top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Copper zinc tin sulphide-based thin film solar cells / / edited by Kentaro Ito
Copper zinc tin sulphide-based thin film solar cells / / edited by Kentaro Ito
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (452 p.)
Disciplina 621.31/244
Soggetto topico Photovoltaic cells - Materials
Solar cells - Materials
Copper-zinc alloys
Thin film devices
ISBN 1-118-43786-1
1-118-43785-3
1-118-43784-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Preface; List of Contributors; Part I Introduction; Chapter 1 An Overview of CZTS-Based Thin-Film Solar Cells; 1.1 Introduction; 1.2 The Photovoltaic Effect; 1.3 In Pursuit of an Optimal Semiconductor for Photovoltaics; 1.4 Conclusions; Acknowledgements; References; Chapter 2 Market Challenges for CZTS-Based Thin-Film Solar Cells; 2.1 Introduction; 2.2 Compound Thin-Film Technologies and Manufacturing; 2.3 Challenges for CZTS Solar Cells in the Market; 2.4 Conclusion; References; Part II The Physics and Chemistry of Quaternary Chalcogenide Semiconductors
Chapter 3 Crystallographic Aspects of Cu2ZnSnS4 (CZTS)3.1 Introduction: What Defines a Crystal Structure?; 3.2 The Crystal Structure of CZTS; 3.3 Point Defects in CZTS and the Role of Stoichiometry; 3.4 Differentiation between Intergrown Kesterite- and Stannite-Type Phases: A Simulational Approach; 3.5 Summary; References; Chapter 4 Electronic Structure and Optical Properties from First-Principles Modeling; 4.1 Introduction; 4.2 Computational Background; 4.3 Crystal Structure; 4.4 Electronic Structure; 4.5 Optical Properties; 4.6 Summary; Acknowledgements; References
Chapter 5 Kesterites: Equilibria and Secondary Phase Identification5.1 Introduction; 5.2 Chemistry of the Kesterite Reaction; 5.3 Phase Identification; Acknowledgements; References; Chapter 6 Growth of CZTS Single Crystals; 6.1 Introduction; 6.2 Growth Process; 6.3 Properties of CZTS Single Crystals; 6.4 Conclusion; Acknowledgements; References; Chapter 7 Physical Properties: Compiled Experimental Data; 7.1 Introduction; 7.2 Structural Properties; 7.3 Thermal Properties; 7.4 Mechanical and Lattice Dynamic Properties; 7.5 Electronic Energy-Band Structure; 7.6 Optical Properties
7.7 Carrier Transport PropertiesReferences; Part III Synthesis of Thin Films and Their Application to Solar Cells; Chapter 8 Sulfurization of Physical Vapor-Deposited Precursor Layers; 8.1 Introduction; 8.2 First CZTS Thin-Film Solar Cells; 8.3 ZnS as Zn-Source in Precursor; 8.4 Influence of Absorber Thickness; 8.5 New Sulfurization System; 8.6 Influence of Morphology; 8.7 Co-Sputtering System with Annealing Chamber; 8.8 Active Composition; 8.9 CZTS Compound Target; 8.10 Conclusions; References; Chapter 9 Reactive Sputtering of CZTS; 9.1 Introduction; 9.2 The Reactive Sputtering Process
9.3 Properties of Sputtered Precursors9.4 Annealing of Sputtered Precursors; 9.5 Device Performance; 9.6 Summary; References; Chapter 10 Coevaporation of CZTS Films and Solar Cells; 10.1 Introduction; 10.2 Basic Principles; 10.3 Process Variations; Acknowledgements; References; Chapter 11 Synthesis of CZTSSe Thin Films from Nanocrystal Inks; 11.1 Introduction; 11.2 Nanocrystal Synthesis; 11.3 Nanocrystal Characterization; 11.4 Sintering; 11.5 Conclusion; References; Chapter 12 CZTS Thin Films Prepared by a Non-Vacuum Process; 12.1 Introduction; 12.2 Sol-Gel Sulfurization Method
12.3 Preparation of CZTS Thin Films by Sol-Gel Sulfurization Method
Record Nr. UNINA-9910132308603321
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Copper zinc tin sulphide-based thin film solar cells / / edited by Kentaro Ito
Copper zinc tin sulphide-based thin film solar cells / / edited by Kentaro Ito
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (452 p.)
Disciplina 621.31/244
Soggetto topico Photovoltaic cells - Materials
Solar cells - Materials
Copper-zinc alloys
Thin film devices
ISBN 1-118-43786-1
1-118-43785-3
1-118-43784-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Preface; List of Contributors; Part I Introduction; Chapter 1 An Overview of CZTS-Based Thin-Film Solar Cells; 1.1 Introduction; 1.2 The Photovoltaic Effect; 1.3 In Pursuit of an Optimal Semiconductor for Photovoltaics; 1.4 Conclusions; Acknowledgements; References; Chapter 2 Market Challenges for CZTS-Based Thin-Film Solar Cells; 2.1 Introduction; 2.2 Compound Thin-Film Technologies and Manufacturing; 2.3 Challenges for CZTS Solar Cells in the Market; 2.4 Conclusion; References; Part II The Physics and Chemistry of Quaternary Chalcogenide Semiconductors
Chapter 3 Crystallographic Aspects of Cu2ZnSnS4 (CZTS)3.1 Introduction: What Defines a Crystal Structure?; 3.2 The Crystal Structure of CZTS; 3.3 Point Defects in CZTS and the Role of Stoichiometry; 3.4 Differentiation between Intergrown Kesterite- and Stannite-Type Phases: A Simulational Approach; 3.5 Summary; References; Chapter 4 Electronic Structure and Optical Properties from First-Principles Modeling; 4.1 Introduction; 4.2 Computational Background; 4.3 Crystal Structure; 4.4 Electronic Structure; 4.5 Optical Properties; 4.6 Summary; Acknowledgements; References
Chapter 5 Kesterites: Equilibria and Secondary Phase Identification5.1 Introduction; 5.2 Chemistry of the Kesterite Reaction; 5.3 Phase Identification; Acknowledgements; References; Chapter 6 Growth of CZTS Single Crystals; 6.1 Introduction; 6.2 Growth Process; 6.3 Properties of CZTS Single Crystals; 6.4 Conclusion; Acknowledgements; References; Chapter 7 Physical Properties: Compiled Experimental Data; 7.1 Introduction; 7.2 Structural Properties; 7.3 Thermal Properties; 7.4 Mechanical and Lattice Dynamic Properties; 7.5 Electronic Energy-Band Structure; 7.6 Optical Properties
7.7 Carrier Transport PropertiesReferences; Part III Synthesis of Thin Films and Their Application to Solar Cells; Chapter 8 Sulfurization of Physical Vapor-Deposited Precursor Layers; 8.1 Introduction; 8.2 First CZTS Thin-Film Solar Cells; 8.3 ZnS as Zn-Source in Precursor; 8.4 Influence of Absorber Thickness; 8.5 New Sulfurization System; 8.6 Influence of Morphology; 8.7 Co-Sputtering System with Annealing Chamber; 8.8 Active Composition; 8.9 CZTS Compound Target; 8.10 Conclusions; References; Chapter 9 Reactive Sputtering of CZTS; 9.1 Introduction; 9.2 The Reactive Sputtering Process
9.3 Properties of Sputtered Precursors9.4 Annealing of Sputtered Precursors; 9.5 Device Performance; 9.6 Summary; References; Chapter 10 Coevaporation of CZTS Films and Solar Cells; 10.1 Introduction; 10.2 Basic Principles; 10.3 Process Variations; Acknowledgements; References; Chapter 11 Synthesis of CZTSSe Thin Films from Nanocrystal Inks; 11.1 Introduction; 11.2 Nanocrystal Synthesis; 11.3 Nanocrystal Characterization; 11.4 Sintering; 11.5 Conclusion; References; Chapter 12 CZTS Thin Films Prepared by a Non-Vacuum Process; 12.1 Introduction; 12.2 Sol-Gel Sulfurization Method
12.3 Preparation of CZTS Thin Films by Sol-Gel Sulfurization Method
Record Nr. UNINA-9910814974003321
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui