Cyber security, privacy and networking : proceedings of ICSPN 2021 / / edited by Dharma P. Agrawal [and three others] |
Pubbl/distr/stampa | Gateway East, Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (404 pages) |
Disciplina | 005.8 |
Collana | Lecture Notes in Networks and Systems |
Soggetto topico |
Computer networks - Access control
Computer security Data privacy |
ISBN |
981-16-8663-7
981-16-8664-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Organization -- Preface -- Contents -- Editors and Contributors -- A New Modified MD5-224 Bits Hash Function and an Efficient Message Authentication Code Based on Quasigroups -- 1 Introduction -- 1.1 Hash Function Without a Key -- 1.2 Hash Function with Key or HMAC -- 2 Preliminaries -- 2.1 Quasigroup -- 2.2 Optimal Quasigroups -- 2.3 Brief Description of MD5 -- 3 Proposed Schemes -- 3.1 Quasigroup Expansion (QGExp) Operation -- 3.2 Quasigroup Compression (QGComp) Operation -- 4 Implementation and Software Performance -- 5 Security Analysis -- 5.1 Analysis of QGMD5 -- 5.2 Collision Resistance -- 5.3 Avalanche Effect -- 5.4 Analysis of QGMAC -- 6 Conclusions -- References -- Leveraging Transfer Learning for Effective Recognition of Emotions from Images: A Review -- 1 Introduction -- 2 Contributions by Researchers on Human Facial Emotion Recognition -- 2.1 Feature Extraction Methods -- 2.2 Classification -- 2.3 Transfer Learning -- 3 Methodology -- 3.1 Dataset -- 3.2 Data Preprocessing -- 3.3 Model Architectures -- 3.4 Experimental Study -- 4 Experimental Study and Comparison -- 5 Conclusion and Future Work -- References -- An Automated System for Facial Mask Detection and Face Recognition During COVID-19 Pandemic -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Image Preprocessing -- 3.2 Deep Learning Architecture -- 3.3 Face Recognition Module -- 4 Algorithm Used in Proposed model -- 4.1 Convolutional Neural Network (CNN) -- 4.2 Haar Cascade Algorithm -- 5 Limitations and Future Works -- 6 RESULTS -- 6.1 Face Mask Detection Module -- 6.2 Face Recognition Module -- 7 Conclusion -- References -- ROS Simulation-Based Autonomous Navigation Systems and Object Detection -- 1 Introduction -- 2 Related Work -- 3 Robot and Environment -- 4 Software and Platforms -- 4.1 ROS -- 4.2 RDS -- 4.3 RVIZ -- 5 ROS Autonomous Navigation.
5.1 Map Creation -- 5.2 Localization -- 5.3 Path Planning -- 6 Object Detection -- 7 Results -- 7.1 Room Map Creation -- 7.2 Object Detection -- 7.3 Navigation -- 8 Conclusion and Further Work -- References -- Robotic Assistant for Medicine and Food Delivery in Healthcare -- 1 Introduction -- 2 The Robot -- 2.1 The Mechanical Implementation -- 2.2 Omnidirectional Wheels -- 2.3 Inverse Kinematic Model -- 3 Control system of the robot -- 3.1 Rotary Encoders -- 3.2 Proximity Sensors -- 3.3 Gyroscope -- 4 Testing of the Robot -- 5 Future work -- 6 Conclusions -- References -- Privacy-Preserving Record Linkage with Block-Chains -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Privacy-Preserving Record Linkage -- 3.2 Partial De-identification at Source -- 4 System Design -- 4.1 Service 1 -- 4.2 Service 2 -- 5 Performance Analysis -- 6 Security Analysis -- 7 Conclusion -- References -- Performance Analysis of Rectangular QAM Schemes Over Various Fading Channels -- 1 Introduction -- 2 Rectangular Quadrature Amplitude Modulation -- 3 Error Probability Analysis for RQAM Over Fading Channels -- 3.1 Rayleigh Fading Model -- 3.2 Rician Fading Model -- 3.3 Nakagami-m Fading Model -- 3.4 Log-Normal Fading Model -- 4 Simulation and Results -- 5 Conclusion and Future Work -- References -- New Symmetric Key Cipher Based on Quasigroup -- 1 Introduction -- 2 Preliminaries -- 2.1 Latin Squares -- 2.2 Quasigroup -- 2.3 Encryption and Decryption Using Quasigroups -- 2.4 Advanced Encryption Standard -- 3 Proposed Cipher Algorithm Structure -- 3.1 Quasigroup Selection -- 3.2 Keystream Generation -- 3.3 Encryption Algorithm -- 3.4 Decryption Algorithm -- 4 Security Analysis -- 4.1 Statistical Test for Randomness -- 5 Conclusion -- References -- Validate Merchant Server for Secure Payment Using Key Distribution -- 1 Introduction. 1.1 The Objectives of the Proposed Work Are -- 2 Related Works -- 3 System Model -- 3.1 Bilinear Mapping -- 3.2 Merchant Server Registration Process -- 3.3 Admin Server Process -- 3.4 Payment Request from Mobile User -- 3.5 Cloud Matching Process -- 4 Security Analysis of System Model -- 4.1 Man-in-Middle Attack -- 4.2 Impersonation Attack -- 5 Performance Analysis -- 6 Conclusions and Future Works -- References -- Extractive Text Summarization Using Feature-Based Unsupervised RBM Method -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Methodology -- 3.1 Data Pre-processing -- 3.2 Feature Extraction -- 3.3 Restricted Boltzmann Machine -- 3.4 Summary Generation -- 4 Result and Discussion -- 5 Conclusion -- References -- Depression and Suicide Prediction Using Natural Language Processing and Machine Learning -- 1 Introduction -- 2 Related Work -- 2.1 Challenges -- 3 Dataset Description and Processing -- 3.1 Dataset Preprocessing -- 4 Methodology -- 4.1 Machine Learning Classifiers -- 5 Results and Experiments -- 6 Conclusion -- References -- Automatic Detection of Diabetic Retinopathy on the Edge -- 1 Introduction -- 2 Related Work -- 3 Dataset and Pre-processing -- 4 Methods -- 4.1 ResNet 50 -- 4.2 InceptionV3 -- 4.3 EfficientNet B5 and B6 -- 4.4 VGG19 -- 5 Performance and Result -- 6 Deployment on the Edge -- 7 Conclusion and Future Scope -- References -- A Survey on IoT Security: Security Threads and Analysis of Botnet Attacks Over IoT and Avoidance -- 1 Introduction -- 1.1 IoT Security Architecture -- 2 Sources of Security Threats in IoT Applications -- 2.1 Security Issues at Sensing/Physical Layer -- 2.2 Security Issues at Data Link Layer -- 2.3 Security Issues at Network Layer -- 2.4 Security Issues at Application Layer -- 3 Common Attacks on IoT Devices -- 4 Evolution of Botnet -- 4.1 Traditional Botnets -- 4.2 IoT-Based Botnets. 4.3 Different Botnet Attacks -- 4.4 IoT Botnet Monitoring System (IBMS) -- 4.5 Bargaining and Negotiation Methodology for Botnet Identification -- 5 Conclusion and Future Enhancement -- References -- A Coherent Approach to Analyze Sentiment of Cryptocurrency -- 1 Introduction -- 2 Background -- 2.1 Cryptocurrency and Blockchain Technology -- 2.2 Twitter -- 2.3 Sentiment Analysis -- 3 Related Works -- 4 Data -- 5 Methods -- 5.1 Sentiment Analysis Using TextBlob and VADER -- 5.2 Incorporating the Output of both the VADER and TextBlob into One -- 6 Results -- 7 Conclusions and Future Plans -- References -- Supervised Machine Learning Algorithms Based on Classification for Detection of Distributed Denial of Service Attacks in SDN-Enabled Cloud Computing -- 1 Introduction -- 2 Related Work -- 3 Proposed Detection Method -- 3.1 Naive Bayes -- 3.2 Support Vector Machines -- 4 Implementation -- 5 Result and Discussion -- 6 Conclusion -- References -- Edge Computing-Based DDoS Attack Detection for Intelligent Transportation Systems -- 1 Introduction -- 2 Related Work -- 3 Proposed Mythology -- 3.1 Entropy Calculation Phase -- 3.2 Machine Learning Phase -- 4 Results and Analysis -- 4.1 Dataset Generation and Preprocessing -- 4.2 Machine Learning Analysis -- 5 Research Challenges -- 5.1 Network Slicing and Splitting -- 5.2 Side Channel Attack Protection -- 5.3 SDN-Based Detection -- 6 Conclusions and Future Work -- References -- An Empirical Study of Secure and Complex Variants of RSA Scheme -- 1 Introduction -- 2 Standard RSA Algorithm -- 3 Literature Review -- 3.1 RSA Based on Multiplicity of Public and Private Keys -- 3.2 Modified RSA Cryptosystem Based on `n' Prime Numbers -- 3.3 Enhanced RSA (ERSA) -- 4 Implementation Results and Analysis of Existing Works -- 4.1 Performance Analysis -- 5 A Multipoint Extended and Secured Parallel RSA Scheme. 5.1 Proposed Algorithm -- 6 Conclusion and Future Scope -- References -- Text Normalization Through Neural Models in Generating Text Summary for Various Speech Synthesis Applications -- 1 Introduction -- 2 Text Normalization Is a Complex Task -- 3 Previous Approaches to Text Normalization -- 3.1 Standard Approaches -- 3.2 Various Other Approaches -- 4 Proposed Model -- 5 Various Models -- 5.1 Segmentation -- 5.2 Two-Sliding Window Model -- 5.3 Provisional Sequence to Sequence Models -- 6 Universal Language Feature Covering Grammars from Various Details -- 7 Sample Results -- 8 Conclusion -- References -- Classification of Network Intrusion Detection System Using Deep Learning -- 1 Introduction -- 2 Literature Work -- 3 About Dataset -- 3.1 Data Preprocessing -- 4 Evaluation Metrics -- 5 Proposed Methodology -- 6 Conclusion -- References -- Toward Big Data Various Challenges and Trending Applications -- 1 Introduction -- 2 Big Data Processing Varieties -- 3 Big Data Challenges -- 4 Related Work -- 5 Applications Using Big Data -- 6 Conclusion -- References -- Convolutional Neural Network-Based Approach to Detect COVID-19 from Chest X-Ray Images -- 1 Introduction -- 1.1 Interdisciplinary -- 1.2 Library of Programming Function -- 1.3 Image Diagnosis -- 1.4 Edge Detection -- 2 Related Works -- 3 Existing System Architecture -- 4 Proposed System Architecture -- 4.1 Feature Engineering -- 5 Proposed Work -- 5.1 Proposed Methodology -- 6 Analysis of the Proposed Scheme -- 7 Performance Analysis of the Proposed Scheme -- 8 Conclusion -- References -- Classification of Medical Health Records Using Convolutional Neural Networks for Optimal Diagnosis -- 1 Introduction -- 2 Background -- 3 Objectives -- 4 Proposed Process Flow -- 5 Methodology -- 5.1 Dataset Collection -- 5.2 Preprocessing -- 6 Model Building -- 7 Code Snippet -- 8 Analysis of Model Performance. 9 Conclusion and Future Scope. |
Record Nr. | UNINA-9910743230303321 |
Gateway East, Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Embodied narratives : protecting identity interests through ethical governance of bioinformation / / Emily Postan [[electronic resource]] |
Autore | Postan Emily <1973-> |
Pubbl/distr/stampa | Cambridge University Press, 2022 |
Descrizione fisica | 1 online resource (xiv, 296 pages) : digital, PDF file(s) |
Disciplina | 610 |
Collana | Cambridge bioethics and law |
Soggetto topico |
Medical records - Access control - Psychological aspects
Personal information management - Psychological aspects Patients - Psychology Identity (Psychology) Data privacy Medical records - Law and legislation |
Soggetto non controllato |
medico-legal research
genetic data privacy protection medical sociology |
ISBN |
1-108-59993-1
1-108-68299-5 1-108-65259-X |
Classificazione | LAW093000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Attending to identity -- Mapping the landscape -- Narrative self-constitution -- Bioinformation in embodied identity narratives -- Encounters with bioinformation : three examples -- Locating identity interests -- Responsibilities for disclosure -- Identity in the governance landscape. |
Record Nr. | UNINA-9910585956003321 |
Postan Emily <1973-> | ||
Cambridge University Press, 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Federated learning for IoT applications / / edited by Satya Prakash Yadav [and three others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (269 pages) |
Disciplina | 006.31 |
Collana | EAI/Springer Innovations in Communication and Computing |
Soggetto topico |
Internet of things
Machine learning Data privacy |
ISBN | 3-030-85559-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910522556603321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Guide to data privacy : models, technologies, solutions / / Vicenç Torra |
Autore | Torra Vicenç |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (323 pages) |
Disciplina | 323.448 |
Collana | Undergraduate topics in computer science |
Soggetto topico |
Data privacy
Data protection |
ISBN |
9783031128370
9783031128363 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996499859703316 |
Torra Vicenç | ||
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
How to be FAIR with your data : A teaching and training handbook for higher education institutions / / Claudia Engelhardt |
Autore | Engelhardt Claudia |
Pubbl/distr/stampa | Göttingen : , : Universitätsverlag Göttingen, , 2022 |
Descrizione fisica | 1 online resource (206 pages) : illustrations |
Disciplina | 323.448 |
Soggetto topico | Data privacy |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Altri titoli varianti | How to be FAIR with your data |
Record Nr. | UNINA-9910567782103321 |
Engelhardt Claudia | ||
Göttingen : , : Universitätsverlag Göttingen, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Privacidad y anonimización de datos / / Jordi Casas Roma, Cristina Romero Tris ; Prólogo de David Megías Jiménez |
Autore | Casas-Roma Jordi |
Pubbl/distr/stampa | Barcelona : , : Editorial UOC, , [2017] |
Descrizione fisica | 1 online resource (150 pages) |
Disciplina | 006.312 |
Collana | Manuales (Editorial UOC) |
Soggetto topico |
Data mining
Data privacy Data protection |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | spa |
Record Nr. | UNINA-9910795775503321 |
Casas-Roma Jordi | ||
Barcelona : , : Editorial UOC, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Privacidad y anonimización de datos / / Jordi Casas Roma, Cristina Romero Tris ; Prólogo de David Megías Jiménez |
Autore | Casas-Roma Jordi |
Pubbl/distr/stampa | Barcelona : , : Editorial UOC, , [2017] |
Descrizione fisica | 1 online resource (150 pages) |
Disciplina | 006.312 |
Collana | Manuales (Editorial UOC) |
Soggetto topico |
Data mining
Data privacy Data protection |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | spa |
Record Nr. | UNINA-9910817828903321 |
Casas-Roma Jordi | ||
Barcelona : , : Editorial UOC, , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Privacy in the Age of Innovation : AI Solutions for Information Security / / by Ranadeep Reddy Palle, Krishna Chaitanya Rao Kathala |
Autore | Palle Ranadeep Reddy |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024 |
Descrizione fisica | 1 online resource (205 pages) |
Disciplina | 025.52 |
Soggetto topico |
Data privacy
Artificial intelligence |
ISBN | 979-88-6880-461-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. INTRODUCTION -- 2. UNDERSTANDING AI AND ETHICS -- 3. INFORMATION SECURITY AND DATA PRIVACY LANDSCAPE -- 4. AI FOR THREAT DETECTION AND PREVENTION -- 5. PRIVACY-PRESERVING AI TECHNIQUES -- 6. DATA PROTECTION AND COMPLIANCE -- 7. SECURING AI MODELS -- 8. CASE STUDIES -- 9. AI IN DATA PRIVACY AND ETHICS -- 10. AI AND DATA SECURITY -- 11. BALANCE BETWEEN SECURITY AND PRIVACY -- 12. BEST PRACTICES AND RECOMMENDATIONS -- 13. FUTURE TRENDS AND CHALLENGES. |
Record Nr. | UNINA-9910874662003321 |
Palle Ranadeep Reddy | ||
Berkeley, CA : , : Apress : , : Imprint : Apress, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Privacy preservation in IoT : machine learning approaches : a comprehensive survey and use cases / / Youyang Qu [and three others] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (127 pages) |
Disciplina | 323.448 |
Collana | SpringerBriefs in Computer Science |
Soggetto topico |
Data privacy
Internet of things - Security measures |
ISBN | 981-19-1797-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 IoT Privacy Research Landscape -- 1.2 Machine Learning Driven Privacy Preservation Overview -- 1.3 Contribution of This Book -- 1.4 Book Overview -- 2 Current Methods of Privacy Protection in IoTs -- 2.1 Briefing of Privacy Preservation Study in IoTs -- 2.2 Cryptography-Based Methods in IoTs -- 2.3 Anonymity-Based and Clustering-Based Methods -- 2.4 Differential Privacy Based Methods -- 2.5 Machine Learning and AI Methods -- 2.5.1 Federated Learning -- 2.5.2 Generative Adversarial Network -- References -- 3 Decentralized Privacy Protection of IoTs Using Blockchain-Enabled Federated Learning -- 3.1 Overview -- 3.2 Related Work -- 3.3 Architecture of Blockchain-Enabled Federated Learning -- 3.3.1 Federated Learning in FL-Block -- 3.3.2 Blockchain in FL-Block -- 3.4 Decentralized Privacy Mechanism Based on FL-Block -- 3.4.1 Blocks Establishment -- 3.4.2 Blockchain Protocols Design -- 3.4.3 Discussion on Decentralized Privacy Protection Using Blockchain -- 3.5 System Analysis -- 3.5.1 Poisoning Attacks and Defence -- 3.5.2 Single-Epoch FL-Block Latency Model -- 3.5.3 Optimal Generation Rate of Blocks -- 3.6 Performance Evaluation -- 3.6.1 Simulation Environment Description -- 3.6.2 Global Models and Corresponding Updates -- 3.6.3 Evaluation on Convergence and Efficiency -- 3.6.4 Evaluation on Blockchain -- 3.6.5 Evaluation on Poisoning Attack Resistance -- 3.7 Summary and Future Work -- References -- 4 Personalized Privacy Protection of IoTs Using GAN-Enhanced Differential Privacy -- 4.1 Overview -- 4.2 Related Work -- 4.3 Generative Adversarial Nets Driven Personalized Differential Privacy -- 4.3.1 Extended Social Networks Graph Structure -- 4.3.2 GAN with a Differential Privacy Identifier -- 4.3.3 Mapping Function.
4.3.4 Opimized Trade-Off Between Personalized Privacy Protection and Optimized Data Utility -- 4.4 Attack Model and Mechanism Analysis -- 4.4.1 Collusion Attack -- 4.4.2 Attack Mechanism Analysis -- 4.5 System Analysis -- 4.6 Evaluation and Performance -- 4.6.1 Trajectory Generation Performance -- 4.6.2 Personalized Privacy Protection -- 4.6.3 Data Utility -- 4.6.4 Efficiency and Convergence -- 4.6.5 Further Discussion -- 4.7 Summary and Future Work -- References -- 5 Hybrid Privacy Protection of IoT Using Reinforcement Learning -- 5.1 Overview -- 5.2 Related Work -- 5.3 Hybrid Privacy Problem Formulation -- 5.3.1 Game-Based Markov Decision Process -- 5.3.2 Problem Formulation -- 5.4 System Modelling -- 5.4.1 Actions of the Adversary and User -- 5.4.2 System States and Transitions -- 5.4.3 Nash Equilibrium Under Game-Based MDP -- 5.5 System Analysis -- 5.5.1 Measurement of Overall Data Utility -- 5.5.2 Measurement of Privacy Loss -- 5.6 Markov Decision Process and Reinforcement Learning -- 5.6.1 Quick-Convergent Reinforcement Learning Algorithm -- 5.6.2 Best Strategy Generation with Limited Power -- 5.6.3 Best Strategy Generation with Unlimited Power -- 5.7 Performance Evaluation -- 5.7.1 Experiments Foundations -- 5.7.2 Data Utility Evaluations -- 5.7.3 Privacy Loss Evaluations -- 5.7.4 Convergence Speed -- 5.8 Summary and Future Work -- References -- 6 Future Research Directions -- 6.1 Trade-Off Optimization in IoTs -- 6.2 Privacy Preservation in Digital Twined IoTs -- 6.3 Personalized Consensus and Incentive Mechanisms for Blockchain-Enabled Federated Learning in IoTs -- 6.4 Privacy-Preserving Federated Learning in IoTs -- 6.5 Federated Generative Adversarial Network in IoTs -- 7 Summary and Outlook. |
Record Nr. | UNISA-996472065503316 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Privacy preservation in IoT : machine learning approaches : a comprehensive survey and use cases / / Youyang Qu [and three others] |
Pubbl/distr/stampa | Singapore : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (127 pages) |
Disciplina | 323.448 |
Collana | SpringerBriefs in Computer Science |
Soggetto topico |
Data privacy
Internet of things - Security measures |
ISBN | 981-19-1797-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- 1 Introduction -- 1.1 IoT Privacy Research Landscape -- 1.2 Machine Learning Driven Privacy Preservation Overview -- 1.3 Contribution of This Book -- 1.4 Book Overview -- 2 Current Methods of Privacy Protection in IoTs -- 2.1 Briefing of Privacy Preservation Study in IoTs -- 2.2 Cryptography-Based Methods in IoTs -- 2.3 Anonymity-Based and Clustering-Based Methods -- 2.4 Differential Privacy Based Methods -- 2.5 Machine Learning and AI Methods -- 2.5.1 Federated Learning -- 2.5.2 Generative Adversarial Network -- References -- 3 Decentralized Privacy Protection of IoTs Using Blockchain-Enabled Federated Learning -- 3.1 Overview -- 3.2 Related Work -- 3.3 Architecture of Blockchain-Enabled Federated Learning -- 3.3.1 Federated Learning in FL-Block -- 3.3.2 Blockchain in FL-Block -- 3.4 Decentralized Privacy Mechanism Based on FL-Block -- 3.4.1 Blocks Establishment -- 3.4.2 Blockchain Protocols Design -- 3.4.3 Discussion on Decentralized Privacy Protection Using Blockchain -- 3.5 System Analysis -- 3.5.1 Poisoning Attacks and Defence -- 3.5.2 Single-Epoch FL-Block Latency Model -- 3.5.3 Optimal Generation Rate of Blocks -- 3.6 Performance Evaluation -- 3.6.1 Simulation Environment Description -- 3.6.2 Global Models and Corresponding Updates -- 3.6.3 Evaluation on Convergence and Efficiency -- 3.6.4 Evaluation on Blockchain -- 3.6.5 Evaluation on Poisoning Attack Resistance -- 3.7 Summary and Future Work -- References -- 4 Personalized Privacy Protection of IoTs Using GAN-Enhanced Differential Privacy -- 4.1 Overview -- 4.2 Related Work -- 4.3 Generative Adversarial Nets Driven Personalized Differential Privacy -- 4.3.1 Extended Social Networks Graph Structure -- 4.3.2 GAN with a Differential Privacy Identifier -- 4.3.3 Mapping Function.
4.3.4 Opimized Trade-Off Between Personalized Privacy Protection and Optimized Data Utility -- 4.4 Attack Model and Mechanism Analysis -- 4.4.1 Collusion Attack -- 4.4.2 Attack Mechanism Analysis -- 4.5 System Analysis -- 4.6 Evaluation and Performance -- 4.6.1 Trajectory Generation Performance -- 4.6.2 Personalized Privacy Protection -- 4.6.3 Data Utility -- 4.6.4 Efficiency and Convergence -- 4.6.5 Further Discussion -- 4.7 Summary and Future Work -- References -- 5 Hybrid Privacy Protection of IoT Using Reinforcement Learning -- 5.1 Overview -- 5.2 Related Work -- 5.3 Hybrid Privacy Problem Formulation -- 5.3.1 Game-Based Markov Decision Process -- 5.3.2 Problem Formulation -- 5.4 System Modelling -- 5.4.1 Actions of the Adversary and User -- 5.4.2 System States and Transitions -- 5.4.3 Nash Equilibrium Under Game-Based MDP -- 5.5 System Analysis -- 5.5.1 Measurement of Overall Data Utility -- 5.5.2 Measurement of Privacy Loss -- 5.6 Markov Decision Process and Reinforcement Learning -- 5.6.1 Quick-Convergent Reinforcement Learning Algorithm -- 5.6.2 Best Strategy Generation with Limited Power -- 5.6.3 Best Strategy Generation with Unlimited Power -- 5.7 Performance Evaluation -- 5.7.1 Experiments Foundations -- 5.7.2 Data Utility Evaluations -- 5.7.3 Privacy Loss Evaluations -- 5.7.4 Convergence Speed -- 5.8 Summary and Future Work -- References -- 6 Future Research Directions -- 6.1 Trade-Off Optimization in IoTs -- 6.2 Privacy Preservation in Digital Twined IoTs -- 6.3 Personalized Consensus and Incentive Mechanisms for Blockchain-Enabled Federated Learning in IoTs -- 6.4 Privacy-Preserving Federated Learning in IoTs -- 6.5 Federated Generative Adversarial Network in IoTs -- 7 Summary and Outlook. |
Record Nr. | UNINA-9910568275403321 |
Singapore : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|