees; 1.5.1 Tree Size; 1.5.2 The hierarchical nature of decision trees; 1.6 Relation to Rule Induction; 2. Growing Decision Trees; 2.0.1 Training Set; 2.0.2 Definition of the Classification Problem; 2.0.3 Induction Algorithms; 2.0.4 Probability Estimation in Decision Trees; 2.0.4.1 Laplace Correction; 2.0.4.2 No Match
2.1 Algorithmic Framework for Decision Trees2.2 Stopping Criteria; 3. Evaluation of Classification Trees; 3.1 Overview; 3.2 Generalization Error; 3.2.1 Theoretical Estimation of Generalization Error; 3.2.2 Empirical Estimation of Generalization Error; 3.2.3 Alternatives to the Accuracy Measure; 3.2.4 The F-Measure; 3.2.5 Confusion Matrix; 3.2.6 Classifier Evaluation under Limited Resources; 3.2.6.1 ROC Curves; 3.2.6.2 Hit Rate Curve; 3.2.6.3 Qrecall (Quota Recall); 3.2.6.4 Lift Curve; 3.2.6.5 Pearson Correlation Coegfficient; 3.2.6.6 Area Under Curve (AUC); 3.2.6.7 Average Hit Rate
3.2.6.8 Average Qrecall3.2.6.9 Potential Extract Measure (PEM); 3.2.7 Which Decision Tree Classifier is Better?; 3.2.7.1 McNemar's Test; 3.2.7.2 A Test for the Difference of Two Proportions; 3.2.7.3 The Resampled Paired t Test; 3.2.7.4 The k-fold Cross-validated Paired t Test; 3.3 Computational Complexity; 3.4 Comprehensibility; 3.5 Scalability to Large Datasets; 3.6 Robustness; 3.7 Stability; 3.8 Interestingness Measures; 3.9 Overfitting and Underfitting; 3.10 "No Free Lunch" Theorem; 4. Splitting Criteria; 4.1 Univariate Splitting Criteria; 4.1.1 Overview; 4.1.2 Impurity based Criteria
4.1.3 Information Gain4.1.4 Gini Index; 4.1.5 Likelihood Ratio Chi-squared Statistics; 4.1.6 DKM Criterion; 4.1.7 Normalized Impurity-based Criteria; 4.1.8 Gain Ratio; 4.1.9 Distance Measure; 4.1.10 Binary Criteria; 4.1.11 Twoing Criterion; 4.1.12 Orthogonal Criterion; 4.1.13 Kolmogorov-Smirnov Criterion; 4.1.14 AUC Splitting Criteria; 4.1.15 Other Univariate Splitting Criteria; 4.1.16 Comparison of Univariate Splitting Criteria; 4.2 Handling Missing Values; 5. Pruning Trees; 5.1 Stopping Criteria; 5.2 Heuristic Pruning; 5.2.1 Overview; 5.2.2 Cost Complexity Pruning
5.2.3 Reduced Error Pruning5.2.4 Minimum Error Pruning (MEP); 5.2.5 Pessimistic Pruning; 5.2.6 Error-Based Pruning (EBP); 5.2.7 Minimum Description Length (MDL) Pruning; 5.2.8 Other Pruning Methods; 5.2.9 Comparison of Pruning Methods; 5.3 Optimal Pruning; 6. Advanced Decision Trees; 6.1 Survey of Common Algorithms for Decision Tree Induction; 6.1.1 ID3; 6.1.2 C4.5; 6.1.3 CART; 6.1.4 CHAID; 6.1.5 QUEST.; 6.1.6 Reference to Other Algorithms; 6.1.7 Advantages and Disadvantages of Decision Trees; 6.1.8 Oblivious Decision Trees; 6.1.9 Decision Trees Inducers for Large Datasets
6.1.10 Online Adaptive Decision Trees
Record Nr. UNINA-9910974375803321
Rokach Lior  
Singapore, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Decision forests for computer vision and medical image analysis / / A. Criminisi, J. Shotton, editors
Decision forests for computer vision and medical image analysis / / A. Criminisi, J. Shotton, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa London ; ; New York, : Springer, c2013
Descrizione fisica 1 online resource (xix, 368 pages) : illustrations (some color)
Disciplina 511.52
Altri autori (Persone) CriminisiAntonio <1972->
ShottonJ
Collana Advances in computer vision and pattern recognition
Soggetto topico Decision trees
Computer vision
Image processing - Digital techniques
Diagnostic imaging - Digital techniques
ISBN 1-299-33614-0
1-4471-4929-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Overview and Scope -- Notation and Terminology -- Part I: The Decision Forest Model -- Introduction -- Classification Forests -- Regression Forests -- Density Forests -- Manifold Forests -- Semi-Supervised Classification Forests -- Part II: Applications in Computer Vision and Medical Image Analysis -- Keypoint Recognition Using Random Forests and Random Ferns -- Extremely Randomized Trees and Random Subwindows for Image Classification, Annotation, and Retrieval -- Class-Specific Hough Forests for Object Detection -- Hough-Based Tracking of Deformable Objects -- Efficient Human Pose Estimation from Single Depth Images -- Anatomy Detection and Localization in 3D Medical Images -- Semantic Texton Forests for Image Categorization and Segmentation -- Semi-Supervised Video Segmentation Using Decision Forests -- Classification Forests for Semantic Segmentation of Brain Lesions in Multi-Channel MRI -- Manifold Forests for Multi-Modality Classification of Alzheimer’s Disease -- Entangled Forests and Differentiable Information Gain Maximization -- Decision Tree Fields -- Part III: Implementation and Conclusion -- Efficient Implementation of Decision Forests -- The Sherwood Software Library -- Conclusions.
Record Nr. UNINA-9910437568003321
London ; ; New York, : Springer, c2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Learning with uncertainty / / Xizhao Wang, Junhai Zhai
Learning with uncertainty / / Xizhao Wang, Junhai Zhai
Autore Wang Xizhao
Edizione [1st ed.]
Pubbl/distr/stampa Boca Raton : , : CRC Press, , [2017]
Descrizione fisica 1 online resource (240 pages) : illustrations, tables
Disciplina 006.3/1
Soggetto topico Machine learning
Fuzzy decision making
Decision trees
ISBN 1-315-37069-7
1-4987-2413-2
1-315-35356-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto 1. Uncertainty -- 2. Decision tree with uncertainty -- 3. Clustering under uncertainty environment -- 4. Active learning with uncertainty -- 5. Ensemble learning with uncertainty.
Record Nr. UNINA-9910153185403321
Wang Xizhao  
Boca Raton : , : CRC Press, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Simplicial complexes of graphs / / Jakob Jonsson
Simplicial complexes of graphs / / Jakob Jonsson
Autore Jonsson Jakob <1972->
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2008]
Descrizione fisica 1 online resource (XIV, 382 p. 34 illus.)
Disciplina 511.5
Collana Lecture Notes in Mathematics
Soggetto topico Decision trees
Graph theory
Morse theory
Algebra, Homological
ISBN 3-540-75859-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto and Basic Concepts -- and Overview -- Abstract Graphs and Set Systems -- Simplicial Topology -- Tools -- Discrete Morse Theory -- Decision Trees -- Miscellaneous Results -- Overview of Graph Complexes -- Graph Properties -- Dihedral Graph Properties -- Digraph Properties -- Main Goals and Proof Techniques -- Vertex Degree -- Matchings -- Graphs of Bounded Degree -- Cycles and Crossings -- Forests and Matroids -- Bipartite Graphs -- Directed Variants of Forests and Bipartite Graphs -- Noncrossing Graphs -- Non-Hamiltonian Graphs -- Connectivity -- Disconnected Graphs -- Not 2-connected Graphs -- Not 3-connected Graphs and Beyond -- Dihedral Variants of k-connected Graphs -- Directed Variants of Connected Graphs -- Not 2-edge-connected Graphs -- Cliques and Stable Sets -- Graphs Avoiding k-matchings -- t-colorable Graphs -- Graphs and Hypergraphs with Bounded Covering Number -- Open Problems -- Open Problems.
Record Nr. UNISA-996466508603316
Jonsson Jakob <1972->  
Berlin, Germany : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Simplicial complexes of graphs / / Jakob Jonsson
Simplicial complexes of graphs / / Jakob Jonsson
Autore Jonsson Jakob <1972->
Edizione [1st ed. 2008.]
Pubbl/distr/stampa Berlin, Germany : , : Springer, , [2008]
Descrizione fisica 1 online resource (XIV, 382 p. 34 illus.)
Disciplina 511.5
Collana Lecture Notes in Mathematics
Soggetto topico Decision trees
Graph theory
Morse theory
Algebra, Homological
ISBN 3-540-75859-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto and Basic Concepts -- and Overview -- Abstract Graphs and Set Systems -- Simplicial Topology -- Tools -- Discrete Morse Theory -- Decision Trees -- Miscellaneous Results -- Overview of Graph Complexes -- Graph Properties -- Dihedral Graph Properties -- Digraph Properties -- Main Goals and Proof Techniques -- Vertex Degree -- Matchings -- Graphs of Bounded Degree -- Cycles and Crossings -- Forests and Matroids -- Bipartite Graphs -- Directed Variants of Forests and Bipartite Graphs -- Noncrossing Graphs -- Non-Hamiltonian Graphs -- Connectivity -- Disconnected Graphs -- Not 2-connected Graphs -- Not 3-connected Graphs and Beyond -- Dihedral Variants of k-connected Graphs -- Directed Variants of Connected Graphs -- Not 2-edge-connected Graphs -- Cliques and Stable Sets -- Graphs Avoiding k-matchings -- t-colorable Graphs -- Graphs and Hypergraphs with Bounded Covering Number -- Open Problems -- Open Problems.
Record Nr. UNINA-9910484516703321
Jonsson Jakob <1972->  
Berlin, Germany : , : Springer, , [2008]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui