top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Abiotic stresses in crop plants / / edited by Usha Chakraborty and Bishwanath Chakraborty
Abiotic stresses in crop plants / / edited by Usha Chakraborty and Bishwanath Chakraborty
Pubbl/distr/stampa Oxfordshire, England ; ; Boston, Massachusetts : , : CABI, , 2015
Descrizione fisica 1 online resource (282 p.)
Disciplina 581
632
Soggetto topico Crops - Effect of stress on
Crops - Physiology
ISBN 1-78924-366-1
1-78064-374-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Abiotic Stresses in Crop Plants""; ""Copyright""; ""Contents""; ""Contributors""; ""Introduction""; ""About the Editors""; ""1: Heat-Shock Proteins and Molecular Chaperones: Role in Regulation of Cellular Proteostasis and Stress Management""; ""Abstract""; ""1.1 Introduction""; ""1.2 Molecular Chaperones: Functions and Properties""; ""1.3 Factors Promoting Protein Mis-Folding and Aggregation""; ""1.4 Reactive Oxygen Species: Positive and Negative Impacts""; ""1.5 Principal Molecular Chaperones: Heat-Shock Proteins""; ""1.6 The Ubiquitous Holdases: Small Heat-Shock Proteins""
""1.7 Structural Characteristics of Small Heat-Shock Proteins""""1.8 The Yeast Hsp12: an Unusual Small Heat-Shock Protein""; ""1.9 Hsp60 Family of Chaperones: the Chaperonins""; ""1.9.1 The Escherichia coli GroEL-ES complex""; ""1.10 The Eukaryotic Chaperonin Complex""; ""1.11 Dynamic Hexameric ATPases: Clp/Hsp100 Disaggregases""; ""1.12 The Hsp70 (DnaK) Family: Highly Conserved Allosteric Foldases""; ""1.13 Bacterial J-Proteins and Eukaryotic Hsp40: Co-Chaperones of Hsp70s""; ""1.14 Hsp90, the Multifaceted Chaperone:Myriad Functions and Varied Clientele""
""1.15 Co-Chaperones of Hsp90 Influenceits Catalytic Activity""""1.16 Hsp90 and Co-Chaperones: a Vital Role in Plant and Animal Pathology""; ""1.17 Concluding Comments""; ""References""; ""2: Heat Response, Senescence and Reproductive Development in Plants""; ""Abstract""; ""2.1 Introduction""; ""2.2 Leaf Senescence Under High Temperature Stress""; ""2.3 Reproductive Development Under Heat Stress In Crop Plants""; ""2.3.1 Wheat""; ""2.3.2 Maize""; ""2.3.3 Rice""; ""2.4 Mechanisms of Heat Tolerance""; ""2.4.1 Reactive oxygen species defence under heat stress""
""2.4.2 Heat shock proteins and transcription factors during heat stress""""2.4.3 Sugar metabolism under high temperature stress""; ""2.4.4 Epigenetic regulation of heat-stress response in plants""; ""2.5 Conclusions and Future Research""; ""Acknowledgement""; ""References""; ""3: Ethylene, Nitric Oxide and Haemoglobin sin Plant Tolerance to Flooding""; ""Abstract""; ""3.1 Introduction""; ""3.2 Ethylene, a Major Regulator of Flooding Tolerance""; ""3.3 Nitric Oxide: a Suspected Important Player in Submergence Tolerance?""; ""References""
""4: Monitoring the Activation of Jasmonate Biosynthesis Genes for Selection of Chickpea Hybrids Tolerant to Drought Stress""""Abstract""; ""4.1 Introduction""; ""4.2 The Jasmonate Biosynthesis Pathway and Jasmonic Acid Signal Transduction""; ""4.3 Plant Roots, Hormone Crosstalk and Involvement in Stress response""; ""4.4 Abiotic Stress Response in Drought and Salt Stresses: Role of Jasmonates""; ""4.5 Chickpea Root Response to Abiotic Stresses""; ""4.6 Nitric Oxide Regulation and Epigenetic Control of Jasmonic Acid Signalling""; ""4.7 Breeding Strategies""; ""Acknowledgements""
""References""
Record Nr. UNINA-9910626103903321
Oxfordshire, England ; ; Boston, Massachusetts : , : CABI, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Abiotic stresses in plants / edited by Luigi Sanità di Toppi, Barbara Pawlik-Skowronska
Abiotic stresses in plants / edited by Luigi Sanità di Toppi, Barbara Pawlik-Skowronska
Pubbl/distr/stampa Dordrecht ; Boston : Kluwer Academic Publishers, c2003
Descrizione fisica xviii, 233 p. : ill., ; 25 cm
Disciplina 632.1
Altri autori (Persone) Sanità Di Toppi, Luigi
Pawlik-Skowronska, Barbara
Soggetto topico Crops - Effect of stress on
Crops - Physiology
ISBN 1402016484
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000641899707536
Dordrecht ; Boston : Kluwer Academic Publishers, c2003
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Advances in rice research for abiotic stress tolerance / / edited by Mirza Hasanuzzaman, Masayuki Fujita, Kamrun Nahar, Jiban Krishna Biswas
Advances in rice research for abiotic stress tolerance / / edited by Mirza Hasanuzzaman, Masayuki Fujita, Kamrun Nahar, Jiban Krishna Biswas
Pubbl/distr/stampa Duxford : , : Woodhead Publishing, , [2019]
Descrizione fisica 1 online resource (988 pages) : color illustrations
Disciplina 633.18
Soggetto topico Crops - Effect of stress on
ISBN 0-12-814333-9
0-12-814332-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910583309903321
Duxford : , : Woodhead Publishing, , [2019]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Augmenting crop productivity in stress environment / / Shamim Akhtar Ansari, Mohammad Israil Ansari, and Azamal Husen
Augmenting crop productivity in stress environment / / Shamim Akhtar Ansari, Mohammad Israil Ansari, and Azamal Husen
Autore Ansari Shamim Akhtar
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (402 pages)
Disciplina 632.1
Soggetto topico Crops - Effect of stress on
Crops - Physiology
Conreu
Efecte de l'estrès sobre les plantes
Fisiologia vegetal
Soggetto genere / forma Llibres electrònics
ISBN 981-16-6361-0
981-16-6360-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910743231403321
Ansari Shamim Akhtar  
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Environmental injury to plants / edited by Frank Katterman
Environmental injury to plants / edited by Frank Katterman
Pubbl/distr/stampa San Diego : Academic Press, c1990
Descrizione fisica xii, 290 p. : ill. ; 24 cm
Disciplina 632.1
Altri autori (Persone) Katterman, Frank
Soggetto topico Crops - Effect of stress on
Crops - Physiology
ISBN 0124013503
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISALENTO-991000214439707536
San Diego : Academic Press, c1990
Materiale a stampa
Lo trovi qui: Univ. del Salento
Opac: Controlla la disponibilità qui
Genes for plant abiotic stress [[electronic resource] /] / editors, Matthew A. Jenks, Andrew J. Wood
Genes for plant abiotic stress [[electronic resource] /] / editors, Matthew A. Jenks, Andrew J. Wood
Pubbl/distr/stampa Ames, IA, : Wiley-Blackwell, 2009
Descrizione fisica 1 online resource (345 p.)
Disciplina 631.5233
632.1
Altri autori (Persone) JenksMatthew A
WoodAndrew J
Soggetto topico Crops - Effect of stress on
Crop improvement
Crops and climate
Crops - Physiology
Crops - Development
Soggetto genere / forma Electronic books.
ISBN 1-282-30344-9
9786612303449
0-8138-0938-X
0-8138-0906-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Genes for Plant Abiotic Stress; Contents; Contributors; Preface; Section 1: Genetic Determinants of Plant Adaptation under Water Stress; 1: Genetic Determinants of Stomatal Function; Introduction; Arabidopsis as a Model System; How Do Stomates Sense Drought Stress?; Signaling Events inside Guard Cells in Response to Drought; Cell Signaling Mutants with Altered Stomatal Responses; Transcriptional Regulation in Stomatal Drought Response; Summary; References; 2: Pathways and Genetic Determinants for Cell Wall-Based Osmotic Stress Tolerance in the Arabidopsis thaliana Root System; Introduction
Genes That Affect the Cell Wall and Plant Stress ToleranceGenes and Proteins in Cellulose Biosynthesis; Pathways Involved in N-glycosylation and N-glycan Modifications; Dolichol Biosynthesis; Sugar-nucleotide Biosynthesis; Assembly of Core Oligosaccharide; Oligosaccharyltransferase; Processing of Core Oligosaccharides in the ER; Unfolded Protein Response and Osmotic Stress Signaling; N-glycan Re-glycosylation and ER-associated Protein Degradation; N-glycan Modification in the Golgi Apparatus; Ascorbate as an Interface between the N-glycosylation Pathway and Oxidative Stress Response
Biosynthesis of GPI AnchorMicrotubules; Conclusion; References; 3: Transcription and Signaling Factors in the Drought Response Regulatory Network; Introduction; Drought Stress Perception; Systems Biology Approaches; Transcriptomic Studies of Drought Stress; The DREB/CBF Regulon; ABA Signaling; Reactive Oxygen Signaling; Integration of Stress Regulatory Networks; Assembling the Known Pathways and Expanding Using Gene Expression Networks' Predicted Protein Interactions; Acknowledgments; References; Section 2: Genes for Crop Adaptation to Poor Soil
4: Genetic Determinants of Salinity Tolerance in Crop PlantsIntroduction; Salinity Tolerance; Conclusion; References; 5: Unraveling the Mechanisms Underlying Aluminum-dependent Root Growth Inhibition; Introduction; Mechanisms of Aluminum Toxicity; Aluminum Resistance Mechanisms; Aluminum Tolerance Mechanisms; Arabidopsis as a Model System for Aluminum Resistance, Tolerance, and Toxicity; Aluminum-sensitive Arabidopsis Mutants; The Role of ALS3 in Al Tolerance; ALS1 Encodes a Half-type ABC Transporter Required for Aluminum Tolerance
Other Arabidopsis Factors Required for Aluminum Resistance/ToleranceIdentification of Aluminum-tolerant Mutants in Arabidopsis; The Nature of the alt1 Mutations; Conclusions; References; 6: Genetic Determinants of Phosphate Use Effciency in Crops; Introduction; Why Improve Crop Nutrition and the Relationship with World Food Security?; Phosphorus and Crops: Phosphorus as an Essential Nutrient and Its Supply as a Key Component to Crop Yield; Phosphorus and Plant Metabolism: Regulatory and Structural Functions
Phosphate Starvation: Adaptations to Phosphate Starvation and Current Knowledge about Phosphate Sensing and Signaling Networks during Phosphate Stress
Record Nr. UNINA-9910139777003321
Ames, IA, : Wiley-Blackwell, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genes for plant abiotic stress [[electronic resource] /] / editors, Matthew A. Jenks, Andrew J. Wood
Genes for plant abiotic stress [[electronic resource] /] / editors, Matthew A. Jenks, Andrew J. Wood
Pubbl/distr/stampa Ames, IA, : Wiley-Blackwell, 2009
Descrizione fisica 1 online resource (345 p.)
Disciplina 631.5233
632.1
Altri autori (Persone) JenksMatthew A
WoodAndrew J
Soggetto topico Crops - Effect of stress on
Crop improvement
Crops and climate
Crops - Physiology
Crops - Development
ISBN 1-282-30344-9
9786612303449
0-8138-0938-X
0-8138-0906-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Genes for Plant Abiotic Stress; Contents; Contributors; Preface; Section 1: Genetic Determinants of Plant Adaptation under Water Stress; 1: Genetic Determinants of Stomatal Function; Introduction; Arabidopsis as a Model System; How Do Stomates Sense Drought Stress?; Signaling Events inside Guard Cells in Response to Drought; Cell Signaling Mutants with Altered Stomatal Responses; Transcriptional Regulation in Stomatal Drought Response; Summary; References; 2: Pathways and Genetic Determinants for Cell Wall-Based Osmotic Stress Tolerance in the Arabidopsis thaliana Root System; Introduction
Genes That Affect the Cell Wall and Plant Stress ToleranceGenes and Proteins in Cellulose Biosynthesis; Pathways Involved in N-glycosylation and N-glycan Modifications; Dolichol Biosynthesis; Sugar-nucleotide Biosynthesis; Assembly of Core Oligosaccharide; Oligosaccharyltransferase; Processing of Core Oligosaccharides in the ER; Unfolded Protein Response and Osmotic Stress Signaling; N-glycan Re-glycosylation and ER-associated Protein Degradation; N-glycan Modification in the Golgi Apparatus; Ascorbate as an Interface between the N-glycosylation Pathway and Oxidative Stress Response
Biosynthesis of GPI AnchorMicrotubules; Conclusion; References; 3: Transcription and Signaling Factors in the Drought Response Regulatory Network; Introduction; Drought Stress Perception; Systems Biology Approaches; Transcriptomic Studies of Drought Stress; The DREB/CBF Regulon; ABA Signaling; Reactive Oxygen Signaling; Integration of Stress Regulatory Networks; Assembling the Known Pathways and Expanding Using Gene Expression Networks' Predicted Protein Interactions; Acknowledgments; References; Section 2: Genes for Crop Adaptation to Poor Soil
4: Genetic Determinants of Salinity Tolerance in Crop PlantsIntroduction; Salinity Tolerance; Conclusion; References; 5: Unraveling the Mechanisms Underlying Aluminum-dependent Root Growth Inhibition; Introduction; Mechanisms of Aluminum Toxicity; Aluminum Resistance Mechanisms; Aluminum Tolerance Mechanisms; Arabidopsis as a Model System for Aluminum Resistance, Tolerance, and Toxicity; Aluminum-sensitive Arabidopsis Mutants; The Role of ALS3 in Al Tolerance; ALS1 Encodes a Half-type ABC Transporter Required for Aluminum Tolerance
Other Arabidopsis Factors Required for Aluminum Resistance/ToleranceIdentification of Aluminum-tolerant Mutants in Arabidopsis; The Nature of the alt1 Mutations; Conclusions; References; 6: Genetic Determinants of Phosphate Use Effciency in Crops; Introduction; Why Improve Crop Nutrition and the Relationship with World Food Security?; Phosphorus and Crops: Phosphorus as an Essential Nutrient and Its Supply as a Key Component to Crop Yield; Phosphorus and Plant Metabolism: Regulatory and Structural Functions
Phosphate Starvation: Adaptations to Phosphate Starvation and Current Knowledge about Phosphate Sensing and Signaling Networks during Phosphate Stress
Record Nr. UNINA-9910830964103321
Ames, IA, : Wiley-Blackwell, 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genetics and Evolution of Abiotic Stress Tolerance in Plants / / Patrizia Galeffi, editor
Genetics and Evolution of Abiotic Stress Tolerance in Plants / / Patrizia Galeffi, editor
Pubbl/distr/stampa Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Descrizione fisica 1 online resource (228 pages)
Disciplina 631.4/52
Soggetto topico Crops - Effect of stress on
Crops - Physiology
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910729799303321
Basel : , : MDPI - Multidisciplinary Digital Publishing Institute, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genomic designing for abiotic stress resistant technical crops / / Chittaranjan Kole, editor
Genomic designing for abiotic stress resistant technical crops / / Chittaranjan Kole, editor
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (481 pages)
Disciplina 631.5233
Soggetto topico Crop improvement
Crops - Effect of stress on
Crops - Genetic engineering
ISBN 9783031057069
9783031057052
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910629281103321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Genomic designing for biotic stress resistant technical crops / / edited by Chittaranjan Kole
Genomic designing for biotic stress resistant technical crops / / edited by Chittaranjan Kole
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (635 pages)
Disciplina 344.73046
Soggetto topico Agricultural pests
Crops - Effect of stress on
ISBN 9783031092930
9783031092923
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Contents -- Contributors -- Abbreviations -- 1 Genomic Designing for Biotic Stress Resistant Cassava -- 1.1 Biotic Stress in Cassava -- 1.1.1 Prevalent Cassava Biotic Factors -- 1.1.2 Regional Incidence of Cassava Pests and Diseases -- 1.1.3 Economic Impact of Biotic Stress on Cassava Production and Utilization -- 1.2 Biotic Factors Affecting Cassava Production -- 1.2.1 Diseases -- 1.2.2 Pests -- 1.3 Approaches for Developing Biotic Stress Resistant Cassava Varieties -- 1.3.1 Conventional Breeding Approach for Developing Biotic Stress Resistant Cassava Varieties -- 1.3.2 Molecular Techniques for Biotic Stress Improvement in Cassava -- 1.3.3 The Adoption of Genetic Engineering in Genomic Designing for Biotic Stress Resistant Cassava -- 1.3.4 Genome Editing in Genomic Designing for Biotic Stress Resistant Cassava -- 1.4 Future Perspectives in the Genomic Designing for Biotic Stress Resistant Cassava -- References -- 2 Genomic Designing for Biotic Stress Resistant Cocoa Tree -- 2.1 Introduction -- 2.2 Description on Different Biotic Stresses -- 2.2.1 Frosty Pod Rot of Cocoa -- 2.2.2 Witches' Broom Disease -- 2.2.3 Black Pod Rot -- 2.2.4 Ceratocystis Wilt of Cacao -- 2.2.5 Cocoa Swollen Shoot Virus -- 2.2.6 Other Diseases and Pests -- 2.3 Genetic Resources of Resistance Genes -- 2.4 Glimpses on Classical Genetics and Traditional Breeding -- 2.4.1 Breeding Objectives -- 2.4.2 Classical Mapping Efforts -- 2.4.3 Classical Breeding Achievements -- 2.4.4 Limitations of Traditional Breeding and Rationale for Molecular Breeding -- 2.5 Brief on Diversity Analysis of Cocoa Germplasm -- 2.5.1 Phenotype-Based Diversity Analysis -- 2.5.2 Genotype-Based Diversity Analysis -- 2.6 Brief Account of Molecular Mapping of Resistance Genes and QTLs -- 2.6.1 Genetic Maps of Cocoa, Marker Evolution and Segregating Populations.
2.6.2 QTL Regions Disease Resistance in Cocoa -- 2.7 Cocoa Germplasm Characterization -- 2.8 Map-Based Cloning of Resistance Genes -- 2.8.1 BAC Libraries -- 2.8.2 Cytogenetic Studies -- 2.9 Genomics-Aided Breeding for Resistance Traits -- 2.9.1 Large Scale Transcriptomic Resources -- 2.9.2 Genome Sequencing -- 2.9.3 Proteomics Resources -- 2.9.4 Bases for Marker Assisted Selection -- 2.10 Brief on Genetic Engineering for Resistance Traits and Recent Concepts and Strategies Developed -- 2.10.1 Review on Achievements of Transgenics -- 2.10.2 Genome Editing -- 2.10.3 Nanotechnology -- 2.11 Brief Account on Tole of Bioinformatics as a Tool -- 2.11.1 Gene and Genome Databases -- 2.11.2 Comparative Genome Databases -- 2.11.3 Gene Expression Databases -- 2.11.4 Protein Databases -- 2.11.5 Integration of Different Data -- References -- 3 Genomic Designing for Biotic Stress Resistance in Coconut -- 3.1 Introduction -- 3.2 Diseases of Coconut -- 3.2.1 Leaf Rot -- 3.2.2 Bud Rot -- 3.2.3 Stem Bleeding -- 3.2.4 Ganoderma Wilt/Basal Stem Rot -- 3.2.5 Immature Nut Fall -- 3.2.6 Grey Leaf Spot -- 3.2.7 Lasiodiplodia Leaf Blight of Coconut -- 3.2.8 Phytoplasmal Diseases of Coconut -- 3.2.9 Diseases Caused by Viruses and Viroids -- 3.3 Pests of Coconut -- 3.4 Genetic Resources of Resistance/Tolerance Genes -- 3.5 Classical Genetics and Traditional Breeding -- 3.6 Association Mapping Studies -- 3.7 Molecular Mapping of Resistance Genes and QTLs and Marker-Assisted Breeding -- 3.8 Genomics-Aided Breeding for Resistance Traits -- 3.8.1 Whole-Genome Sequence Assemblies -- 3.8.2 Transcriptomic Approaches -- 3.9 Conclusion and Future Perspectives -- References -- 4 Current Challenges and Genomic Advances Toward the Development of Coffee Genotypes Resistant to Biotic Stress -- 4.1 Introduction -- 4.2 Genomic Analyses for Major Biotic Stresses in Coffee.
4.3 Transcriptome Studies for Major Biotic Stresses in Coffee -- 4.4 Genetic Transformation, RNAi, and Genome Editing for Biotic Stress in Coffee -- 4.5 Breeding for Biotic Stress Resistance in Coffee: Some Case Studies -- 4.5.1 Coffee Leaf Rust (CLR) -- 4.5.2 Coffee Berry Disease (CBD) -- 4.5.3 Bacterial Halo Blight (BHB) -- 4.5.4 Nematodes -- 4.5.5 Coffee Leaf Miner (CLM) -- 4.5.6 Coffee Berry Borer (CBB) -- 4.6 Final Remarks -- References -- 5 Disease Resistance in Cotton -- 5.1 Introduction -- 5.2 Bacterial Blight -- 5.2.1 Causal Agent and Significance -- 5.2.2 Resistant Germplasm -- 5.2.3 Genetics of Resistance -- 5.2.4 Resistance Breeding -- 5.2.5 Molecular Mapping of BB Resistance Genes -- 5.2.6 Marker-Assisted Selection (MAS) -- 5.3 Verticillium Wilt -- 5.3.1 Causal Agent and Significance -- 5.3.2 Screening Techniques and Resistance Sources -- 5.3.3 Resistance Breeding -- 5.3.4 Genetics of Resistance -- 5.3.5 Mapping of Verticillium Wilt Resistance QTLs -- 5.3.6 Marker-Assisted Selection for VW Resistance -- 5.4 Fusarium Wilt -- 5.4.1 Causal Agent and Significance -- 5.4.2 Sources of Resistance -- 5.4.3 Resistance Breeding -- 5.4.4 Genetics of Resistance -- 5.4.5 Molecular Mapping of FW Resistance Quantitative Trait Loci -- 5.4.6 Molecular Breeding Techniques -- 5.5 Future Prospects -- References -- 6 Conventional and Molecular Interventions for Biotic Stress Resistance in Floricultural Crops -- 6.1 Introduction -- 6.2 Biotic Stress in Floriculture Crops -- 6.3 Different Approaches to Alleviate Biotic Stress in Ornamentals -- 6.3.1 Conventional Breeding -- 6.3.2 Molecular Approaches -- 6.4 Conclusion -- References -- 7 Genomics for Biotic Stress Tolerance in Jute -- 7.1 Introduction -- 7.1.1 Economic Importance -- 7.1.2 Reduction in Yield and Quality Due to Biotic Stresses -- 7.1.3 Growing Importance in the Face of Climate Change.
7.1.4 Limitations of Traditional Breeding and Rationale of Genome Designing -- 7.2 Description on Different Biotic Stresses -- 7.2.1 Major Insect-Pests of Jute and Their Management -- 7.2.2 Diseases of Jute -- 7.3 Traditional Breeding Methods -- 7.3.1 Intraspecific Hybridization -- 7.3.2 Interspecific Hybridization -- 7.3.3 Limitations of Classical Genetics and Breeding in Developing Resistant Cultivars -- 7.4 Genetic Resources of Resistance Genes -- 7.5 Resistance Gene-Based Marker Development and Utilization -- 7.5.1 Utilization of Resistance Gene-Based Genic Markers for Domestication and Population Genetic Analyses in Jute -- 7.5.2 Use in Phylogenetic Analysis -- 7.5.3 Use of RGA in Population Structure Analysis -- 7.6 Genomics-Aided Breeding for Resistance Traits -- 7.6.1 Genomics to Decipher Plant-Pathogen Interaction Pathways in Jute -- 7.6.2 Genomics for Identifying Genes Involved in Resistance to Stem Rot Disease -- 7.6.3 Genomics for Deciphering Systemic Acquired Resistance -- 7.6.4 Deciphering Role of Chitinase in Resistance -- 7.7 Brief Account of Molecular Mapping of Resistance Genes and QTLs -- 7.8 Brief on Genetic Engineering for Resistance Traits -- 7.9 Future Perspectives -- References -- 8 Genomic Designing for Biotic Stress Resistance in Mulberry -- 8.1 Introduction -- 8.1.1 Economic Significance -- 8.1.2 Effect of Biotic Stress on Yield and Quality -- 8.1.3 Increasing Population and Climate Change Scenario -- 8.1.4 Logical of Genome Designing and Bottlenecks of Traditional Breeding -- 8.2 Description of Different Pathogens Causing Biotic Stress in Mulberry -- 8.2.1 Major Diseases in Mulberry -- 8.2.2 Major Insect and Pests in Mulberry -- 8.3 Germplasm Resources for Disease Resistance -- 8.3.1 Primary Gene Pool -- 8.3.2 Secondary Gene Pool -- 8.3.3 Tertiary Gene Pool -- 8.3.4 Artificially Induced/Incorporated Traits/Genes.
8.4 Overview on Classical Genetics and Traditional Breeding -- 8.4.1 Traditional Breeding Methods -- 8.4.2 Breeding Objectives: Positive and Negative Selection -- 8.4.3 Achievements of Conventional Breeding (Quality, Stress Resistance, Yield etc.) -- 8.4.4 Constrains of Conventional Breeding and Basis for Molecular Breeding -- 8.4.5 Classical Mapping Efforts and Its Limitations and Utility of Molecular Mapping If Any -- 8.4.6 Use of Morphological Markers -- 8.4.7 Limitations and Prospect of Genomic Designing -- 8.5 Diversity Analysis in Brief -- 8.5.1 Diversity Analysis Based on Phenotype -- 8.5.2 Diversity Analysis Based on Genotype, Molecular Markers Applied -- 8.5.3 Relationship with Other Cultivated Species and Wild Relatives -- 8.5.4 Association with Geographical Distribution -- 8.5.5 Scope of Genetic Diversity -- 8.6 Association Mapping Studies -- 8.6.1 Genome Wide LD Studies -- 8.6.2 Future Potential for the Application of Association Studies for Germplasm Enhancement -- 8.7 Map-Based Cloning of Resistance/Tolerance Genes -- 8.7.1 Traits and Genes -- 8.8 Genomics-Assisted Breeding for Resistance/Tolerance Traits -- 8.8.1 Functional and Structural Genomic Resources Developed -- 8.8.2 Genome Sequencing, Assembly and Annotation -- 8.8.3 Impact on Gene Discovery and Germplasm Characterization -- 8.9 Recent Concepts and Strategies Developed -- 8.9.1 Gene Editing -- 8.10 Brief on Genetic Engineering for Resistance/Tolerance Traits -- 8.10.1 Target Traits and Alien Genes -- 8.11 Future Perspectives -- References -- 9 Genomic Designing for Biotic Stress Resistance in Sugarcane -- 9.1 Introduction -- 9.1.1 Economic Importance of Sugarcane -- 9.1.2 Reduction in Yield and Quality Due to Biotic Stresses -- 9.1.3 Growing Importance in the Face of Climate Change and Increasing Population.
9.1.4 Limitations of Traditional Breeding and Rational of Genome Designing.
Record Nr. UNINA-9910619276303321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui