Regularized System Identification : Learning Dynamic Models from Data
| Regularized System Identification : Learning Dynamic Models from Data |
| Autore | Pillonetto Gianluigi |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Cham, : Springer International Publishing AG, 2022 |
| Descrizione fisica | 1 online resource (394 p.) |
| Altri autori (Persone) |
ChenTianshi
ChiusoAlessandro De NicolaoGiuseppe LjungLennart |
| Collana | Communications and Control Engineering |
| Soggetto topico |
Machine learning
Automatic control engineering Statistical physics Bayesian inference Probability & statistics Cybernetics & systems theory |
| Soggetto non controllato |
System Identification
Machine Learning Linear Dynamical Systems Nonlinear Dynamical Systems Kernel-based Regularization Bayesian Interpretation of Regularization Gaussian Processes Reproducing Kernel Hilbert Spaces Estimation Theory Support Vector Machines Regularization Networks |
| ISBN | 3-030-95860-4 |
| Classificazione | COM004000MAT029000MAT029010SCI055000SCI064000TEC004000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgements -- Contents -- Abbreviations and Notation -- Notation -- Abbreviations -- 1 Bias -- 1.1 The Stein Effect -- 1.1.1 The James-Stein Estimator -- 1.1.2 Extensions of the James-Stein Estimator -- 1.2 Ridge Regression -- 1.3 Further Topics and Advanced Reading -- 1.4 Appendix: Proof of Theorem 1.1 -- References -- 2 Classical System Identification -- 2.1 The State-of-the-Art Identification Setup -- 2.2 mathcalM: Model Structures -- 2.2.1 Linear Time-Invariant Models -- 2.2.2 Nonlinear Models -- 2.3 mathcalI: Identification Methods-Criteria -- 2.3.1 A Maximum Likelihood (ML) View -- 2.4 Asymptotic Properties of the Estimated Models -- 2.4.1 Bias and Variance -- 2.4.2 Properties of the PEM Estimate as Ntoinfty -- 2.4.3 Trade-Off Between Bias and Variance -- 2.5 X: Experiment Design -- 2.6 mathcalV: Model Validation -- 2.6.1 Falsifying Models: Residual Analysis -- 2.6.2 Comparing Different Models -- 2.6.3 Cross-Validation -- References -- 3 Regularization of Linear Regression Models -- 3.1 Linear Regression -- 3.2 The Least Squares Method -- 3.2.1 Fundamentals of the Least Squares Method -- 3.2.2 Mean Squared Error and Model Order Selection -- 3.3 Ill-Conditioning -- 3.3.1 Ill-Conditioned Least Squares Problems -- 3.3.2 Ill-Conditioning in System Identification -- 3.4 Regularized Least Squares with Quadratic Penalties -- 3.4.1 Making an Ill-Conditioned LS Problem Well Conditioned -- 3.4.2 Equivalent Degrees of Freedom -- 3.5 Regularization Tuning for Quadratic Penalties -- 3.5.1 Mean Squared Error and Expected Validation Error -- 3.5.2 Efficient Sample Reuse -- 3.5.3 Expected In-Sample Validation Error -- 3.6 Regularized Least Squares with Other Types of Regularizers -- 3.6.1 ell1-Norm Regularization -- 3.6.2 Nuclear Norm Regularization -- 3.7 Further Topics and Advanced Reading -- 3.8 Appendix.
3.8.1 Fundamentals of Linear Algebra -- 3.8.2 Proof of Lemma 3.1 -- 3.8.3 Derivation of Predicted Residual Error Sum of Squares (PRESS) -- 3.8.4 Proof of Theorem 3.7 -- 3.8.5 A Variant of the Expected In-Sample Validation Error and Its Unbiased Estimator -- References -- 4 Bayesian Interpretation of Regularization -- 4.1 Preliminaries -- 4.2 Incorporating Prior Knowledge via Bayesian Estimation -- 4.2.1 Multivariate Gaussian Variables -- 4.2.2 The Gaussian Case -- 4.2.3 The Linear Gaussian Model -- 4.2.4 Hierarchical Bayes: Hyperparameters -- 4.3 Bayesian Interpretation of the James-Stein Estimator -- 4.4 Full and Empirical Bayes Approaches -- 4.5 Improper Priors and the Bias Space -- 4.6 Maximum Entropy Priors -- 4.7 Model Approximation via Optimal Projection -- 4.8 Equivalent Degrees of Freedom -- 4.9 Bayesian Function Reconstruction -- 4.10 Markov Chain Monte Carlo Estimation -- 4.11 Model Selection Using Bayes Factors -- 4.12 Further Topics and Advanced Reading -- 4.13 Appendix -- 4.13.1 Proof of Theorem 4.1 -- 4.13.2 Proof of Theorem 4.2 -- 4.13.3 Proof of Lemma 4.1 -- 4.13.4 Proof of Theorem 4.3 -- 4.13.5 Proof of Theorem 4.6 -- 4.13.6 Proof of Proposition 4.3 -- 4.13.7 Proof of Theorem 4.8 -- References -- 5 Regularization for Linear System Identification -- 5.1 Preliminaries -- 5.2 MSE and Regularization -- 5.3 Optimal Regularization for FIR Models -- 5.4 Bayesian Formulation and BIBO Stability -- 5.5 Smoothness and Contractivity: Time- and Frequency-Domain Interpretations -- 5.5.1 Maximum Entropy Priors for Smoothness and Stability: From Splines to Dynamical Systems -- 5.6 Regularization and Basis Expansion -- 5.7 Hankel Nuclear Norm Regularization -- 5.8 Historical Overview -- 5.8.1 The Distributed Lag Estimator: Prior Means and Smoothing -- 5.8.2 Frequency-Domain Smoothing and Stability. 5.8.3 Exponential Stability and Stochastic Embedding -- 5.9 Further Topics and Advanced Reading -- 5.10 Appendix -- 5.10.1 Optimal Kernel -- 5.10.2 Proof of Lemma 5.1 -- 5.10.3 Proof of Theorem 5.5 -- 5.10.4 Proof of Corollary 5.1 -- 5.10.5 Proof of Lemma 5.2 -- 5.10.6 Proof of Theorem 5.6 -- 5.10.7 Proof of Lemma 5.5 -- 5.10.8 Forward Representations of Stable-Splines Kernels -- References -- 6 Regularization in Reproducing Kernel Hilbert Spaces -- 6.1 Preliminaries -- 6.2 Reproducing Kernel Hilbert Spaces -- 6.2.1 Reproducing Kernel Hilbert Spaces Induced by Operations on Kernels -- 6.3 Spectral Representations of Reproducing Kernel Hilbert Spaces -- 6.3.1 More General Spectral Representation -- 6.4 Kernel-Based Regularized Estimation -- 6.4.1 Regularization in Reproducing Kernel Hilbert Spaces and the Representer Theorem -- 6.4.2 Representer Theorem Using Linear and Bounded Functionals -- 6.5 Regularization Networks and Support Vector Machines -- 6.5.1 Regularization Networks -- 6.5.2 Robust Regression via Huber Loss -- 6.5.3 Support Vector Regression -- 6.5.4 Support Vector Classification -- 6.6 Kernels Examples -- 6.6.1 Linear Kernels, Regularized Linear Regression and System Identification -- 6.6.2 Kernels Given by a Finite Number of Basis Functions -- 6.6.3 Feature Map and Feature Space -- 6.6.4 Polynomial Kernels -- 6.6.5 Translation Invariant and Radial Basis Kernels -- 6.6.6 Spline Kernels -- 6.6.7 The Bias Space and the Spline Estimator -- 6.7 Asymptotic Properties -- 6.7.1 The Regression Function/Optimal Predictor -- 6.7.2 Regularization Networks: Statistical Consistency -- 6.7.3 Connection with Statistical Learning Theory -- 6.8 Further Topics and Advanced Reading -- 6.9 Appendix -- 6.9.1 Fundamentals of Functional Analysis -- 6.9.2 Proof of Theorem 6.1 -- 6.9.3 Proof of Theorem 6.10 -- 6.9.4 Proof of Theorem 6.13. 6.9.5 Proofs of Theorems 6.15 and 6.16 -- 6.9.6 Proof of Theorem 6.21 -- References -- 7 Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- 7.1 Regularized Linear System Identification in Reproducing Kernel Hilbert Spaces -- 7.1.1 Discrete-Time Case -- 7.1.2 Continuous-Time Case -- 7.1.3 More General Use of the Representer Theorem for Linear System Identification -- 7.1.4 Connection with Bayesian Estimation of Gaussian Processes -- 7.1.5 A Numerical Example -- 7.2 Kernel Tuning -- 7.2.1 Marginal Likelihood Maximization -- 7.2.2 Stein's Unbiased Risk Estimator -- 7.2.3 Generalized Cross-Validation -- 7.3 Theory of Stable Reproducing Kernel Hilbert Spaces -- 7.3.1 Kernel Stability: Necessary and Sufficient Conditions -- 7.3.2 Inclusions of Reproducing Kernel Hilbert Spaces in More General Lebesque Spaces -- 7.4 Further Insights into Stable Reproducing Kernel Hilbert Spaces -- 7.4.1 Inclusions Between Notable Kernel Classes -- 7.4.2 Spectral Decomposition of Stable Kernels -- 7.4.3 Mercer Representations of Stable Reproducing Kernel Hilbert Spaces and of Regularized Estimators -- 7.4.4 Necessary and Sufficient Stability Condition Using Kernel Eigenvectors and Eigenvalues -- 7.5 Minimax Properties of the Stable Spline Estimator -- 7.5.1 Data Generator and Minimax Optimality -- 7.5.2 Stable Spline Estimator -- 7.5.3 Bounds on the Estimation Error and Minimax Properties -- 7.6 Further Topics and Advanced Reading -- 7.7 Appendix -- 7.7.1 Derivation of the First-Order Stable Spline Norm -- 7.7.2 Proof of Proposition 7.1 -- 7.7.3 Proof of Theorem 7.5 -- 7.7.4 Proof of Theorem 7.7 -- 7.7.5 Proof of Theorem 7.9 -- References -- 8 Regularization for Nonlinear System Identification -- 8.1 Nonlinear System Identification -- 8.2 Kernel-Based Nonlinear System Identification. 8.2.1 Connection with Bayesian Estimation of Gaussian Random Fields -- 8.2.2 Kernel Tuning -- 8.3 Kernels for Nonlinear System Identification -- 8.3.1 A Numerical Example -- 8.3.2 Limitations of the Gaussian and Polynomial Kernel -- 8.3.3 Nonlinear Stable Spline Kernel -- 8.3.4 Numerical Example Revisited: Use of the Nonlinear Stable Spline Kernel -- 8.4 Explicit Regularization of Volterra Models -- 8.5 Other Examples of Regularization in Nonlinear System Identification -- 8.5.1 Neural Networks and Deep Learning Models -- 8.5.2 Static Nonlinearities and Gaussian Process (GP) -- 8.5.3 Block-Oriented Models -- 8.5.4 Hybrid Models -- 8.5.5 Sparsity and Variable Selection -- References -- 9 Numerical Experiments and Real World Cases -- 9.1 Identification of Discrete-Time Output Error Models -- 9.1.1 Monte Carlo Studies with a Fixed Output Error Model -- 9.1.2 Monte Carlo Studies with Different Output Error Models -- 9.1.3 Real Data: A Robot Arm -- 9.1.4 Real Data: A Hairdryer -- 9.2 Identification of ARMAX Models -- 9.2.1 Monte Carlo Experiment -- 9.2.2 Real Data: Temperature Prediction -- 9.3 Multi-task Learning and Population Approaches -- 9.3.1 Kernel-Based Multi-task Learning -- 9.3.2 Numerical Example: Real Pharmacokinetic Data -- References -- Appendix Index -- Index. |
| Record Nr. | UNINA-9910568256103321 |
Pillonetto Gianluigi
|
||
| Cham, : Springer International Publishing AG, 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Uncertainty in Mechanical Engineering : Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7-8 2021
| Uncertainty in Mechanical Engineering : Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7-8 2021 |
| Autore | Pelz Peter F |
| Pubbl/distr/stampa | Springer Nature, 2021 |
| Descrizione fisica | 1 online resource (313 pages) |
| Altri autori (Persone) | GrochePeter |
| Collana | Lecture Notes in Mechanical Engineering |
| Soggetto topico |
Technical design
Statistical physics Cybernetics & systems theory Production engineering |
| Soggetto non controllato |
Engineering Design
Complex Systems Complexity Manufacturing, Machines, Tools, Processes Applied Dynamical Systems Machines, Tools, Processes Open Access Book Mastering Uncertainty by Digitalization Uncertainty in Manufacturing and Production Resilient Technical Systems Uncertainty Quantification Optimization Under Uncertainty Model Uncertainty Computer-Aided Design (CAD) Uncertain Operating Conditions Topology Optimization for Additive Manufacturing Predicting Vibroacoustic Behavior Uncertainty in Finite Element Models Imprecision in Data/Models Legal Uncertainty of Autonomous Systems Resilient Water Supply Systems Designing Technical Systems Collaborative Research Centre 805 SFB 805 Technical design Statistical physics Dynamics & statics Cybernetics & systems theory Production engineering |
| ISBN | 3-030-77256-X |
| Classificazione | SCI055000TEC009000TEC016020TEC020000 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910482868203321 |
Pelz Peter F
|
||
| Springer Nature, 2021 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||