American Security Drone Act of 2020 : report of the Committee on Homeland Security and Governmental Affairs, United States Senate, to accompany S. 2502, to ban the federal procurement of certain drones and other unmanned aircraft systems, and for other purposes
| American Security Drone Act of 2020 : report of the Committee on Homeland Security and Governmental Affairs, United States Senate, to accompany S. 2502, to ban the federal procurement of certain drones and other unmanned aircraft systems, and for other purposes |
| Pubbl/distr/stampa | Washington : , : U.S. Government Publishing Office, , 2020 |
| Descrizione fisica | 1 online resource (ii, 8 pages) |
| Collana | Report / 116th Congress, 2d session, Senate |
| Soggetto topico |
Drone aircraft - Law and legislation - United States
Data protection - Law and legislation - United States National security - Law and legislation - United States Data protection - Law and legislation Drone aircraft - Law and legislation National security - Law and legislation |
| Soggetto genere / forma | Legislative materials. |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Altri titoli varianti | American Security Drone Act of 2020 |
| Record Nr. | UNINA-9910713802603321 |
| Washington : , : U.S. Government Publishing Office, , 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Android Malware Detection and Adversarial Methods / / by Weina Niu, Xiaosong Zhang, Ran Yan, Jiacheng Gong
| Android Malware Detection and Adversarial Methods / / by Weina Niu, Xiaosong Zhang, Ran Yan, Jiacheng Gong |
| Autore | Niu Weina |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (xiv, 190 pages) : illustrations |
| Disciplina | 005.8 |
| Altri autori (Persone) |
ZhangXiaosong <1968->
YanRan GongJiacheng |
| Soggetto topico |
Computer networks - Security measures
Data protection Data protection - Law and legislation Machine learning Blockchains (Databases) Mobile and Network Security Data and Information Security Security Services Privacy Machine Learning Blockchain Cadena de blocs (Bases de dades) Protecció de dades Aprenentatge automàtic |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 981-9714-59-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I The Overview of Android Malware Detection -- 1 Introduction of Android Malware Detection -- 1.1 Android Malware Family -- 1.1.1 Trojan Horse -- 1.1.2 Viruses -- 1.1.3 The Back Door -- 1.1.4 Zombies -- 1.1.5 Espionage -- 1.1.6 Intimidation -- 1.1.7 Extortion -- 1.1.8 Advertising -- 1.1.9 Tracking -- 1.2 History of Android Malware Detection -- 1.3 Android Malware Detection Overview -- 1.4 Challenges and Apps of Android Malware Detection -- 1.5 Domestic and International Android Malware Detection -- 1.5.1 Android Malware Detection Method Based on Static Analysis -- 1.5.2 Android Malware Detection Method Based on Dynamic Analysis -- 1.5.3 Android Malware Detection Method Based on Hybrid Analysis -- 1.6 Chapter Summary -- References -- Part II The General Android Malware Detection Method -- 2 Feature Code Based Android Malware Detection Method -- 2.1 Detection Based on Traditional Feature Codes -- 2.1.1 Introduction -- 2.1.2 DroidAnalyzer: A Case Study in Android Malware Analysis -- 2.1.2.1 Suspicious Android APIs and Keywords 3 -- 2.1.2.2 Main Algorithm of DroidAnalyzer -- 2.2 Detection Based on Semantic Feature Codes -- 2.2.1 Introduction -- 2.2.2 DroidNative: A Case Study in Android Malware Analysis -- 2.2.2.1 Static Analysis in DroidNative -- 2.2.2.2 System Design and Implementation -- 2.3 Chapter Summary -- References -- 3 Behavior-Based Detection Method for Android Malware -- 3.1 Privacy Disclosure -- 3.2 Permission Escalation -- 3.2.1 Permission Escalation Method -- 3.2.2 Authorization Based on Configuration Files -- 3.2.3 Code Analysis -- 3.2.4 Taint Analysis -- 3.3 Machine Learning Technology and Malicious Behavior of Android Software -- 3.4 Chapter Summary -- References -- 4 AI-Based Android Malware Detection Methods.
4.1 Detection Based on Permissions, APIs, and Components -- 4.1.1 Permissions in Android System -- 4.1.1.1 Permissions in Android System -- 4.1.1.2 Overview of Permission-Based Detection Methods -- 4.1.2 Detection Based on API -- 4.1.3 Component-Based Detection -- 4.1.3.1 Components of an Application -- 4.1.3.2 Overview of Component-Based Detection Methods -- 4.1.4 Specific Case: Drebin -- 4.1.4.1 Static Analysis of Applications -- 4.1.4.2 Embedding in Vector Space -- 4.1.4.3 Learning-Based Detection -- 4.1.4.4 Explanation -- 4.2 Detection Anchored in Dynamic Runtime Features -- 4.2.1 Dynamic Analysis and Runtime Features -- 4.2.2 Overview of Detection Methods Based on Dynamic Runtime Features -- 4.2.3 Specific Case: EnDroid -- 4.2.3.1 Training Phase -- 4.2.3.2 Detection Phase -- 4.3 Detection Through Semantic Code Analysis -- 4.3.1 Dalvik Bytecode -- 4.3.2 Overview of Code Semantic-Based Detection Methods -- 4.3.3 Specific Case: MviiDroid -- 4.3.3.1 Static Analysis Phase -- 4.3.3.2 Feature Generation Phase -- 4.3.3.3 Model Training Phase -- 4.4 Detection via Image Analysis -- 4.4.1 Overview of Image-Based Detection Methods -- 4.4.2 Specific Case: R2-D2 -- 4.5 Detection Through Graph Analysis -- 4.5.1 Overview of Homogeneous Graph-Based Detection Methods -- 4.5.2 Overview of Heterogeneous Graph-Based Detection Methods -- 4.5.3 Case Study: HAWK -- 4.5.3.1 Feature Engineering -- 4.5.3.2 Constructing Heterogeneous Information Network (HIN) -- 4.5.3.3 Constructing Application Graph from HIN -- 4.6 Chapter Summary -- References -- Part III The Adversarial Method for Android Malware Detection -- 5 Static Adversarial Method -- 5.1 Static Obfuscation -- 5.1.1 Code Obfuscation -- 5.1.2 Resource Obfuscation -- 5.1.3 Manifest File Obfuscation -- 5.1.4 Control Flow Obfuscation -- 5.2 Common APK Static Obfuscation Tools -- 5.2.1 Obfuscapk -- 5.2.2 ProGuard. 5.2.3 DexGuard -- 5.2.4 Allatori -- 5.2.5 DashO -- 5.2.6 Bangcle -- 5.2.7 Arxan -- 5.2.8 Comparative Analysis -- 5.3 Research on Static Obfuscation -- 5.3.1 Detection Methods Based on New Features -- 5.3.1.1 Static Detection Based on Perceptual Hashing -- 5.3.1.2 Static Detection Based on Semantic Feature Set -- 5.3.1.3 Static Detection Based on Static Data Streams -- 5.3.1.4 Static Detection Based on Grayscale Images -- 5.3.1.5 Static Detection Based on Permission Pairs -- 5.3.1.6 Static Detection Based on Static Sensitive Subgraphs -- 5.3.1.7 Static Detection Based on Malicious URLs -- 5.3.2 Detection Method Based on Binding Method -- 5.3.2.1 Static Detection Combined with Dynamic -- 5.3.2.2 Static Detection Combined with Machine Learning -- 5.3.2.3 Static Detection Combined with Deep Learning -- 5.4 Chapter Summary -- References -- 6 Dynamic Adversarial Method in Android Malware -- 6.1 Automatic Dynamic Analysis Evasion -- 6.1.1 Detection Dependent -- 6.1.1.1 Fingerprint -- 6.1.1.2 Reverse Turing Test -- 6.1.1.3 Target -- 6.1.2 Detection Independent -- 6.1.2.1 Stalling -- 6.1.2.2 Trigger-Based -- 6.1.2.3 Fileless Attack -- 6.2 Manual Dynamic Analysis Evasion -- 6.2.1 Direct Detection -- 6.2.1.1 Read PEB -- 6.2.1.2 Breakpoint Query -- 6.2.1.3 System Artifacts -- 6.2.1.4 Parent Process Detection -- 6.2.2 Deductive Detection -- 6.2.2.1 Trap -- 6.2.2.2 Time-Based Detection -- 6.2.3 Debugger Evasion -- 6.2.3.1 Control Flow Manipulation -- 6.2.3.2 Lockout Evasion -- 6.2.3.3 Debugger Identification -- 6.2.3.4 Fileless Malware -- 6.3 Related Research About Dynamic Analysis Evasion -- 6.3.1 Research About Improving Sandbox -- 6.3.1.1 The Droid is in the Details: Environment-Aware Evasion of Android Sandboxes -- 6.3.1.2 Morpheus: Automatically Generating Heuristics to Detect Android Emulators -- 6.3.2 Research About Detecting Dynamic Evasion. 6.3.2.1 CamoDroid: An Android App Analysis Environment Resilient Against Sandbox Evasion -- 6.3.2.2 Lumus: Dynamically Uncovering Evasive Android apps -- 6.4 Chapter Summary -- References -- 7 AI-Based Adversarial Method in Android -- 7.1 Introduction to Adversarial Examples -- 7.2 Classification of Adversarial Example Generation Methods -- 7.2.1 Gradient-Based Attacks -- 7.2.2 Optimization-Based Attacks -- 7.2.3 GAN-Based Attacks -- 7.2.4 Domain-Specific Attacks (Audio, Images, Text, etc.) -- 7.3 Black-Box Attacks -- 7.3.1 Introduction to Black-Box Attacks -- 7.3.2 Common Black-Box Attack Methods -- 7.3.3 Transfer Learning-Based Black-Box Attacks -- 7.3.4 Meta-Model Based Black-Box Attacks -- 7.3.5 Query-Based Attacks -- 7.3.6 Optimization-Based Attacks -- 7.4 White-Box Attacks -- 7.4.1 Optimization-Based Attacks -- 7.4.1.1 C& -- W Attack -- 7.4.1.2 PGD Attack -- 7.4.2 Gradient-Based Attacks -- 7.4.2.1 FGSM Attack -- 7.4.2.2 BIM Attack -- 7.4.3 App of Adversarial Attacks in Malware Detection -- 7.5 Chapter Summary -- References -- Part IV The Future Trends of Android Malware Detection -- 8 Future Trends in Android Malware Detection -- 8.1 Machine Learning And Deep Learning Techniques -- 8.1.1 Overview of Machine Learning and Deep Learning for Android Malware Detection -- 8.1.2 Challenges Faced -- 8.2 Integrated Solutions -- 8.2.1 Challenges Faced -- 8.3 Blockchain Technology -- 8.3.1 Introduction to Blockchain Technology -- 8.3.2 Examples of Blockchain Technology in the Field of Android Malware Detection -- 8.4 Hardware Technology -- 8.4.1 Advantages of Hardware Technology -- 8.4.2 Challenges to Hardware Technology -- 8.4.3 Examples of Hardware Technologies Applied in the Field of Android Malware Detection -- 8.5 BPF Technology -- 8.5.1 Development of BPF Technology -- 8.5.2 eBPF Technology Overview. 8.5.3 Examples of BPF Techniques in the Field of Android Malware Detection -- 8.6 Chapter Summary -- References. |
| Record Nr. | UNINA-9910864193603321 |
Niu Weina
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Annual report
| Annual report |
| Pubbl/distr/stampa | Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009 |
| Descrizione fisica | 1 online resource |
| Soggetto topico |
Data protection - Law and legislation - European Union countries
Privacy, Right of - European Union countries droit de la protection des données protection de la vie privée protection des données data protection legislation protection of privacy data protection Data protection - Law and legislation Privacy, Right of |
| Soggetto genere / forma |
Periodicals.
Internet resources. |
| ISSN | 1830-9585 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910142269203321 |
| Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Annual report
| Annual report |
| Pubbl/distr/stampa | Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009 |
| Descrizione fisica | 1 online resource |
| Soggetto topico |
Data protection - Law and legislation - European Union countries
Privacy, Right of - European Union countries droit de la protection des données protection de la vie privée protection des données data protection legislation protection of privacy data protection Data protection - Law and legislation Privacy, Right of |
| Soggetto genere / forma |
Periodicals.
Internet resources. |
| ISSN | 1830-9585 |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISA-996198621003316 |
| Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
| Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig |
| Autore | Selig Ralf |
| Pubbl/distr/stampa | Berlin : , : Logos, , 2011 |
| Descrizione fisica | 1 online resource (183 pages) |
| Disciplina | 342.0858 |
| Soggetto topico |
Data protection - Law and legislation
Employees |
| Soggetto genere / forma | Electronic books. |
| ISBN | 3-8325-9699-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNINA-9910467236803321 |
Selig Ralf
|
||
| Berlin : , : Logos, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
| Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig |
| Autore | Selig Ralf |
| Pubbl/distr/stampa | Berlin : , : Logos, , 2011 |
| Descrizione fisica | 1 online resource (183 pages) |
| Disciplina | 342.0858 |
| Soggetto topico |
Data protection - Law and legislation
Employees |
| ISBN | 3-8325-9699-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNINA-9910795581803321 |
Selig Ralf
|
||
| Berlin : , : Logos, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
| Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig |
| Autore | Selig Ralf |
| Pubbl/distr/stampa | Berlin : , : Logos, , 2011 |
| Descrizione fisica | 1 online resource (183 pages) |
| Disciplina | 342.0858 |
| Soggetto topico |
Data protection - Law and legislation
Employees |
| ISBN | 3-8325-9699-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | ger |
| Record Nr. | UNINA-9910814071403321 |
Selig Ralf
|
||
| Berlin : , : Logos, , 2011 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson
| Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson |
| Pubbl/distr/stampa | Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021 |
| Descrizione fisica | 1 online resource (ix, 270 pages) |
| Disciplina | 340.028563 |
| Soggetto topico |
Artificial intelligence - Law and legislation
Artificial intelligence - Law and legislation - Criminal privisions Computer crimes - Law and legislation Criminal liability Privacy, Right of Data protection - Law and legislation Artificial intelligence - Law and legislation - China Data protection - Laws and legislation - China |
| ISBN |
1-000-21052-9
0-429-34401-5 1-000-21064-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Emerging technologies and the criminal law / Dennis J. Baker and Paul H. Robinson -- Financial technology : opportunities and challenges to law and regulation / the Right Hon. Lord Hodge P.C. -- Between prevention and enforcement : the role of 'disruption' in confronting cybercrime / Jonathan Clough -- Preventive cybercrime and cybercrime by omission in China / He Ronggong and Jinglijia -- Criminal law protection of virtual property / Zhang Mingkai and Wang Wenjing -- Criminalising cybercrime facilitation by omission and its remote harm form in China / Liang Genlin and Dennis J. Baker -- Rethinking personal data protection in the criminal law of China / Lao Dongyan -- Using conspiracy and complicity for criminalising cyber-fraud in China : lessons from the common law / Li lifeng, Tianhong Zhao and Dennis J. Baker -- Sadie Creese -- AI v IP : criminal liability for intellectual property offences of artificial intelligence entities / Gabriel Hallevy -- Do not panic : artificial intelligence and criminal law 101 / Mark Dsouza. |
| Record Nr. | UNINA-9910794316103321 |
| Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson
| Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson |
| Pubbl/distr/stampa | Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021 |
| Descrizione fisica | 1 online resource (ix, 270 pages) |
| Disciplina | 340.028563 |
| Soggetto topico |
Artificial intelligence - Law and legislation
Artificial intelligence - Law and legislation - Criminal privisions Computer crimes - Law and legislation Criminal liability Privacy, Right of Data protection - Law and legislation Artificial intelligence - Law and legislation - China Data protection - Laws and legislation - China |
| ISBN |
1-000-21052-9
0-429-34401-5 1-000-21064-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Emerging technologies and the criminal law / Dennis J. Baker and Paul H. Robinson -- Financial technology : opportunities and challenges to law and regulation / the Right Hon. Lord Hodge P.C. -- Between prevention and enforcement : the role of 'disruption' in confronting cybercrime / Jonathan Clough -- Preventive cybercrime and cybercrime by omission in China / He Ronggong and Jinglijia -- Criminal law protection of virtual property / Zhang Mingkai and Wang Wenjing -- Criminalising cybercrime facilitation by omission and its remote harm form in China / Liang Genlin and Dennis J. Baker -- Rethinking personal data protection in the criminal law of China / Lao Dongyan -- Using conspiracy and complicity for criminalising cyber-fraud in China : lessons from the common law / Li lifeng, Tianhong Zhao and Dennis J. Baker -- Sadie Creese -- AI v IP : criminal liability for intellectual property offences of artificial intelligence entities / Gabriel Hallevy -- Do not panic : artificial intelligence and criminal law 101 / Mark Dsouza. |
| Record Nr. | UNINA-9910822401603321 |
| Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Artificial Intelligence for Security : Enhancing Protection in a Changing World / / edited by Tuomo Sipola, Janne Alatalo, Monika Wolfmayr, Tero Kokkonen
| Artificial Intelligence for Security : Enhancing Protection in a Changing World / / edited by Tuomo Sipola, Janne Alatalo, Monika Wolfmayr, Tero Kokkonen |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (373 pages) |
| Disciplina | 006.3 |
| Soggetto topico |
Data protection - Law and legislation
Artificial intelligence Computer networks - Security measures Privacy Artificial Intelligence Mobile and Network Security Intel·ligència artificial Seguretat de les xarxes d'ordinadors Protecció de dades |
| Soggetto genere / forma | Llibres electrònics |
| ISBN | 9783031574528 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I Methodological Fundamentals of Artificial Intelligence -- Chapter.1.Safeguarding the Future of Artificial Intelligence: An AI Blueprint -- Chapter.2.Cybersecurity and the AI Silver Bullet.-Chapter.3.Artificial Intelligence and Differential Privacy – Review of Protection Estimate Models -- Chapter.4.To Know What You Do Not Know: Challenges for Explainable AI for Security and Threat Intelligence -- Chapter.5.Securing the Future: The Role of Knowledge Discovery Frameworks -- Chapter.6.Who Guards the Guardians? On Robustness of Deep Neural Networks.-Part II Artificial Intelligence for Critical Infrastructure Protection -- Chapter.7.Opportunities and Challenges of Using Artificial Intelligence in Securing Cyber-Physical System -- Chapter.8.Artificial Intelligence Working to Secure Small Enterprises -- Chapter.9.On the Cyber Security of Logistics in the Age of Artificial Intelligence.-Chapter.10.Fuzzy Machine Learning for Smart Grid Instability Detection -- Chapter.11.On Protection of the Next-Generation Mobile Networks against Adversarial Examples -- Chapter.12.Designing and Implementing an Interactive Cloud Platform for Teaching Machine Learning with Medical Data -- Part III Artificial Intelligence for Anomaly Detection -- Chapter.13.Machine Learning and Anomaly Detection for an Automated Monitoring of Log Data -- Chapter.14.Detecting Web Application DAST Attacks in Large-scale Event.-Chapter15.Enhancing IoT Intrusion Detection Using Hybrid DAIDS-RNN Mode. |
| Record Nr. | UNINA-9910869176503321 |
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||