ACM/IMS transactions on data science
| ACM/IMS transactions on data science |
| Pubbl/distr/stampa | New York, NY : , : Association for Computing Machinery, , [2020]- |
| Descrizione fisica | 1 online resource |
| Disciplina | 006 |
| Soggetto topico |
Data mining - Statistical methods
Big data - Statistical methods Quantitative research Données volumineuses - Méthodes statistiques Recherche quantitative |
| Soggetto genere / forma | Periodicals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
TDS
Transactions on data science ACM transactions on data sciencec |
| Record Nr. | UNISA-996548964503316 |
| New York, NY : , : Association for Computing Machinery, , [2020]- | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
ACM/IMS transactions on data science
| ACM/IMS transactions on data science |
| Pubbl/distr/stampa | New York, NY : , : Association for Computing Machinery, , [2020]- |
| Descrizione fisica | 1 online resource |
| Disciplina | 006 |
| Soggetto topico |
Data mining - Statistical methods
Big data - Statistical methods Quantitative research Données volumineuses - Méthodes statistiques Recherche quantitative |
| Soggetto genere / forma | Periodicals. |
| Formato | Materiale a stampa |
| Livello bibliografico | Periodico |
| Lingua di pubblicazione | eng |
| Altri titoli varianti |
TDS
Transactions on data science ACM transactions on data sciencec |
| Record Nr. | UNINA-9910412143603321 |
| New York, NY : , : Association for Computing Machinery, , [2020]- | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data mining and data visualization / edited by C. R. Rao, E. J. Wegman, J. L. Solka
| Data mining and data visualization / edited by C. R. Rao, E. J. Wegman, J. L. Solka |
| Pubbl/distr/stampa | Amsterdam : Elsevier North Holland, 2005 |
| Descrizione fisica | xiv, 643 p. : ill. (some col.), maps ; 25 cm |
| Disciplina | 005.74 |
| Altri autori (Persone) |
Rao, Calyampudi Radhakrishna
Wegman, Edward J. Solka, Jeffrey L. |
| Collana | Handbook of statistics, 0169-7161 ; 24 |
| Soggetto topico |
Data mining
Data mining - Statistical methods |
| ISBN | 0444511415 |
| Classificazione | AMS 62-06 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNISALENTO-991001662499707536 |
| Amsterdam : Elsevier North Holland, 2005 | ||
| Lo trovi qui: Univ. del Salento | ||
| ||
Data mining methods for the content analyst [[electronic resource] ] : an introduction to the computational analysis of content / / Kalev Hannes Leetaru
| Data mining methods for the content analyst [[electronic resource] ] : an introduction to the computational analysis of content / / Kalev Hannes Leetaru |
| Autore | Leetaru Kalev |
| Pubbl/distr/stampa | New York, : Routledge, 2012 |
| Descrizione fisica | 1 online resource (121 p.) |
| Disciplina |
006.3/12
006.312 |
| Collana | Routledge communication series |
| Soggetto topico |
Data mining
Data mining - Statistical methods |
| Soggetto genere / forma | Electronic books. |
| ISBN |
0-203-14938-6
1-283-84361-7 1-136-51459-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
DATA MINING METHODS FOR THE CONTENT ANALYST An Introduction to the Computational Analysis of Content; Copyright; Contents; List of Tables and Figures; Acknowledgments; 1 Introduction; What Is Content Analysis?; Why Use Computerized Analysis Techniques?; Standalone Tools or Integrated Suites; Transitioning from Theory to Practice; Chapter in Summary; 2 Obtaining and Preparing Data; Collecting Data from Digital Text Repositories; Are the Data Meaningful?; Using Data in Unintended Ways; Analytical Resolution; Types of Data Sources; Finding Sources; Searching Text Collections
Sources of IncompletenessLicensing Restrictions and Content Blackouts; Measuring Viewership; Accuracy and Convenience Samples; Random Samples; Multimedia Content; Converting to Textual Format; Prosody; Example Data Sources; Patterns in Historical War Coverage; Competitive Intelligence; Global News Coverage; Downloading Content; Digital Content; Print Content; Preparing Content; Document Extraction; Cleaning; Post Filtering; Reforming/Reshaping; Content Proxy Extraction; Chapter in Summary; 3 Vocabulary Analysis; The Basics; Word Histograms; Readability Indexes; Normative Comparison Non-word AnalysisColloquialisms: Abbreviations and Slang; Restricting the Analytical Window; Vocabulary Comparison and Evolution/Chronemics; Advanced Topics; Syllables, Rhyming, and "Sounds Like"; Gender and Language; Authorship Attribution; Word Morphology, Stemming, and Lemmatization; Chapter in Summary; 4 Correlation and Co-occurrence; Understanding Correlation; Computing Word Correlations; Directionality; Concordance; Co-occurrence and Search; Language Variation and Lexicons; Non-co-occurrence; Correlation with Metadata; Chapter in Summary; 5 Lexicons, Entity Extraction, and Geocoding LexiconsLexicons and Categorization; Lexical Correlation; Lexicon Consistency Checks; Thesauri and Vocabulary Expanders; Named Entity Extraction; Lexicons and Processing; Applications; Geocoding, Gazetteers, and Spatial Analysis; Geocoding; Gazetteers and the Geocoding Process; Operating Under Uncertainty; Spatial Analysis; Chapter in Summary; 6 Topic Extraction; How Machines Process Text; Unstructured Text; Extracting Meaning from Text; Applications of Topic Extraction; Comparing/Clustering Documents; Automatic Summarization; Automatic Keyword Generation Multilingual Analysis: Topic Extraction with Multiple LanguagesChapter in Summary; 7 Sentiment Analysis; Examining Emotions; Evolution; Evaluation; Analytical Resolution: Documents versus Objects; Hand-crafted versus Automatically Generated Lexicons; Other Sentiment Scales; Limitations; Measuring Language Rather Than Worldview; Chapter in Summary; 8 Similarity, Categorization and Clustering; Categorization; The Vector Space Model; Feature Selection; Feature Reduction; Learning Algorithm; Evaluating ATC Results; Benefi ts of ATC over Human Categorization; Limitations of ATC Applications of ATC |
| Record Nr. | UNINA-9910462683603321 |
Leetaru Kalev
|
||
| New York, : Routledge, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data mining methods for the content analyst [[electronic resource] ] : an introduction to the computational analysis of content / / Kalev Hannes Leetaru
| Data mining methods for the content analyst [[electronic resource] ] : an introduction to the computational analysis of content / / Kalev Hannes Leetaru |
| Autore | Leetaru Kalev |
| Pubbl/distr/stampa | New York, : Routledge, 2012 |
| Descrizione fisica | 1 online resource (121 p.) |
| Disciplina |
006.3/12
006.312 |
| Collana | Routledge communication series |
| Soggetto topico |
Data mining
Data mining - Statistical methods |
| ISBN |
0-203-14938-6
1-283-84361-7 1-136-51459-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
DATA MINING METHODS FOR THE CONTENT ANALYST An Introduction to the Computational Analysis of Content; Copyright; Contents; List of Tables and Figures; Acknowledgments; 1 Introduction; What Is Content Analysis?; Why Use Computerized Analysis Techniques?; Standalone Tools or Integrated Suites; Transitioning from Theory to Practice; Chapter in Summary; 2 Obtaining and Preparing Data; Collecting Data from Digital Text Repositories; Are the Data Meaningful?; Using Data in Unintended Ways; Analytical Resolution; Types of Data Sources; Finding Sources; Searching Text Collections
Sources of IncompletenessLicensing Restrictions and Content Blackouts; Measuring Viewership; Accuracy and Convenience Samples; Random Samples; Multimedia Content; Converting to Textual Format; Prosody; Example Data Sources; Patterns in Historical War Coverage; Competitive Intelligence; Global News Coverage; Downloading Content; Digital Content; Print Content; Preparing Content; Document Extraction; Cleaning; Post Filtering; Reforming/Reshaping; Content Proxy Extraction; Chapter in Summary; 3 Vocabulary Analysis; The Basics; Word Histograms; Readability Indexes; Normative Comparison Non-word AnalysisColloquialisms: Abbreviations and Slang; Restricting the Analytical Window; Vocabulary Comparison and Evolution/Chronemics; Advanced Topics; Syllables, Rhyming, and "Sounds Like"; Gender and Language; Authorship Attribution; Word Morphology, Stemming, and Lemmatization; Chapter in Summary; 4 Correlation and Co-occurrence; Understanding Correlation; Computing Word Correlations; Directionality; Concordance; Co-occurrence and Search; Language Variation and Lexicons; Non-co-occurrence; Correlation with Metadata; Chapter in Summary; 5 Lexicons, Entity Extraction, and Geocoding LexiconsLexicons and Categorization; Lexical Correlation; Lexicon Consistency Checks; Thesauri and Vocabulary Expanders; Named Entity Extraction; Lexicons and Processing; Applications; Geocoding, Gazetteers, and Spatial Analysis; Geocoding; Gazetteers and the Geocoding Process; Operating Under Uncertainty; Spatial Analysis; Chapter in Summary; 6 Topic Extraction; How Machines Process Text; Unstructured Text; Extracting Meaning from Text; Applications of Topic Extraction; Comparing/Clustering Documents; Automatic Summarization; Automatic Keyword Generation Multilingual Analysis: Topic Extraction with Multiple LanguagesChapter in Summary; 7 Sentiment Analysis; Examining Emotions; Evolution; Evaluation; Analytical Resolution: Documents versus Objects; Hand-crafted versus Automatically Generated Lexicons; Other Sentiment Scales; Limitations; Measuring Language Rather Than Worldview; Chapter in Summary; 8 Similarity, Categorization and Clustering; Categorization; The Vector Space Model; Feature Selection; Feature Reduction; Learning Algorithm; Evaluating ATC Results; Benefi ts of ATC over Human Categorization; Limitations of ATC Applications of ATC |
| Record Nr. | UNINA-9910786303103321 |
Leetaru Kalev
|
||
| New York, : Routledge, 2012 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data science : theory, analysis, and applications / / edited by Qurban A Memon, Shakeel Ahmed Khoja
| Data science : theory, analysis, and applications / / edited by Qurban A Memon, Shakeel Ahmed Khoja |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , [2020] |
| Descrizione fisica | 1 online resource (345 pages) |
| Disciplina | 006.312 |
| Soggetto topico | Data mining - Statistical methods |
| ISBN |
0-429-55882-1
0-429-26379-1 0-429-55435-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910793884903321 |
| Boca Raton : , : CRC Press, , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Data science : theory, analysis, and applications / / edited by Qurban A Memon, Shakeel Ahmed Khoja
| Data science : theory, analysis, and applications / / edited by Qurban A Memon, Shakeel Ahmed Khoja |
| Pubbl/distr/stampa | Boca Raton : , : CRC Press, , [2020] |
| Descrizione fisica | 1 online resource (345 pages) |
| Disciplina | 006.312 |
| Soggetto topico | Data mining - Statistical methods |
| ISBN |
0-429-55882-1
0-429-26379-1 0-429-55435-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910799926403321 |
| Boca Raton : , : CRC Press, , [2020] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of statistical analysis and data mining applications / / authors, Robert Nisbet, Gary Miner, Ken Yale ; guest authors of selected chapters, John Elder, Andy Peterson
| Handbook of statistical analysis and data mining applications / / authors, Robert Nisbet, Gary Miner, Ken Yale ; guest authors of selected chapters, John Elder, Andy Peterson |
| Autore | Nisbet Robert |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | London, England : , : Academic Press, , 2018 |
| Descrizione fisica | 1 online resource (824 pages) : illustrations (some color) |
| Disciplina | 006.312 |
| Soggetto topico | Data mining - Statistical methods |
| ISBN | 0-12-416645-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | History of phases of data analysis, basic theory, and the data mining process -- The algorithms and methods in data mining and predictive analytics and some domain areas -- Tutorials and case studies -- Models ensembles, model complexity; using the right model for the right use, significance, ethics, and the future and advanced processes. |
| Record Nr. | UNINA-9910583039803321 |
Nisbet Robert
|
||
| London, England : , : Academic Press, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of statistical analysis and data mining applications [[electronic resource] /] / Robert Nisbet, John Elder, Gary Miner
| Handbook of statistical analysis and data mining applications [[electronic resource] /] / Robert Nisbet, John Elder, Gary Miner |
| Autore | Nisbet Robert |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Academic Press/Elsevier, c2009 |
| Descrizione fisica | 1 online resource (859 p.) |
| Disciplina |
006.3/12 22
519.5 |
| Altri autori (Persone) |
ElderJohn F (John Fletcher)
MinerGary |
| Soggetto topico |
Data mining - Statistical methods
Multivariate analysis |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-282-16831-2
9786612168314 0-08-091203-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Handbook of Statistical Analysis and Data Mining Applications; Copyright Page; Table of Contents; Foreword 1; Foreword 2; Preface; Introduction; List of Tutorials by Guest Authors; Part 1: History of Phases of Data Analysis, Basic Theory, and the Data Mining Process; Chapter 1: The Background for Data Mining Practice; Assumptions of the Parametric Model; Two Views of Reality; Aristotle; Plato; The Rise of Modern Statistical Analysis: The Second Generation; Machine Learning Methods: The Third Generation; Statistical Learning Theory: The Fourth Generation
Chapter 2: Theoretical Considerations for Data MiningMajor Issues in Data Mining; General Requirements for Success in a Data Mining Project; The Importance of Domain Knowledge; Postscript; Some Caveats with Data Mining Solutions; Chapter 3: The Data Mining Process; CRISP-DM; Assess the Business Environment for Data Mining; Data Understanding (Mostly Science); References; Preamble; Chapter 4: Data Understanding and Preparation; Preamble; Issues That Should be Resolved; Splitting Data Part 1: Using a Wrapper Approach in Weka to Determine the Most Appropriate Variables for Your Neural Network ModelExample 4; Data Extraction; Data Weighting and Balancing; Data Filtering and Smoothing; Data Abstraction; Data Reduction; Data Sampling; Data Discretization; Data Derivation; Postscript; Chapter 5: Feature Selection; Inductive Database Approach; Bi-variate Methods; Multivariate Methods; Postscript; Complex Methods; The Other Two Ways of Using Feature Selection in STATISTICA: Interactive Workspace; Preamble; Chapter 6: Accessory Tools for Doing Data Mining; Preamble; Introduction Basic Descriptive StatisticsCombining Groups (Classes) for Predictive Data Mining; Generalized Linear Models (GLMs); Data Miner Workspace Templates; Comparison of Models with and Without Time-Based Features; Example: The IDP Facility of STATISTICA Data Miner; Ensembles in General; Part 2: The Algorithms in Data Mining and Text Mining, the Organization of the Three most common Data Mining Tools, and Selected Speci...; Chapter 7: Basic Algorithms for Data Mining: A Brief Overview; Preamble; STATISTICA Data Miner Recipe (DMRecipe); Automated Neural Nets; Generalized Additive Models (GAMs) Outputs of GAMsRecursive Partitioning; Pruning Trees; Bibliography; Chapter 8: Advanced Algorithms for Data Mining; The Physical Data Mart; Summary; Micro-Target the Profitable Customers; Quality Control Data Mining and Root Cause Analysis; Chapter 9: Text Mining and Natural Language Processing; The Development of Text Mining; Chapter 10: The Three Most Common Data Mining Software Tools; Preamble; SPSS Clementine Overview; Preamble; Setting the Default Directory; Visual Data Preparation for Data Mining: Taking Photos, Moving Pictures, and Objects into Spreadsheets Representing the Photos... Preamble |
| Record Nr. | UNINA-9910455538003321 |
Nisbet Robert
|
||
| Amsterdam ; ; Boston, : Academic Press/Elsevier, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of statistical analysis and data mining applications [[electronic resource] /] / Robert Nisbet, John Elder, Gary Miner
| Handbook of statistical analysis and data mining applications [[electronic resource] /] / Robert Nisbet, John Elder, Gary Miner |
| Autore | Nisbet Robert |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Academic Press/Elsevier, c2009 |
| Descrizione fisica | 1 online resource (859 p.) |
| Disciplina |
006.3/12 22
519.5 |
| Altri autori (Persone) |
ElderJohn F (John Fletcher)
MinerGary |
| Soggetto topico |
Data mining - Statistical methods
Multivariate analysis |
| ISBN |
1-282-16831-2
9786612168314 0-08-091203-6 |
| Classificazione | 31.73 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Handbook of Statistical Analysis and Data Mining Applications; Copyright Page; Table of Contents; Foreword 1; Foreword 2; Preface; Introduction; List of Tutorials by Guest Authors; Part 1: History of Phases of Data Analysis, Basic Theory, and the Data Mining Process; Chapter 1: The Background for Data Mining Practice; Assumptions of the Parametric Model; Two Views of Reality; Aristotle; Plato; The Rise of Modern Statistical Analysis: The Second Generation; Machine Learning Methods: The Third Generation; Statistical Learning Theory: The Fourth Generation
Chapter 2: Theoretical Considerations for Data MiningMajor Issues in Data Mining; General Requirements for Success in a Data Mining Project; The Importance of Domain Knowledge; Postscript; Some Caveats with Data Mining Solutions; Chapter 3: The Data Mining Process; CRISP-DM; Assess the Business Environment for Data Mining; Data Understanding (Mostly Science); References; Preamble; Chapter 4: Data Understanding and Preparation; Preamble; Issues That Should be Resolved; Splitting Data Part 1: Using a Wrapper Approach in Weka to Determine the Most Appropriate Variables for Your Neural Network ModelExample 4; Data Extraction; Data Weighting and Balancing; Data Filtering and Smoothing; Data Abstraction; Data Reduction; Data Sampling; Data Discretization; Data Derivation; Postscript; Chapter 5: Feature Selection; Inductive Database Approach; Bi-variate Methods; Multivariate Methods; Postscript; Complex Methods; The Other Two Ways of Using Feature Selection in STATISTICA: Interactive Workspace; Preamble; Chapter 6: Accessory Tools for Doing Data Mining; Preamble; Introduction Basic Descriptive StatisticsCombining Groups (Classes) for Predictive Data Mining; Generalized Linear Models (GLMs); Data Miner Workspace Templates; Comparison of Models with and Without Time-Based Features; Example: The IDP Facility of STATISTICA Data Miner; Ensembles in General; Part 2: The Algorithms in Data Mining and Text Mining, the Organization of the Three most common Data Mining Tools, and Selected Speci...; Chapter 7: Basic Algorithms for Data Mining: A Brief Overview; Preamble; STATISTICA Data Miner Recipe (DMRecipe); Automated Neural Nets; Generalized Additive Models (GAMs) Outputs of GAMsRecursive Partitioning; Pruning Trees; Bibliography; Chapter 8: Advanced Algorithms for Data Mining; The Physical Data Mart; Summary; Micro-Target the Profitable Customers; Quality Control Data Mining and Root Cause Analysis; Chapter 9: Text Mining and Natural Language Processing; The Development of Text Mining; Chapter 10: The Three Most Common Data Mining Software Tools; Preamble; SPSS Clementine Overview; Preamble; Setting the Default Directory; Visual Data Preparation for Data Mining: Taking Photos, Moving Pictures, and Objects into Spreadsheets Representing the Photos... Preamble |
| Record Nr. | UNINA-9910777944903321 |
Nisbet Robert
|
||
| Amsterdam ; ; Boston, : Academic Press/Elsevier, c2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||