top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Building Effective Privacy Programs : Cybersecurity from Principles to Practice
Building Effective Privacy Programs : Cybersecurity from Principles to Practice
Autore Edwards Jason
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2025
Descrizione fisica 1 online resource (451 pages)
Disciplina 005.8
Altri autori (Persone) WeaverGriffin
Soggetto topico Privacy-preserving techniques (Computer science)
Data protection
Data privacy
Computer security
ISBN 1-394-34266-7
1-394-34264-0
1-394-34265-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Privacy -- Understanding Personal Data -- Data Processing -- Roles and Relationships -- Privacy Impact Assessments (PIA) -- Roles in Privacy Leadership -- Data Subject Rights (DSR) -- Privacy Frameworks and Standards -- Major Privacy Laws and Regulations -- International Privacy Concerns -- Regulatory Enforcement -- Privacy by Design and Default -- Privacy Technology and Tools -- Data Breach Management -- Emerging Privacy Trends -- Privacy Program Implementation -- Privacy Training and Awareness -- Privacy Audits & Assessments.
Record Nr. UNINA-9911021977603321
Edwards Jason  
Newark : , : John Wiley & Sons, Incorporated, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Embodied narratives : protecting identity interests through ethical governance of bioinformation / / Emily Postan [[electronic resource]]
Embodied narratives : protecting identity interests through ethical governance of bioinformation / / Emily Postan [[electronic resource]]
Autore Postan Emily <1973->
Pubbl/distr/stampa Cambridge University Press, 2022
Descrizione fisica 1 online resource (xiv, 296 pages) : digital, PDF file(s)
Disciplina 610
Collana Cambridge bioethics and law
Soggetto topico Medical records - Access control - Psychological aspects
Personal information management - Psychological aspects
Patients - Psychology
Identity (Psychology)
Data privacy
Medical records - Law and legislation
Soggetto non controllato medico-legal research
genetic data
privacy protection
medical sociology
ISBN 1-108-59993-1
1-108-68299-5
1-108-65259-X
Classificazione LAW093000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Attending to identity -- Mapping the landscape -- Narrative self-constitution -- Bioinformation in embodied identity narratives -- Encounters with bioinformation : three examples -- Locating identity interests -- Responsibilities for disclosure -- Identity in the governance landscape.
Record Nr. UNINA-9910585956003321
Postan Emily <1973->  
Cambridge University Press, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Guide to data privacy : models, technologies, solutions / / Vicenç Torra
Guide to data privacy : models, technologies, solutions / / Vicenç Torra
Autore Torra Vicenç
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (323 pages)
Disciplina 323.448
Collana Undergraduate topics in computer science
Soggetto topico Data privacy
Data protection
ISBN 9783031128370
9783031128363
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996499859703316
Torra Vicenç  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
How to be FAIR with your data : A teaching and training handbook for higher education institutions / / Claudia Engelhardt
How to be FAIR with your data : A teaching and training handbook for higher education institutions / / Claudia Engelhardt
Autore Engelhardt Claudia
Pubbl/distr/stampa Göttingen : , : Universitätsverlag Göttingen, , 2022
Descrizione fisica 1 online resource (206 pages) : illustrations
Disciplina 323.448
Soggetto topico Data privacy
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti How to be FAIR with your data
Record Nr. UNINA-9910567782103321
Engelhardt Claudia  
Göttingen : , : Universitätsverlag Göttingen, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Privacidad y anonimización de datos / / Jordi Casas Roma, Cristina Romero Tris ; Prólogo de David Megías Jiménez
Privacidad y anonimización de datos / / Jordi Casas Roma, Cristina Romero Tris ; Prólogo de David Megías Jiménez
Autore Casas-Roma Jordi
Pubbl/distr/stampa Barcelona : , : Editorial UOC, , [2017]
Descrizione fisica 1 online resource (150 pages)
Disciplina 006.312
Collana Manuales (Editorial UOC)
Soggetto topico Data mining
Data privacy
Data protection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione spa
Record Nr. UNINA-9910795775503321
Casas-Roma Jordi  
Barcelona : , : Editorial UOC, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Privacidad y anonimización de datos / / Jordi Casas Roma, Cristina Romero Tris ; Prólogo de David Megías Jiménez
Privacidad y anonimización de datos / / Jordi Casas Roma, Cristina Romero Tris ; Prólogo de David Megías Jiménez
Autore Casas-Roma Jordi
Pubbl/distr/stampa Barcelona : , : Editorial UOC, , [2017]
Descrizione fisica 1 online resource (150 pages)
Disciplina 006.312
Collana Manuales (Editorial UOC)
Soggetto topico Data mining
Data privacy
Data protection
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione spa
Record Nr. UNINA-9910817828903321
Casas-Roma Jordi  
Barcelona : , : Editorial UOC, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Privacy : algorithms and society
Privacy : algorithms and society
Autore Filimowicz Michael
Pubbl/distr/stampa Milton : , : Taylor & Francis Group, , 2022
Descrizione fisica 1 online resource (133 pages)
Disciplina 323.448
Collana Algorithms and Society
Soggetto topico Data privacy
Personal information management
Cyber intelligence (Computer security)
Information technology - Social aspects
ISBN 979-1-03-656980-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910495992103321
Filimowicz Michael  
Milton : , : Taylor & Francis Group, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Privacy preservation in IoT : machine learning approaches : a comprehensive survey and use cases / / Youyang Qu [and three others]
Privacy preservation in IoT : machine learning approaches : a comprehensive survey and use cases / / Youyang Qu [and three others]
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (127 pages)
Disciplina 323.448
Collana SpringerBriefs in Computer Science
Soggetto topico Data privacy
Internet of things - Security measures
ISBN 981-19-1797-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 IoT Privacy Research Landscape -- 1.2 Machine Learning Driven Privacy Preservation Overview -- 1.3 Contribution of This Book -- 1.4 Book Overview -- 2 Current Methods of Privacy Protection in IoTs -- 2.1 Briefing of Privacy Preservation Study in IoTs -- 2.2 Cryptography-Based Methods in IoTs -- 2.3 Anonymity-Based and Clustering-Based Methods -- 2.4 Differential Privacy Based Methods -- 2.5 Machine Learning and AI Methods -- 2.5.1 Federated Learning -- 2.5.2 Generative Adversarial Network -- References -- 3 Decentralized Privacy Protection of IoTs Using Blockchain-Enabled Federated Learning -- 3.1 Overview -- 3.2 Related Work -- 3.3 Architecture of Blockchain-Enabled Federated Learning -- 3.3.1 Federated Learning in FL-Block -- 3.3.2 Blockchain in FL-Block -- 3.4 Decentralized Privacy Mechanism Based on FL-Block -- 3.4.1 Blocks Establishment -- 3.4.2 Blockchain Protocols Design -- 3.4.3 Discussion on Decentralized Privacy Protection Using Blockchain -- 3.5 System Analysis -- 3.5.1 Poisoning Attacks and Defence -- 3.5.2 Single-Epoch FL-Block Latency Model -- 3.5.3 Optimal Generation Rate of Blocks -- 3.6 Performance Evaluation -- 3.6.1 Simulation Environment Description -- 3.6.2 Global Models and Corresponding Updates -- 3.6.3 Evaluation on Convergence and Efficiency -- 3.6.4 Evaluation on Blockchain -- 3.6.5 Evaluation on Poisoning Attack Resistance -- 3.7 Summary and Future Work -- References -- 4 Personalized Privacy Protection of IoTs Using GAN-Enhanced Differential Privacy -- 4.1 Overview -- 4.2 Related Work -- 4.3 Generative Adversarial Nets Driven Personalized Differential Privacy -- 4.3.1 Extended Social Networks Graph Structure -- 4.3.2 GAN with a Differential Privacy Identifier -- 4.3.3 Mapping Function.
4.3.4 Opimized Trade-Off Between Personalized Privacy Protection and Optimized Data Utility -- 4.4 Attack Model and Mechanism Analysis -- 4.4.1 Collusion Attack -- 4.4.2 Attack Mechanism Analysis -- 4.5 System Analysis -- 4.6 Evaluation and Performance -- 4.6.1 Trajectory Generation Performance -- 4.6.2 Personalized Privacy Protection -- 4.6.3 Data Utility -- 4.6.4 Efficiency and Convergence -- 4.6.5 Further Discussion -- 4.7 Summary and Future Work -- References -- 5 Hybrid Privacy Protection of IoT Using Reinforcement Learning -- 5.1 Overview -- 5.2 Related Work -- 5.3 Hybrid Privacy Problem Formulation -- 5.3.1 Game-Based Markov Decision Process -- 5.3.2 Problem Formulation -- 5.4 System Modelling -- 5.4.1 Actions of the Adversary and User -- 5.4.2 System States and Transitions -- 5.4.3 Nash Equilibrium Under Game-Based MDP -- 5.5 System Analysis -- 5.5.1 Measurement of Overall Data Utility -- 5.5.2 Measurement of Privacy Loss -- 5.6 Markov Decision Process and Reinforcement Learning -- 5.6.1 Quick-Convergent Reinforcement Learning Algorithm -- 5.6.2 Best Strategy Generation with Limited Power -- 5.6.3 Best Strategy Generation with Unlimited Power -- 5.7 Performance Evaluation -- 5.7.1 Experiments Foundations -- 5.7.2 Data Utility Evaluations -- 5.7.3 Privacy Loss Evaluations -- 5.7.4 Convergence Speed -- 5.8 Summary and Future Work -- References -- 6 Future Research Directions -- 6.1 Trade-Off Optimization in IoTs -- 6.2 Privacy Preservation in Digital Twined IoTs -- 6.3 Personalized Consensus and Incentive Mechanisms for Blockchain-Enabled Federated Learning in IoTs -- 6.4 Privacy-Preserving Federated Learning in IoTs -- 6.5 Federated Generative Adversarial Network in IoTs -- 7 Summary and Outlook.
Record Nr. UNISA-996472065503316
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Privacy preservation in IoT : machine learning approaches : a comprehensive survey and use cases / / Youyang Qu [and three others]
Privacy preservation in IoT : machine learning approaches : a comprehensive survey and use cases / / Youyang Qu [and three others]
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (127 pages)
Disciplina 323.448
Collana SpringerBriefs in Computer Science
Soggetto topico Data privacy
Internet of things - Security measures
ISBN 981-19-1797-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 IoT Privacy Research Landscape -- 1.2 Machine Learning Driven Privacy Preservation Overview -- 1.3 Contribution of This Book -- 1.4 Book Overview -- 2 Current Methods of Privacy Protection in IoTs -- 2.1 Briefing of Privacy Preservation Study in IoTs -- 2.2 Cryptography-Based Methods in IoTs -- 2.3 Anonymity-Based and Clustering-Based Methods -- 2.4 Differential Privacy Based Methods -- 2.5 Machine Learning and AI Methods -- 2.5.1 Federated Learning -- 2.5.2 Generative Adversarial Network -- References -- 3 Decentralized Privacy Protection of IoTs Using Blockchain-Enabled Federated Learning -- 3.1 Overview -- 3.2 Related Work -- 3.3 Architecture of Blockchain-Enabled Federated Learning -- 3.3.1 Federated Learning in FL-Block -- 3.3.2 Blockchain in FL-Block -- 3.4 Decentralized Privacy Mechanism Based on FL-Block -- 3.4.1 Blocks Establishment -- 3.4.2 Blockchain Protocols Design -- 3.4.3 Discussion on Decentralized Privacy Protection Using Blockchain -- 3.5 System Analysis -- 3.5.1 Poisoning Attacks and Defence -- 3.5.2 Single-Epoch FL-Block Latency Model -- 3.5.3 Optimal Generation Rate of Blocks -- 3.6 Performance Evaluation -- 3.6.1 Simulation Environment Description -- 3.6.2 Global Models and Corresponding Updates -- 3.6.3 Evaluation on Convergence and Efficiency -- 3.6.4 Evaluation on Blockchain -- 3.6.5 Evaluation on Poisoning Attack Resistance -- 3.7 Summary and Future Work -- References -- 4 Personalized Privacy Protection of IoTs Using GAN-Enhanced Differential Privacy -- 4.1 Overview -- 4.2 Related Work -- 4.3 Generative Adversarial Nets Driven Personalized Differential Privacy -- 4.3.1 Extended Social Networks Graph Structure -- 4.3.2 GAN with a Differential Privacy Identifier -- 4.3.3 Mapping Function.
4.3.4 Opimized Trade-Off Between Personalized Privacy Protection and Optimized Data Utility -- 4.4 Attack Model and Mechanism Analysis -- 4.4.1 Collusion Attack -- 4.4.2 Attack Mechanism Analysis -- 4.5 System Analysis -- 4.6 Evaluation and Performance -- 4.6.1 Trajectory Generation Performance -- 4.6.2 Personalized Privacy Protection -- 4.6.3 Data Utility -- 4.6.4 Efficiency and Convergence -- 4.6.5 Further Discussion -- 4.7 Summary and Future Work -- References -- 5 Hybrid Privacy Protection of IoT Using Reinforcement Learning -- 5.1 Overview -- 5.2 Related Work -- 5.3 Hybrid Privacy Problem Formulation -- 5.3.1 Game-Based Markov Decision Process -- 5.3.2 Problem Formulation -- 5.4 System Modelling -- 5.4.1 Actions of the Adversary and User -- 5.4.2 System States and Transitions -- 5.4.3 Nash Equilibrium Under Game-Based MDP -- 5.5 System Analysis -- 5.5.1 Measurement of Overall Data Utility -- 5.5.2 Measurement of Privacy Loss -- 5.6 Markov Decision Process and Reinforcement Learning -- 5.6.1 Quick-Convergent Reinforcement Learning Algorithm -- 5.6.2 Best Strategy Generation with Limited Power -- 5.6.3 Best Strategy Generation with Unlimited Power -- 5.7 Performance Evaluation -- 5.7.1 Experiments Foundations -- 5.7.2 Data Utility Evaluations -- 5.7.3 Privacy Loss Evaluations -- 5.7.4 Convergence Speed -- 5.8 Summary and Future Work -- References -- 6 Future Research Directions -- 6.1 Trade-Off Optimization in IoTs -- 6.2 Privacy Preservation in Digital Twined IoTs -- 6.3 Personalized Consensus and Incentive Mechanisms for Blockchain-Enabled Federated Learning in IoTs -- 6.4 Privacy-Preserving Federated Learning in IoTs -- 6.5 Federated Generative Adversarial Network in IoTs -- 7 Summary and Outlook.
Record Nr. UNINA-9910568275403321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Privacy, security and forensics in the Internet of Things (IoT) / / edited by Reza Montasari [and four others]
Privacy, security and forensics in the Internet of Things (IoT) / / edited by Reza Montasari [and four others]
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (219 pages)
Disciplina 004.678
Soggetto topico Digital forensic science
Internet of things
Data privacy
ISBN 3-030-91218-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996464543703316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui