top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Regularized System Identification : Learning Dynamic Models from Data
Regularized System Identification : Learning Dynamic Models from Data
Autore Pillonetto Gianluigi
Edizione [1st ed.]
Pubbl/distr/stampa Cham, : Springer International Publishing AG, 2022
Descrizione fisica 1 online resource (394 p.)
Altri autori (Persone) ChenTianshi
ChiusoAlessandro
De NicolaoGiuseppe
LjungLennart
Collana Communications and Control Engineering
Soggetto topico Machine learning
Automatic control engineering
Statistical physics
Bayesian inference
Probability & statistics
Cybernetics & systems theory
Soggetto non controllato System Identification
Machine Learning
Linear Dynamical Systems
Nonlinear Dynamical Systems
Kernel-based Regularization
Bayesian Interpretation of Regularization
Gaussian Processes
Reproducing Kernel Hilbert Spaces
Estimation Theory
Support Vector Machines
Regularization Networks
ISBN 3-030-95860-4
Classificazione COM004000MAT029000MAT029010SCI055000SCI064000TEC004000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Abbreviations and Notation -- Notation -- Abbreviations -- 1 Bias -- 1.1 The Stein Effect -- 1.1.1 The James-Stein Estimator -- 1.1.2 Extensions of the James-Stein Estimator -- 1.2 Ridge Regression -- 1.3 Further Topics and Advanced Reading -- 1.4 Appendix: Proof of Theorem 1.1 -- References -- 2 Classical System Identification -- 2.1 The State-of-the-Art Identification Setup -- 2.2 mathcalM: Model Structures -- 2.2.1 Linear Time-Invariant Models -- 2.2.2 Nonlinear Models -- 2.3 mathcalI: Identification Methods-Criteria -- 2.3.1 A Maximum Likelihood (ML) View -- 2.4 Asymptotic Properties of the Estimated Models -- 2.4.1 Bias and Variance -- 2.4.2 Properties of the PEM Estimate as Ntoinfty -- 2.4.3 Trade-Off Between Bias and Variance -- 2.5 X: Experiment Design -- 2.6 mathcalV: Model Validation -- 2.6.1 Falsifying Models: Residual Analysis -- 2.6.2 Comparing Different Models -- 2.6.3 Cross-Validation -- References -- 3 Regularization of Linear Regression Models -- 3.1 Linear Regression -- 3.2 The Least Squares Method -- 3.2.1 Fundamentals of the Least Squares Method -- 3.2.2 Mean Squared Error and Model Order Selection -- 3.3 Ill-Conditioning -- 3.3.1 Ill-Conditioned Least Squares Problems -- 3.3.2 Ill-Conditioning in System Identification -- 3.4 Regularized Least Squares with Quadratic Penalties -- 3.4.1 Making an Ill-Conditioned LS Problem Well Conditioned -- 3.4.2 Equivalent Degrees of Freedom -- 3.5 Regularization Tuning for Quadratic Penalties -- 3.5.1 Mean Squared Error and Expected Validation Error -- 3.5.2 Efficient Sample Reuse -- 3.5.3 Expected In-Sample Validation Error -- 3.6 Regularized Least Squares with Other Types of Regularizers -- 3.6.1 ell1-Norm Regularization -- 3.6.2 Nuclear Norm Regularization -- 3.7 Further Topics and Advanced Reading -- 3.8 Appendix.
3.8.1 Fundamentals of Linear Algebra -- 3.8.2 Proof of Lemma 3.1 -- 3.8.3 Derivation of Predicted Residual Error Sum of Squares (PRESS) -- 3.8.4 Proof of Theorem 3.7 -- 3.8.5 A Variant of the Expected In-Sample Validation Error and Its Unbiased Estimator -- References -- 4 Bayesian Interpretation of Regularization -- 4.1 Preliminaries -- 4.2 Incorporating Prior Knowledge via Bayesian Estimation -- 4.2.1 Multivariate Gaussian Variables -- 4.2.2 The Gaussian Case -- 4.2.3 The Linear Gaussian Model -- 4.2.4 Hierarchical Bayes: Hyperparameters -- 4.3 Bayesian Interpretation of the James-Stein Estimator -- 4.4 Full and Empirical Bayes Approaches -- 4.5 Improper Priors and the Bias Space -- 4.6 Maximum Entropy Priors -- 4.7 Model Approximation via Optimal Projection -- 4.8 Equivalent Degrees of Freedom -- 4.9 Bayesian Function Reconstruction -- 4.10 Markov Chain Monte Carlo Estimation -- 4.11 Model Selection Using Bayes Factors -- 4.12 Further Topics and Advanced Reading -- 4.13 Appendix -- 4.13.1 Proof of Theorem 4.1 -- 4.13.2 Proof of Theorem 4.2 -- 4.13.3 Proof of Lemma 4.1 -- 4.13.4 Proof of Theorem 4.3 -- 4.13.5 Proof of Theorem 4.6 -- 4.13.6 Proof of Proposition 4.3 -- 4.13.7 Proof of Theorem 4.8 -- References -- 5 Regularization for Linear System Identification -- 5.1 Preliminaries -- 5.2 MSE and Regularization -- 5.3 Optimal Regularization for FIR Models -- 5.4 Bayesian Formulation and BIBO Stability -- 5.5 Smoothness and Contractivity: Time- and Frequency-Domain Interpretations -- 5.5.1 Maximum Entropy Priors for Smoothness and Stability: From Splines to Dynamical Systems -- 5.6 Regularization and Basis Expansion -- 5.7 Hankel Nuclear Norm Regularization -- 5.8 Historical Overview -- 5.8.1 The Distributed Lag Estimator: Prior Means and Smoothing -- 5.8.2 Frequency-Domain Smoothing and Stability.
5.8.3 Exponential Stability and Stochastic Embedding -- 5.9 Further Topics and Advanced Reading -- 5.10 Appendix -- 5.10.1 Optimal Kernel -- 5.10.2 Proof of Lemma 5.1 -- 5.10.3 Proof of Theorem 5.5 -- 5.10.4 Proof of Corollary 5.1 -- 5.10.5 Proof of Lemma 5.2 -- 5.10.6 Proof of Theorem 5.6 -- 5.10.7 Proof of Lemma 5.5 -- 5.10.8 Forward Representations of Stable-Splines Kernels -- References -- 6 Regularization in Reproducing Kernel Hilbert Spaces -- 6.1 Preliminaries -- 6.2 Reproducing Kernel Hilbert Spaces -- 6.2.1 Reproducing Kernel Hilbert Spaces Induced by Operations on Kernels -- 6.3 Spectral Representations of Reproducing Kernel Hilbert Spaces -- 6.3.1 More General Spectral Representation -- 6.4 Kernel-Based Regularized Estimation -- 6.4.1 Regularization in Reproducing Kernel Hilbert Spaces and the Representer Theorem -- 6.4.2 Representer Theorem Using Linear and Bounded Functionals -- 6.5 Regularization Networks and Support Vector Machines -- 6.5.1 Regularization Networks -- 6.5.2 Robust Regression via Huber Loss -- 6.5.3 Support Vector Regression -- 6.5.4 Support Vector Classification -- 6.6 Kernels Examples -- 6.6.1 Linear Kernels, Regularized Linear Regression and System Identification -- 6.6.2 Kernels Given by a Finite Number of Basis Functions -- 6.6.3 Feature Map and Feature Space -- 6.6.4 Polynomial Kernels -- 6.6.5 Translation Invariant and Radial Basis Kernels -- 6.6.6 Spline Kernels -- 6.6.7 The Bias Space and the Spline Estimator -- 6.7 Asymptotic Properties -- 6.7.1 The Regression Function/Optimal Predictor -- 6.7.2 Regularization Networks: Statistical Consistency -- 6.7.3 Connection with Statistical Learning Theory -- 6.8 Further Topics and Advanced Reading -- 6.9 Appendix -- 6.9.1 Fundamentals of Functional Analysis -- 6.9.2 Proof of Theorem 6.1 -- 6.9.3 Proof of Theorem 6.10 -- 6.9.4 Proof of Theorem 6.13.
6.9.5 Proofs of Theorems 6.15 and 6.16 -- 6.9.6 Proof of Theorem 6.21 -- References -- 7 Regularization in Reproducing Kernel Hilbert Spaces for Linear System Identification -- 7.1 Regularized Linear System Identification in Reproducing Kernel Hilbert Spaces -- 7.1.1 Discrete-Time Case -- 7.1.2 Continuous-Time Case -- 7.1.3 More General Use of the Representer Theorem for Linear System Identification -- 7.1.4 Connection with Bayesian Estimation of Gaussian Processes -- 7.1.5 A Numerical Example -- 7.2 Kernel Tuning -- 7.2.1 Marginal Likelihood Maximization -- 7.2.2 Stein's Unbiased Risk Estimator -- 7.2.3 Generalized Cross-Validation -- 7.3 Theory of Stable Reproducing Kernel Hilbert Spaces -- 7.3.1 Kernel Stability: Necessary and Sufficient Conditions -- 7.3.2 Inclusions of Reproducing Kernel Hilbert Spaces in More General Lebesque Spaces -- 7.4 Further Insights into Stable Reproducing Kernel Hilbert Spaces -- 7.4.1 Inclusions Between Notable Kernel Classes -- 7.4.2 Spectral Decomposition of Stable Kernels -- 7.4.3 Mercer Representations of Stable Reproducing Kernel Hilbert Spaces and of Regularized Estimators -- 7.4.4 Necessary and Sufficient Stability Condition Using Kernel Eigenvectors and Eigenvalues -- 7.5 Minimax Properties of the Stable Spline Estimator -- 7.5.1 Data Generator and Minimax Optimality -- 7.5.2 Stable Spline Estimator -- 7.5.3 Bounds on the Estimation Error and Minimax Properties -- 7.6 Further Topics and Advanced Reading -- 7.7 Appendix -- 7.7.1 Derivation of the First-Order Stable Spline Norm -- 7.7.2 Proof of Proposition 7.1 -- 7.7.3 Proof of Theorem 7.5 -- 7.7.4 Proof of Theorem 7.7 -- 7.7.5 Proof of Theorem 7.9 -- References -- 8 Regularization for Nonlinear System Identification -- 8.1 Nonlinear System Identification -- 8.2 Kernel-Based Nonlinear System Identification.
8.2.1 Connection with Bayesian Estimation of Gaussian Random Fields -- 8.2.2 Kernel Tuning -- 8.3 Kernels for Nonlinear System Identification -- 8.3.1 A Numerical Example -- 8.3.2 Limitations of the Gaussian and Polynomial Kernel -- 8.3.3 Nonlinear Stable Spline Kernel -- 8.3.4 Numerical Example Revisited: Use of the Nonlinear Stable Spline Kernel -- 8.4 Explicit Regularization of Volterra Models -- 8.5 Other Examples of Regularization in Nonlinear System Identification -- 8.5.1 Neural Networks and Deep Learning Models -- 8.5.2 Static Nonlinearities and Gaussian Process (GP) -- 8.5.3 Block-Oriented Models -- 8.5.4 Hybrid Models -- 8.5.5 Sparsity and Variable Selection -- References -- 9 Numerical Experiments and Real World Cases -- 9.1 Identification of Discrete-Time Output Error Models -- 9.1.1 Monte Carlo Studies with a Fixed Output Error Model -- 9.1.2 Monte Carlo Studies with Different Output Error Models -- 9.1.3 Real Data: A Robot Arm -- 9.1.4 Real Data: A Hairdryer -- 9.2 Identification of ARMAX Models -- 9.2.1 Monte Carlo Experiment -- 9.2.2 Real Data: Temperature Prediction -- 9.3 Multi-task Learning and Population Approaches -- 9.3.1 Kernel-Based Multi-task Learning -- 9.3.2 Numerical Example: Real Pharmacokinetic Data -- References -- Appendix Index -- Index.
Record Nr. UNINA-9910568256103321
Pillonetto Gianluigi  
Cham, : Springer International Publishing AG, 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Uncertainty in Mechanical Engineering : Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7-8 2021
Uncertainty in Mechanical Engineering : Proceedings of the 4th International Conference on Uncertainty in Mechanical Engineering (ICUME 2021), June 7-8 2021
Autore Pelz Peter F
Pubbl/distr/stampa Springer Nature, 2021
Descrizione fisica 1 online resource (313 pages)
Altri autori (Persone) GrochePeter
Collana Lecture Notes in Mechanical Engineering
Soggetto topico Technical design
Statistical physics
Cybernetics & systems theory
Production engineering
Soggetto non controllato Engineering Design
Complex Systems
Complexity
Manufacturing, Machines, Tools, Processes
Applied Dynamical Systems
Machines, Tools, Processes
Open Access Book
Mastering Uncertainty by Digitalization
Uncertainty in Manufacturing and Production
Resilient Technical Systems
Uncertainty Quantification
Optimization Under Uncertainty
Model Uncertainty
Computer-Aided Design (CAD)
Uncertain Operating Conditions
Topology Optimization for Additive Manufacturing
Predicting Vibroacoustic Behavior
Uncertainty in Finite Element Models
Imprecision in Data/Models
Legal Uncertainty of Autonomous Systems
Resilient Water Supply Systems
Designing Technical Systems
Collaborative Research Centre 805
SFB 805
Technical design
Statistical physics
Dynamics & statics
Cybernetics & systems theory
Production engineering
ISBN 3-030-77256-X
Classificazione SCI055000TEC009000TEC016020TEC020000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910482868203321
Pelz Peter F  
Springer Nature, 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui