top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
American Security Drone Act of 2020 : report of the Committee on Homeland Security and Governmental Affairs, United States Senate, to accompany S. 2502, to ban the federal procurement of certain drones and other unmanned aircraft systems, and for other purposes
American Security Drone Act of 2020 : report of the Committee on Homeland Security and Governmental Affairs, United States Senate, to accompany S. 2502, to ban the federal procurement of certain drones and other unmanned aircraft systems, and for other purposes
Pubbl/distr/stampa Washington : , : U.S. Government Publishing Office, , 2020
Descrizione fisica 1 online resource (ii, 8 pages)
Collana Report / 116th Congress, 2d session, Senate
Soggetto topico Drone aircraft - Law and legislation - United States
Data protection - Law and legislation - United States
National security - Law and legislation - United States
Data protection - Law and legislation
Drone aircraft - Law and legislation
National security - Law and legislation
Soggetto genere / forma Legislative materials.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti American Security Drone Act of 2020
Record Nr. UNINA-9910713802603321
Washington : , : U.S. Government Publishing Office, , 2020
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Android Malware Detection and Adversarial Methods / / by Weina Niu, Xiaosong Zhang, Ran Yan, Jiacheng Gong
Android Malware Detection and Adversarial Methods / / by Weina Niu, Xiaosong Zhang, Ran Yan, Jiacheng Gong
Autore Niu Weina
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (xiv, 190 pages) : illustrations
Disciplina 005.8
Altri autori (Persone) ZhangXiaosong <1968->
YanRan
GongJiacheng
Soggetto topico Computer networks - Security measures
Data protection
Data protection - Law and legislation
Machine learning
Blockchains (Databases)
Mobile and Network Security
Data and Information Security
Security Services
Privacy
Machine Learning
Blockchain
Cadena de blocs (Bases de dades)
Protecció de dades
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
ISBN 981-9714-59-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- Part I The Overview of Android Malware Detection -- 1 Introduction of Android Malware Detection -- 1.1 Android Malware Family -- 1.1.1 Trojan Horse -- 1.1.2 Viruses -- 1.1.3 The Back Door -- 1.1.4 Zombies -- 1.1.5 Espionage -- 1.1.6 Intimidation -- 1.1.7 Extortion -- 1.1.8 Advertising -- 1.1.9 Tracking -- 1.2 History of Android Malware Detection -- 1.3 Android Malware Detection Overview -- 1.4 Challenges and Apps of Android Malware Detection -- 1.5 Domestic and International Android Malware Detection -- 1.5.1 Android Malware Detection Method Based on Static Analysis -- 1.5.2 Android Malware Detection Method Based on Dynamic Analysis -- 1.5.3 Android Malware Detection Method Based on Hybrid Analysis -- 1.6 Chapter Summary -- References -- Part II The General Android Malware Detection Method -- 2 Feature Code Based Android Malware Detection Method -- 2.1 Detection Based on Traditional Feature Codes -- 2.1.1 Introduction -- 2.1.2 DroidAnalyzer: A Case Study in Android Malware Analysis -- 2.1.2.1 Suspicious Android APIs and Keywords 3 -- 2.1.2.2 Main Algorithm of DroidAnalyzer -- 2.2 Detection Based on Semantic Feature Codes -- 2.2.1 Introduction -- 2.2.2 DroidNative: A Case Study in Android Malware Analysis -- 2.2.2.1 Static Analysis in DroidNative -- 2.2.2.2 System Design and Implementation -- 2.3 Chapter Summary -- References -- 3 Behavior-Based Detection Method for Android Malware -- 3.1 Privacy Disclosure -- 3.2 Permission Escalation -- 3.2.1 Permission Escalation Method -- 3.2.2 Authorization Based on Configuration Files -- 3.2.3 Code Analysis -- 3.2.4 Taint Analysis -- 3.3 Machine Learning Technology and Malicious Behavior of Android Software -- 3.4 Chapter Summary -- References -- 4 AI-Based Android Malware Detection Methods.
4.1 Detection Based on Permissions, APIs, and Components -- 4.1.1 Permissions in Android System -- 4.1.1.1 Permissions in Android System -- 4.1.1.2 Overview of Permission-Based Detection Methods -- 4.1.2 Detection Based on API -- 4.1.3 Component-Based Detection -- 4.1.3.1 Components of an Application -- 4.1.3.2 Overview of Component-Based Detection Methods -- 4.1.4 Specific Case: Drebin -- 4.1.4.1 Static Analysis of Applications -- 4.1.4.2 Embedding in Vector Space -- 4.1.4.3 Learning-Based Detection -- 4.1.4.4 Explanation -- 4.2 Detection Anchored in Dynamic Runtime Features -- 4.2.1 Dynamic Analysis and Runtime Features -- 4.2.2 Overview of Detection Methods Based on Dynamic Runtime Features -- 4.2.3 Specific Case: EnDroid -- 4.2.3.1 Training Phase -- 4.2.3.2 Detection Phase -- 4.3 Detection Through Semantic Code Analysis -- 4.3.1 Dalvik Bytecode -- 4.3.2 Overview of Code Semantic-Based Detection Methods -- 4.3.3 Specific Case: MviiDroid -- 4.3.3.1 Static Analysis Phase -- 4.3.3.2 Feature Generation Phase -- 4.3.3.3 Model Training Phase -- 4.4 Detection via Image Analysis -- 4.4.1 Overview of Image-Based Detection Methods -- 4.4.2 Specific Case: R2-D2 -- 4.5 Detection Through Graph Analysis -- 4.5.1 Overview of Homogeneous Graph-Based Detection Methods -- 4.5.2 Overview of Heterogeneous Graph-Based Detection Methods -- 4.5.3 Case Study: HAWK -- 4.5.3.1 Feature Engineering -- 4.5.3.2 Constructing Heterogeneous Information Network (HIN) -- 4.5.3.3 Constructing Application Graph from HIN -- 4.6 Chapter Summary -- References -- Part III The Adversarial Method for Android Malware Detection -- 5 Static Adversarial Method -- 5.1 Static Obfuscation -- 5.1.1 Code Obfuscation -- 5.1.2 Resource Obfuscation -- 5.1.3 Manifest File Obfuscation -- 5.1.4 Control Flow Obfuscation -- 5.2 Common APK Static Obfuscation Tools -- 5.2.1 Obfuscapk -- 5.2.2 ProGuard.
5.2.3 DexGuard -- 5.2.4 Allatori -- 5.2.5 DashO -- 5.2.6 Bangcle -- 5.2.7 Arxan -- 5.2.8 Comparative Analysis -- 5.3 Research on Static Obfuscation -- 5.3.1 Detection Methods Based on New Features -- 5.3.1.1 Static Detection Based on Perceptual Hashing -- 5.3.1.2 Static Detection Based on Semantic Feature Set -- 5.3.1.3 Static Detection Based on Static Data Streams -- 5.3.1.4 Static Detection Based on Grayscale Images -- 5.3.1.5 Static Detection Based on Permission Pairs -- 5.3.1.6 Static Detection Based on Static Sensitive Subgraphs -- 5.3.1.7 Static Detection Based on Malicious URLs -- 5.3.2 Detection Method Based on Binding Method -- 5.3.2.1 Static Detection Combined with Dynamic -- 5.3.2.2 Static Detection Combined with Machine Learning -- 5.3.2.3 Static Detection Combined with Deep Learning -- 5.4 Chapter Summary -- References -- 6 Dynamic Adversarial Method in Android Malware -- 6.1 Automatic Dynamic Analysis Evasion -- 6.1.1 Detection Dependent -- 6.1.1.1 Fingerprint -- 6.1.1.2 Reverse Turing Test -- 6.1.1.3 Target -- 6.1.2 Detection Independent -- 6.1.2.1 Stalling -- 6.1.2.2 Trigger-Based -- 6.1.2.3 Fileless Attack -- 6.2 Manual Dynamic Analysis Evasion -- 6.2.1 Direct Detection -- 6.2.1.1 Read PEB -- 6.2.1.2 Breakpoint Query -- 6.2.1.3 System Artifacts -- 6.2.1.4 Parent Process Detection -- 6.2.2 Deductive Detection -- 6.2.2.1 Trap -- 6.2.2.2 Time-Based Detection -- 6.2.3 Debugger Evasion -- 6.2.3.1 Control Flow Manipulation -- 6.2.3.2 Lockout Evasion -- 6.2.3.3 Debugger Identification -- 6.2.3.4 Fileless Malware -- 6.3 Related Research About Dynamic Analysis Evasion -- 6.3.1 Research About Improving Sandbox -- 6.3.1.1 The Droid is in the Details: Environment-Aware Evasion of Android Sandboxes -- 6.3.1.2 Morpheus: Automatically Generating Heuristics to Detect Android Emulators -- 6.3.2 Research About Detecting Dynamic Evasion.
6.3.2.1 CamoDroid: An Android App Analysis Environment Resilient Against Sandbox Evasion -- 6.3.2.2 Lumus: Dynamically Uncovering Evasive Android apps -- 6.4 Chapter Summary -- References -- 7 AI-Based Adversarial Method in Android -- 7.1 Introduction to Adversarial Examples -- 7.2 Classification of Adversarial Example Generation Methods -- 7.2.1 Gradient-Based Attacks -- 7.2.2 Optimization-Based Attacks -- 7.2.3 GAN-Based Attacks -- 7.2.4 Domain-Specific Attacks (Audio, Images, Text, etc.) -- 7.3 Black-Box Attacks -- 7.3.1 Introduction to Black-Box Attacks -- 7.3.2 Common Black-Box Attack Methods -- 7.3.3 Transfer Learning-Based Black-Box Attacks -- 7.3.4 Meta-Model Based Black-Box Attacks -- 7.3.5 Query-Based Attacks -- 7.3.6 Optimization-Based Attacks -- 7.4 White-Box Attacks -- 7.4.1 Optimization-Based Attacks -- 7.4.1.1 C& -- W Attack -- 7.4.1.2 PGD Attack -- 7.4.2 Gradient-Based Attacks -- 7.4.2.1 FGSM Attack -- 7.4.2.2 BIM Attack -- 7.4.3 App of Adversarial Attacks in Malware Detection -- 7.5 Chapter Summary -- References -- Part IV The Future Trends of Android Malware Detection -- 8 Future Trends in Android Malware Detection -- 8.1 Machine Learning And Deep Learning Techniques -- 8.1.1 Overview of Machine Learning and Deep Learning for Android Malware Detection -- 8.1.2 Challenges Faced -- 8.2 Integrated Solutions -- 8.2.1 Challenges Faced -- 8.3 Blockchain Technology -- 8.3.1 Introduction to Blockchain Technology -- 8.3.2 Examples of Blockchain Technology in the Field of Android Malware Detection -- 8.4 Hardware Technology -- 8.4.1 Advantages of Hardware Technology -- 8.4.2 Challenges to Hardware Technology -- 8.4.3 Examples of Hardware Technologies Applied in the Field of Android Malware Detection -- 8.5 BPF Technology -- 8.5.1 Development of BPF Technology -- 8.5.2 eBPF Technology Overview.
8.5.3 Examples of BPF Techniques in the Field of Android Malware Detection -- 8.6 Chapter Summary -- References.
Record Nr. UNINA-9910864193603321
Niu Weina  
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Annual report
Annual report
Pubbl/distr/stampa Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009
Descrizione fisica 1 online resource
Soggetto topico Data protection - Law and legislation - European Union countries
Privacy, Right of - European Union countries
droit de la protection des données
protection de la vie privée
protection des données
data protection legislation
protection of privacy
data protection
Data protection - Law and legislation
Privacy, Right of
Soggetto genere / forma Periodicals.
Internet resources.
ISSN 1830-9585
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910142269203321
Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Annual report
Annual report
Pubbl/distr/stampa Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009
Descrizione fisica 1 online resource
Soggetto topico Data protection - Law and legislation - European Union countries
Privacy, Right of - European Union countries
droit de la protection des données
protection de la vie privée
protection des données
data protection legislation
protection of privacy
data protection
Data protection - Law and legislation
Privacy, Right of
Soggetto genere / forma Periodicals.
Internet resources.
ISSN 1830-9585
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996198621003316
Luxembourg : , : Office for Official Publications of the European Communities, , 2005-2009
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
Autore Selig Ralf
Pubbl/distr/stampa Berlin : , : Logos, , 2011
Descrizione fisica 1 online resource (183 pages)
Disciplina 342.0858
Soggetto topico Data protection - Law and legislation
Employees
Soggetto genere / forma Electronic books.
ISBN 3-8325-9699-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910467236803321
Selig Ralf  
Berlin : , : Logos, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
Autore Selig Ralf
Pubbl/distr/stampa Berlin : , : Logos, , 2011
Descrizione fisica 1 online resource (183 pages)
Disciplina 342.0858
Soggetto topico Data protection - Law and legislation
Employees
ISBN 3-8325-9699-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910795581803321
Selig Ralf  
Berlin : , : Logos, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
Arbeitnehmerdatenschutz : das Datenschutzrecht im Spannungsverhaltnis von Mitarbeiterkontrolle und Arbeitnehmerinteressen / / Ralf Selig
Autore Selig Ralf
Pubbl/distr/stampa Berlin : , : Logos, , 2011
Descrizione fisica 1 online resource (183 pages)
Disciplina 342.0858
Soggetto topico Data protection - Law and legislation
Employees
ISBN 3-8325-9699-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione ger
Record Nr. UNINA-9910814071403321
Selig Ralf  
Berlin : , : Logos, , 2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson
Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson
Pubbl/distr/stampa Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021
Descrizione fisica 1 online resource (ix, 270 pages)
Disciplina 340.028563
Soggetto topico Artificial intelligence - Law and legislation
Artificial intelligence - Law and legislation - Criminal privisions
Computer crimes - Law and legislation
Criminal liability
Privacy, Right of
Data protection - Law and legislation
Artificial intelligence - Law and legislation - China
Data protection - Laws and legislation - China
ISBN 1-000-21052-9
0-429-34401-5
1-000-21064-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Emerging technologies and the criminal law / Dennis J. Baker and Paul H. Robinson -- Financial technology : opportunities and challenges to law and regulation / the Right Hon. Lord Hodge P.C. -- Between prevention and enforcement : the role of 'disruption' in confronting cybercrime / Jonathan Clough -- Preventive cybercrime and cybercrime by omission in China / He Ronggong and Jinglijia -- Criminal law protection of virtual property / Zhang Mingkai and Wang Wenjing -- Criminalising cybercrime facilitation by omission and its remote harm form in China / Liang Genlin and Dennis J. Baker -- Rethinking personal data protection in the criminal law of China / Lao Dongyan -- Using conspiracy and complicity for criminalising cyber-fraud in China : lessons from the common law / Li lifeng, Tianhong Zhao and Dennis J. Baker -- Sadie Creese -- AI v IP : criminal liability for intellectual property offences of artificial intelligence entities / Gabriel Hallevy -- Do not panic : artificial intelligence and criminal law 101 / Mark Dsouza.
Record Nr. UNINA-9910794316103321
Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson
Artificial intelligence and the law : cybercrime and criminal liability / / edited by Dennis J. Baker and Paul H. Robinson
Pubbl/distr/stampa Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021
Descrizione fisica 1 online resource (ix, 270 pages)
Disciplina 340.028563
Soggetto topico Artificial intelligence - Law and legislation
Artificial intelligence - Law and legislation - Criminal privisions
Computer crimes - Law and legislation
Criminal liability
Privacy, Right of
Data protection - Law and legislation
Artificial intelligence - Law and legislation - China
Data protection - Laws and legislation - China
ISBN 1-000-21052-9
0-429-34401-5
1-000-21064-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Emerging technologies and the criminal law / Dennis J. Baker and Paul H. Robinson -- Financial technology : opportunities and challenges to law and regulation / the Right Hon. Lord Hodge P.C. -- Between prevention and enforcement : the role of 'disruption' in confronting cybercrime / Jonathan Clough -- Preventive cybercrime and cybercrime by omission in China / He Ronggong and Jinglijia -- Criminal law protection of virtual property / Zhang Mingkai and Wang Wenjing -- Criminalising cybercrime facilitation by omission and its remote harm form in China / Liang Genlin and Dennis J. Baker -- Rethinking personal data protection in the criminal law of China / Lao Dongyan -- Using conspiracy and complicity for criminalising cyber-fraud in China : lessons from the common law / Li lifeng, Tianhong Zhao and Dennis J. Baker -- Sadie Creese -- AI v IP : criminal liability for intellectual property offences of artificial intelligence entities / Gabriel Hallevy -- Do not panic : artificial intelligence and criminal law 101 / Mark Dsouza.
Record Nr. UNINA-9910822401603321
Abingdon, Oxon ; ; New York, NY : , : Routledge, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial Intelligence for Security : Enhancing Protection in a Changing World / / edited by Tuomo Sipola, Janne Alatalo, Monika Wolfmayr, Tero Kokkonen
Artificial Intelligence for Security : Enhancing Protection in a Changing World / / edited by Tuomo Sipola, Janne Alatalo, Monika Wolfmayr, Tero Kokkonen
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (373 pages)
Disciplina 006.3
Soggetto topico Data protection - Law and legislation
Artificial intelligence
Computer networks - Security measures
Privacy
Artificial Intelligence
Mobile and Network Security
Intel·ligència artificial
Seguretat de les xarxes d'ordinadors
Protecció de dades
Soggetto genere / forma Llibres electrònics
ISBN 9783031574528
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Methodological Fundamentals of Artificial Intelligence -- Chapter.1.Safeguarding the Future of Artificial Intelligence: An AI Blueprint -- Chapter.2.Cybersecurity and the AI Silver Bullet.-Chapter.3.Artificial Intelligence and Differential Privacy – Review of Protection Estimate Models -- Chapter.4.To Know What You Do Not Know: Challenges for Explainable AI for Security and Threat Intelligence -- Chapter.5.Securing the Future: The Role of Knowledge Discovery Frameworks -- Chapter.6.Who Guards the Guardians? On Robustness of Deep Neural Networks.-Part II Artificial Intelligence for Critical Infrastructure Protection -- Chapter.7.Opportunities and Challenges of Using Artificial Intelligence in Securing Cyber-Physical System -- Chapter.8.Artificial Intelligence Working to Secure Small Enterprises -- Chapter.9.On the Cyber Security of Logistics in the Age of Artificial Intelligence.-Chapter.10.Fuzzy Machine Learning for Smart Grid Instability Detection -- Chapter.11.On Protection of the Next-Generation Mobile Networks against Adversarial Examples -- Chapter.12.Designing and Implementing an Interactive Cloud Platform for Teaching Machine Learning with Medical Data -- Part III Artificial Intelligence for Anomaly Detection -- Chapter.13.Machine Learning and Anomaly Detection for an Automated Monitoring of Log Data -- Chapter.14.Detecting Web Application DAST Attacks in Large-scale Event.-Chapter15.Enhancing IoT Intrusion Detection Using Hybrid DAIDS-RNN Mode.
Record Nr. UNINA-9910869176503321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui