The accidental data scientist : big data applications and opportunities for librarians and information professionals / / Amy L. Affelt ; foreword by Thomas H. Davenport
| The accidental data scientist : big data applications and opportunities for librarians and information professionals / / Amy L. Affelt ; foreword by Thomas H. Davenport |
| Autore | Affelt Amy L. <1970-> |
| Pubbl/distr/stampa | Medford, New Jersey : , : Information Today, Inc., , 2015 |
| Descrizione fisica | 1 online resource (240 p.) |
| Disciplina | 020.23 |
| Soggetto topico |
Librarians - Effect of technological innovations on
Library science - Vocational guidance Information science - Vocational guidance Big data Data libraries Database searching Electronic information resource literacy |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-57387-707-7 |
| Classificazione | 32.24 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910459694603321 |
Affelt Amy L. <1970->
|
||
| Medford, New Jersey : , : Information Today, Inc., , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The accidental data scientist : big data applications and opportunities for librarians and information professionals / / Amy L. Affelt ; foreword by Thomas H. Davenport
| The accidental data scientist : big data applications and opportunities for librarians and information professionals / / Amy L. Affelt ; foreword by Thomas H. Davenport |
| Autore | Affelt Amy L. <1970-> |
| Pubbl/distr/stampa | Medford, New Jersey : , : Information Today, Inc., , 2015 |
| Descrizione fisica | 1 online resource (240 p.) |
| Disciplina | 020.23 |
| Soggetto topico |
Librarians - Effect of technological innovations on
Library science - Vocational guidance Information science - Vocational guidance Big data Data libraries Database searching Electronic information resource literacy |
| ISBN | 1-57387-707-7 |
| Classificazione | 32.24 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Big data : everything old is new again -- What the elves do -- The 21st century librarian's skillset : the role of big data -- Dipping a toe in the water : simple tools to get you started -- Big data applications and initiatives by industry -- Big data projects for info pros -- Big data communications framework : insights into big data mastery for information professionals -- Data scientists wanted : career opportunities in a big data world. |
| Record Nr. | UNINA-9910787411403321 |
Affelt Amy L. <1970->
|
||
| Medford, New Jersey : , : Information Today, Inc., , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The accidental data scientist : big data applications and opportunities for librarians and information professionals / / Amy L. Affelt ; foreword by Thomas H. Davenport
| The accidental data scientist : big data applications and opportunities for librarians and information professionals / / Amy L. Affelt ; foreword by Thomas H. Davenport |
| Autore | Affelt Amy L. <1970-> |
| Pubbl/distr/stampa | Medford, New Jersey : , : Information Today, Inc., , 2015 |
| Descrizione fisica | 1 online resource (240 p.) |
| Disciplina | 020.23 |
| Soggetto topico |
Librarians - Effect of technological innovations on
Library science - Vocational guidance Information science - Vocational guidance Big data Data libraries Database searching Electronic information resource literacy |
| ISBN | 1-57387-707-7 |
| Classificazione | 32.24 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Big data : everything old is new again -- What the elves do -- The 21st century librarian's skillset : the role of big data -- Dipping a toe in the water : simple tools to get you started -- Big data applications and initiatives by industry -- Big data projects for info pros -- Big data communications framework : insights into big data mastery for information professionals -- Data scientists wanted : career opportunities in a big data world. |
| Record Nr. | UNINA-9910817037103321 |
Affelt Amy L. <1970->
|
||
| Medford, New Jersey : , : Information Today, Inc., , 2015 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in data mining and modeling, Hong Kong, 27-28 June 2002 [[electronic resource] /] / editors, Wai-Ki Ching, Michael Kwok-Po Ng
| Advances in data mining and modeling, Hong Kong, 27-28 June 2002 [[electronic resource] /] / editors, Wai-Ki Ching, Michael Kwok-Po Ng |
| Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, 2003 |
| Descrizione fisica | 1 online resource (197 p.) |
| Disciplina |
005.741
006.312 |
| Altri autori (Persone) |
ChingWai Ki <1969->
NgMichael K |
| Soggetto topico |
Data mining
Database searching |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-37299-4
9786611372996 981-270-495-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Data Mining; Data Modeling; Preface; Author Index; Algorithms for Mining Frequent Sequences Ben Kao and Ming-Hua Zhang; High Dimensional Feature Selection for Discriminant Microarray Data Analysis Ju-Fu Feng, Jiang-Xin Shi and Qing-Yun Shi; Clustering and Cluster Validation in Data Mining Joshua Zhe-Xue Huang, Hong-Qiang Rong, Jessica Ting, Yun-Ming Ye and Qi-Ming Huang; Cluster Analysis Using Unidimensional Scaling Pui-Lam hung , Chi-Yin Li and Kin-Nam Lau; Automatic Stock Trend Prediction by Real Time News Gabriel Pui-Cheong Fung, Jeffrey Xu Yu and Wai Lam
From Associated Implication Networks to Intermarket Analysis Phil Chi- Wang Tse and Ji-Ming Liu Automating Technical Analysis Philip Leung-Ho Yu, Kin Lam and Sze-Hong Ng; A Divide-and-Conquer Fast Implementation of Radial Basis Function Networks with Application to Time Series Forecasting Rong-Bo Huang, Yiu-Ming Cheung and Lap-Tak Law; Learning Sunspot Series Dynamics by Recurrent Neural Networks Leong-Kwan Li; Independent Component Analysis: The One-Bit-Matching Conjecture and a Simplified LPM-ICA Algorithm Zhi-Yong Liu, Kai-Chun Chiu and Lei Xu An Higher-Order Markov Chain Model for Prediction of Categorical Data Sequences Wai-Ki Ching, Eric Siu-Leung Fung and Michael Kwok-Po Ng An Application of the Mixture Autoregressive Model: A Case Study of Modelling Yearly Sunspot Data Kevin Kin-Foon Wong and Chun-Shan Wong; Bond Risk and Return in the SSE Long-Zhen Fan; Mining Loyal Customers: A Practical Use of the Repeat Buying Theory Hing-Po Lo, Xiao-Ling Lu and Zoe Sau-Chun Ng |
| Record Nr. | UNINA-9910451311303321 |
| Singapore ; ; River Edge, NJ, : World Scientific, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in data mining and modeling, Hong Kong, 27-28 June 2002 [[electronic resource] /] / editors, Wai-Ki Ching, Michael Kwok-Po Ng
| Advances in data mining and modeling, Hong Kong, 27-28 June 2002 [[electronic resource] /] / editors, Wai-Ki Ching, Michael Kwok-Po Ng |
| Pubbl/distr/stampa | Singapore ; ; River Edge, NJ, : World Scientific, 2003 |
| Descrizione fisica | 1 online resource (197 p.) |
| Disciplina |
005.741
006.312 |
| Altri autori (Persone) |
ChingWai Ki <1969->
NgMichael K |
| Soggetto topico |
Data mining
Database searching |
| ISBN |
1-281-37299-4
9786611372996 981-270-495-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
CONTENTS; Data Mining; Data Modeling; Preface; Author Index; Algorithms for Mining Frequent Sequences Ben Kao and Ming-Hua Zhang; High Dimensional Feature Selection for Discriminant Microarray Data Analysis Ju-Fu Feng, Jiang-Xin Shi and Qing-Yun Shi; Clustering and Cluster Validation in Data Mining Joshua Zhe-Xue Huang, Hong-Qiang Rong, Jessica Ting, Yun-Ming Ye and Qi-Ming Huang; Cluster Analysis Using Unidimensional Scaling Pui-Lam hung , Chi-Yin Li and Kin-Nam Lau; Automatic Stock Trend Prediction by Real Time News Gabriel Pui-Cheong Fung, Jeffrey Xu Yu and Wai Lam
From Associated Implication Networks to Intermarket Analysis Phil Chi- Wang Tse and Ji-Ming Liu Automating Technical Analysis Philip Leung-Ho Yu, Kin Lam and Sze-Hong Ng; A Divide-and-Conquer Fast Implementation of Radial Basis Function Networks with Application to Time Series Forecasting Rong-Bo Huang, Yiu-Ming Cheung and Lap-Tak Law; Learning Sunspot Series Dynamics by Recurrent Neural Networks Leong-Kwan Li; Independent Component Analysis: The One-Bit-Matching Conjecture and a Simplified LPM-ICA Algorithm Zhi-Yong Liu, Kai-Chun Chiu and Lei Xu An Higher-Order Markov Chain Model for Prediction of Categorical Data Sequences Wai-Ki Ching, Eric Siu-Leung Fung and Michael Kwok-Po Ng An Application of the Mixture Autoregressive Model: A Case Study of Modelling Yearly Sunspot Data Kevin Kin-Foon Wong and Chun-Shan Wong; Bond Risk and Return in the SSE Long-Zhen Fan; Mining Loyal Customers: A Practical Use of the Repeat Buying Theory Hing-Po Lo, Xiao-Ling Lu and Zoe Sau-Chun Ng |
| Record Nr. | UNINA-9910783917603321 |
| Singapore ; ; River Edge, NJ, : World Scientific, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advances in knowledge discovery and data mining : 11th Pacific-Asia conference, PAKDD 2007, Nanjing, China, May 22-25, 2007 ; proceedings / / Qiang Yang; Zhi-Hua Zhou; Hang Li
| Advances in knowledge discovery and data mining : 11th Pacific-Asia conference, PAKDD 2007, Nanjing, China, May 22-25, 2007 ; proceedings / / Qiang Yang; Zhi-Hua Zhou; Hang Li |
| Edizione | [1st ed. 2007.] |
| Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2007] |
| Descrizione fisica | 1 online resource (1183 p.) |
| Disciplina | 006.3 |
| Collana | Lecture Notes in Artificial Intelligence |
| Soggetto topico |
Database searching
Data mining Database management |
| ISBN |
1-280-94403-X
9786610944033 3-540-71701-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Keynote Speeches -- Regular Papers -- Short Papers. |
| Record Nr. | UNISA-996465629403316 |
| Berlin, Germany ; ; New York, New York : , : Springer, , [2007] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advances in knowledge discovery and data mining : 6th Pacific-Asia conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002 : proceedings / / Ming-Syan Chen; Philip S. Yu; Bing Liu
| Advances in knowledge discovery and data mining : 6th Pacific-Asia conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002 : proceedings / / Ming-Syan Chen; Philip S. Yu; Bing Liu |
| Edizione | [1st ed. 2002.] |
| Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2002] |
| Descrizione fisica | 1 online resource (XIV, 570 p.) |
| Disciplina | 006.3 |
| Collana | Lecture Notes in Artificial Intelligence |
| Soggetto topico |
Database searching
Data mining Database management |
| ISBN | 3-540-47887-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Industrial Papers (Invited) -- Network Data Mining and Analysis: The Project -- Privacy Preserving Data Mining: Challenges and Opportunities -- Survey Papers (Invited) -- A Case for Analytical Customer Relationship Management -- On Data Clustering Analysis: Scalability, Constraints, and Validation -- Association Rules (I) -- Discovering Numeric Association Rules via Evolutionary Algorithm -- Efficient Rule Retrieval and Postponed Restrict Operations for Association Rule Mining -- Association Rule Mining on Remotely Sensed Images Using P-trees -- On the Efficiency of Association-Rule Mining Algorithms -- Classification (I) -- A Function-Based Classifier Learning Scheme Using Genetic Programming -- SNNB: A Selective Neighborhood Based Naïve Bayes for Lazy Learning -- A Method to Boost Naïve Bayesian Classifiers -- Toward Bayesian Classifiers with Accurate Probabilities -- Interestingness -- Pruning Redundant Association Rules Using Maximum Entropy Principle -- A Confidence-Lift Support Specification for Interesting Associations Mining -- Concise Representation of Frequent Patterns Based on Generalized Disjunction-Free Generators -- Mining Interesting Association Rules: A Data Mining Language -- The Lorenz Dominance Order as a Measure of Interestingness in KDD -- Sequence Mining -- Efficient Algorithms for Incremental Update of Frequent Sequences -- DELISP: Efficient Discovery of Generalized Sequential Patterns by Delimited Pattern-Growth Technology -- Self-Similarity for Data Mining and Predictive Modeling A Case Study for Network Data -- A New Mechanism of Mining Network Behavior -- Clustering -- M-FastMap: A Modified FastMap Algorithm for Visual Cluster Validation in Data Mining -- An Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory -- Adding Personality to Information Clustering -- Clustering Large Categorical Data -- Web Mining -- WebFrame: In Pursuit of Computationally and Cognitively Efficient Web Mining -- Naviz:Website Navigational Behavior Visualizer -- Optimal Algorithms for Finding User Access Sessions from Very Large Web Logs -- Automatic Information Extraction for Multiple Singular Web Pages -- Association Rules (II) -- An Improved Approach for the Discovery of Causal Models via MML -- SETM*-MaxK: An Efficient SET-Based Approach to Find the Largest Itemset -- Discovery of Ordinal Association Rules -- Value Added Association Rules -- Top Down FP-Growth for Association Rule Mining -- Semi-structure & Concept Mining -- Discovery of Frequent Tag Tree Patterns in Semistructured Web Documents -- Extracting Characteristic Structures among Words in Semistructured Documents -- An Efficient Algorithm for Incremental Update of Concept Spaces -- Data Warehouse and Data Cube -- Efficient Constraint-Based Exploratory Mining on Large Data Cubes -- Efficient Utilization of Materialized Views in a Data Warehouse -- Bio-Data Mining -- Mining Interesting Rules in Meningitis Data by Cooperatively Using GDT-RS and RSBR -- Evaluation of Techniques for Classifying Biological Sequences -- Efficiently Mining Gene Expression Data via Integrated Clustering and Validation Techniques -- Classification (II) -- Adaptive Generalized Estimation Equation with Bayes Classifier for the Job Assignment Problem -- GEC: An Evolutionary Approach for Evolving Classifiers -- An Efficient Single-Scan Algorithm for Mining Essential Jumping Emerging Patterns for Classification -- A Method to Boost Support Vector Machines -- Temporal Mining -- Distribution Discovery: Local Analysis of Temporal Rules -- News Sensitive Stock Trend Prediction -- User Profiling for Intrusion Detection Using Dynamic and Static Behavioral Models -- Classification (III) -- Incremental Extraction of Keyterms for Classifying Multilingual Documents in the Web -- k-nearest Neighbor Classification on Spatial Data Streams Using P-trees -- Interactive Construction of Classification Rules -- Outliers, Missing Data, and Causation -- Enhancing Effectiveness of Outlier Detections for Low Density Patterns -- Cluster-Based Algorithms for Dealing with Missing Values -- Extracting Causation Knowledge from Natural Language Texts -- Mining Relationship Graphs for Effective Business Objectives. |
| Record Nr. | UNISA-996465985203316 |
| Berlin, Germany ; ; New York, New York : , : Springer, , [2002] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Advances in knowledge discovery and data mining : 6th Pacific-Asia conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002 : proceedings / / Ming-Syan Chen; Philip S. Yu; Bing Liu
| Advances in knowledge discovery and data mining : 6th Pacific-Asia conference, PAKDD 2002, Taipei, Taiwan, May 6-8, 2002 : proceedings / / Ming-Syan Chen; Philip S. Yu; Bing Liu |
| Edizione | [1st ed. 2002.] |
| Pubbl/distr/stampa | Berlin, Germany ; ; New York, New York : , : Springer, , [2002] |
| Descrizione fisica | 1 online resource (XIV, 570 p.) |
| Disciplina | 006.3 |
| Collana | Lecture Notes in Artificial Intelligence |
| Soggetto topico |
Database searching
Data mining Database management |
| ISBN | 3-540-47887-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Industrial Papers (Invited) -- Network Data Mining and Analysis: The Project -- Privacy Preserving Data Mining: Challenges and Opportunities -- Survey Papers (Invited) -- A Case for Analytical Customer Relationship Management -- On Data Clustering Analysis: Scalability, Constraints, and Validation -- Association Rules (I) -- Discovering Numeric Association Rules via Evolutionary Algorithm -- Efficient Rule Retrieval and Postponed Restrict Operations for Association Rule Mining -- Association Rule Mining on Remotely Sensed Images Using P-trees -- On the Efficiency of Association-Rule Mining Algorithms -- Classification (I) -- A Function-Based Classifier Learning Scheme Using Genetic Programming -- SNNB: A Selective Neighborhood Based Naïve Bayes for Lazy Learning -- A Method to Boost Naïve Bayesian Classifiers -- Toward Bayesian Classifiers with Accurate Probabilities -- Interestingness -- Pruning Redundant Association Rules Using Maximum Entropy Principle -- A Confidence-Lift Support Specification for Interesting Associations Mining -- Concise Representation of Frequent Patterns Based on Generalized Disjunction-Free Generators -- Mining Interesting Association Rules: A Data Mining Language -- The Lorenz Dominance Order as a Measure of Interestingness in KDD -- Sequence Mining -- Efficient Algorithms for Incremental Update of Frequent Sequences -- DELISP: Efficient Discovery of Generalized Sequential Patterns by Delimited Pattern-Growth Technology -- Self-Similarity for Data Mining and Predictive Modeling A Case Study for Network Data -- A New Mechanism of Mining Network Behavior -- Clustering -- M-FastMap: A Modified FastMap Algorithm for Visual Cluster Validation in Data Mining -- An Incremental Hierarchical Data Clustering Algorithm Based on Gravity Theory -- Adding Personality to Information Clustering -- Clustering Large Categorical Data -- Web Mining -- WebFrame: In Pursuit of Computationally and Cognitively Efficient Web Mining -- Naviz:Website Navigational Behavior Visualizer -- Optimal Algorithms for Finding User Access Sessions from Very Large Web Logs -- Automatic Information Extraction for Multiple Singular Web Pages -- Association Rules (II) -- An Improved Approach for the Discovery of Causal Models via MML -- SETM*-MaxK: An Efficient SET-Based Approach to Find the Largest Itemset -- Discovery of Ordinal Association Rules -- Value Added Association Rules -- Top Down FP-Growth for Association Rule Mining -- Semi-structure & Concept Mining -- Discovery of Frequent Tag Tree Patterns in Semistructured Web Documents -- Extracting Characteristic Structures among Words in Semistructured Documents -- An Efficient Algorithm for Incremental Update of Concept Spaces -- Data Warehouse and Data Cube -- Efficient Constraint-Based Exploratory Mining on Large Data Cubes -- Efficient Utilization of Materialized Views in a Data Warehouse -- Bio-Data Mining -- Mining Interesting Rules in Meningitis Data by Cooperatively Using GDT-RS and RSBR -- Evaluation of Techniques for Classifying Biological Sequences -- Efficiently Mining Gene Expression Data via Integrated Clustering and Validation Techniques -- Classification (II) -- Adaptive Generalized Estimation Equation with Bayes Classifier for the Job Assignment Problem -- GEC: An Evolutionary Approach for Evolving Classifiers -- An Efficient Single-Scan Algorithm for Mining Essential Jumping Emerging Patterns for Classification -- A Method to Boost Support Vector Machines -- Temporal Mining -- Distribution Discovery: Local Analysis of Temporal Rules -- News Sensitive Stock Trend Prediction -- User Profiling for Intrusion Detection Using Dynamic and Static Behavioral Models -- Classification (III) -- Incremental Extraction of Keyterms for Classifying Multilingual Documents in the Web -- k-nearest Neighbor Classification on Spatial Data Streams Using P-trees -- Interactive Construction of Classification Rules -- Outliers, Missing Data, and Causation -- Enhancing Effectiveness of Outlier Detections for Low Density Patterns -- Cluster-Based Algorithms for Dealing with Missing Values -- Extracting Causation Knowledge from Natural Language Texts -- Mining Relationship Graphs for Effective Business Objectives. |
| Record Nr. | UNINA-9910143906403321 |
| Berlin, Germany ; ; New York, New York : , : Springer, , [2002] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Bio-inspired computing for information retrieval applications / / D. P. Acharjya and Anirban Mitra
| Bio-inspired computing for information retrieval applications / / D. P. Acharjya and Anirban Mitra |
| Autore | Acharjya D. P. |
| Pubbl/distr/stampa | Hershey, Pennsylvania : , : IGI Global, , 2017 |
| Descrizione fisica | 1 online resource (411 pages) |
| Disciplina | 005.74 |
| Collana | Advances in Knowledge Acquisition, Transfer, and Management (AKATM) Book Series |
| Soggetto topico |
Natural computation
Information storage and retrieval systems Querying (Computer science) Database searching |
| Soggetto genere / forma | Electronic books. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910164874403321 |
Acharjya D. P.
|
||
| Hershey, Pennsylvania : , : IGI Global, , 2017 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Clojure data analysis cookbook / / Eric Rochester
| Clojure data analysis cookbook / / Eric Rochester |
| Autore | Rochester Eric |
| Edizione | [1st edition] |
| Pubbl/distr/stampa | Birmingham, UK, : Packt Pub., c2013 |
| Descrizione fisica | 1 online resource (342 p.) |
| Disciplina | 005.133 |
| Soggetto topico |
Database searching
Clojure (Computer program language) |
| ISBN |
1-68015-416-8
1-299-44085-1 1-78216-265-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Importing Data for Analysis; Introduction; Creating a new project; Reading CSV data into Incanter datasets; Reading JSON data into Incanter datasets; Reading data from Excel with Incanter; Reading data from JDBC databases; Reading XML data into Incanter datasets; Scraping data from tables in web pages; Scraping textual data from web pages; Reading RDF data; Reading RDF data with SPARQL; Aggregating data from different formats; Chapter 2: Cleaning and Validating Data
IntroductionCleaning data with regular expressions; Maintaining consistency with synonym maps; Identifying and removing duplicate data; Normalizing numbers; Rescaling values; Normalizing dates and times; Lazily processing very large data sets; Sampling from very large data sets; Fixing spelling errors; Parsing custom data formats; Validating data with Valip; Chapter 3: Managing Complexity with Concurrent Programming; Introduction; Managing program complexity with STM; Managing program complexity with agents; Getting better performance with commute; Combining agents and STM Maintaining consistency with ensureIntroducing safe side effects into the STM; Maintaining data consistency with validators; Tracking processing with watchers; Debugging concurrent programs with watchers; Recovering from errors in agents; Managing input with sized queues; Chapter 4: Improving Performance with Parallel Programming; Introduction; Parallelizing processing with pmap; Parallelizing processing with Incanter; Partitioning Monte Carlo simulations for better pmap performance; Finding the optimal partition size with simulated annealing; Parallelizing with reducers Generating online summary statistics with reducersHarnessing your GPU with OpenCL and Calx; Using type hints; Benchmarking with Criterium; Chapter 5: Distributed Data Processing with Cascalog; Introduction; Distributed processing with Cascalog and Hadoop; Querying data with Cascalog; Distributing data with Apache HDFS; Parsing CSV files with Cascalog; Complex queries with Cascalog; Aggregating data with Cascalog; Defining new Cascalog operators; Composing Cascalog queries; Handling errors in Cascalog workflows; Transforming data with Cascalog Executing Cascalog queries in the Cloud with PalletChapter 6: Working with Incanter Datasets; Introduction; Loading Incanter's sample datasets; Loading Clojure data structures into datasets; Viewing datasets interactively with view; Converting datasets to matrices; Using infix formulas in Incanter; Selecting columns with ; Selecting rows with ; Filtering datasets with where; Grouping data with group-by; Saving datasets to CSV and JSON; Projecting from multiple datasets with join; Chapter 7: Preparing for and Performing Statistical Data Analysis with Incanter; Introduction Generating summary statistics with rollup |
| Record Nr. | UNINA-9911006788503321 |
Rochester Eric
|
||
| Birmingham, UK, : Packt Pub., c2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||