Blaschke's rolling theorem in Rn / / J.N. Brooks and J.B. Strantzen |
Autore | Brooks J. N (Jeffrey Noel), <1956-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1989 |
Descrizione fisica | 1 online resource (113 p.) |
Disciplina | 516/.08 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Convex sets
Convex domains |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0828-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""PART I: LOCAL CONDITIONS FOR CONTAINMENT""; ""CHAPTER 0. INTRODUCTION""; ""CHAPTER 1. MAIN RESULT AND SKETCH PROOF""; ""1.1 Definitions and Statement of Main Result""; ""CHAPTER 2. THE MAIN RESULT FOR CURVES""; ""2.1 Preliminary Results and Notation""; ""2.2 The Main Result for Curves""; ""CHAPTER 3. CONVEX REGIONS IN R[sup(n)]""; ""3.1 Preliminary Results""; ""3.2 Faithful Projections""; ""3.3 Proving Lemma 1.1.5""; ""3.4 Proving Theorem 1.1.4""; ""3.5 Possible Generalisations of the Main Theorem""
""CHAPTER 4. THE SMOOTH CASE: APPLICATIONS TO DIFFERENTIAL GEOMETRY""""4.1 Local Representation of S as a Function""; ""4.2 Radii of Curvature Indicatrices""; ""4.2 Semi-Local Insideness in Terms of Radii of Curvature and Indicatrices""; ""PART II: COMMON BOUNDARIES OF TOUCHING CONVEX REGIONS AND BLASCHKE'S ROLLING THEOREM""; ""CHAPTER 5. INTRODUCTION""; ""CHAPTER 6. SOME PRELIMINARIES""; ""CHAPTER 7. EXISTENCE OF HYPERPLANES OF SUPPORT""; ""CHAPTER 8. COMMON BOUNDARIES RESULTS""; ""CHAPTER 9. APPLICATION TO SPHERES AND BLASCHKE'S ROLLING THEOREM""; ""REFERENCES"" |
Record Nr. | UNINA-9910480031103321 |
Brooks J. N (Jeffrey Noel), <1956->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 1989 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Blaschke's rolling theorem in Rn / / J.N. Brooks and J.B. Strantzen |
Autore | Brooks J. N (Jeffrey Noel), <1956-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1989 |
Descrizione fisica | 1 online resource (113 p.) |
Disciplina | 516/.08 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Convex sets
Convex domains |
ISBN | 1-4704-0828-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""PART I: LOCAL CONDITIONS FOR CONTAINMENT""; ""CHAPTER 0. INTRODUCTION""; ""CHAPTER 1. MAIN RESULT AND SKETCH PROOF""; ""1.1 Definitions and Statement of Main Result""; ""CHAPTER 2. THE MAIN RESULT FOR CURVES""; ""2.1 Preliminary Results and Notation""; ""2.2 The Main Result for Curves""; ""CHAPTER 3. CONVEX REGIONS IN R[sup(n)]""; ""3.1 Preliminary Results""; ""3.2 Faithful Projections""; ""3.3 Proving Lemma 1.1.5""; ""3.4 Proving Theorem 1.1.4""; ""3.5 Possible Generalisations of the Main Theorem""
""CHAPTER 4. THE SMOOTH CASE: APPLICATIONS TO DIFFERENTIAL GEOMETRY""""4.1 Local Representation of S as a Function""; ""4.2 Radii of Curvature Indicatrices""; ""4.2 Semi-Local Insideness in Terms of Radii of Curvature and Indicatrices""; ""PART II: COMMON BOUNDARIES OF TOUCHING CONVEX REGIONS AND BLASCHKE'S ROLLING THEOREM""; ""CHAPTER 5. INTRODUCTION""; ""CHAPTER 6. SOME PRELIMINARIES""; ""CHAPTER 7. EXISTENCE OF HYPERPLANES OF SUPPORT""; ""CHAPTER 8. COMMON BOUNDARIES RESULTS""; ""CHAPTER 9. APPLICATION TO SPHERES AND BLASCHKE'S ROLLING THEOREM""; ""REFERENCES"" |
Record Nr. | UNINA-9910788871703321 |
Brooks J. N (Jeffrey Noel), <1956->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 1989 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Blaschke's rolling theorem in Rn / / J.N. Brooks and J.B. Strantzen |
Autore | Brooks J. N (Jeffrey Noel), <1956-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1989 |
Descrizione fisica | 1 online resource (113 p.) |
Disciplina | 516/.08 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Convex sets
Convex domains |
ISBN | 1-4704-0828-7 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""TABLE OF CONTENTS""; ""PART I: LOCAL CONDITIONS FOR CONTAINMENT""; ""CHAPTER 0. INTRODUCTION""; ""CHAPTER 1. MAIN RESULT AND SKETCH PROOF""; ""1.1 Definitions and Statement of Main Result""; ""CHAPTER 2. THE MAIN RESULT FOR CURVES""; ""2.1 Preliminary Results and Notation""; ""2.2 The Main Result for Curves""; ""CHAPTER 3. CONVEX REGIONS IN R[sup(n)]""; ""3.1 Preliminary Results""; ""3.2 Faithful Projections""; ""3.3 Proving Lemma 1.1.5""; ""3.4 Proving Theorem 1.1.4""; ""3.5 Possible Generalisations of the Main Theorem""
""CHAPTER 4. THE SMOOTH CASE: APPLICATIONS TO DIFFERENTIAL GEOMETRY""""4.1 Local Representation of S as a Function""; ""4.2 Radii of Curvature Indicatrices""; ""4.2 Semi-Local Insideness in Terms of Radii of Curvature and Indicatrices""; ""PART II: COMMON BOUNDARIES OF TOUCHING CONVEX REGIONS AND BLASCHKE'S ROLLING THEOREM""; ""CHAPTER 5. INTRODUCTION""; ""CHAPTER 6. SOME PRELIMINARIES""; ""CHAPTER 7. EXISTENCE OF HYPERPLANES OF SUPPORT""; ""CHAPTER 8. COMMON BOUNDARIES RESULTS""; ""CHAPTER 9. APPLICATION TO SPHERES AND BLASCHKE'S ROLLING THEOREM""; ""REFERENCES"" |
Record Nr. | UNINA-9910827436903321 |
Brooks J. N (Jeffrey Noel), <1956->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , 1989 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Compact convex sets and boundary integrals / Erik M. Alfsen |
Autore | Alfsen, Erik Magnus |
Pubbl/distr/stampa | Berlin : Springer-Verlag, 1971 |
Descrizione fisica | ix, 210 p. : ill. ; 24 cm |
Disciplina | 515.7 |
Collana |
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge ; 57
Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 0071-1136 ; 57 = A series of modern surveys in mathematics, 0071-1136 ; 57 |
Soggetto topico |
Boundary value problems
Convex sets Integrals Simplexes Topological spaces |
ISBN | 3540050906 |
Classificazione |
AMS 46A55
AMS 52A07 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000762249707536 |
Alfsen, Erik Magnus
![]() |
||
Berlin : Springer-Verlag, 1971 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Convex analysis and minimization algorithms / Jean-Baptiste Hiriart-Urruty, Claude Lemarechal |
Autore | Hiriart-Urruty, Jean-Baptiste |
Pubbl/distr/stampa | Berlin ; New York : Springer-Verlag, c1993 |
Descrizione fisica | 2 v. : ill. ; 24 cm |
Disciplina | 515.22 |
Altri autori (Persone) | Lemarechal, Claudeauthor |
Collana |
Grundlehren der mathematischen Wissenschaften = A series of comprehensive studies in mathematics, 0072-7830 ; 305
Grundlehren der mathematischen Wissenschaften = A series of comprehensive studies in mathematics, 0072-7830 ; 306 |
Soggetto topico |
Convex analysis
Convex functions Convex sets Real functions-textbooks |
ISBN |
3540568506 (v. 1)
3540568522 (v. 2) |
Classificazione |
AMS 26-01
LC QA331.5.H57 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
V. 1 Fundamentals. - xvii, 417 p.
V. 2. Advanced theory and bundle methods. - xvii, 346 p. |
Record Nr. | UNISALENTO-991001490629707536 |
Hiriart-Urruty, Jean-Baptiste
![]() |
||
Berlin ; New York : Springer-Verlag, c1993 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Convex analysis and nonlinear geometric elliptic equations / Ilya J. Bakelman |
Autore | Bakelman, Ilya J. |
Pubbl/distr/stampa | Berlin : Springer-Verlag, c1994 |
Descrizione fisica | xxi, 510 p. ; 24 cm. |
Disciplina | 515.353 |
Soggetto topico |
Convex functions
Convex sets Elliptic differential equations Monge-Ampère equations |
ISBN | 3540136207 |
Classificazione | AMS 35J60 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991000792119707536 |
Bakelman, Ilya J.
![]() |
||
Berlin : Springer-Verlag, c1994 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Convex analysis in general vector spaces [[electronic resource] /] / C Zălinescu |
Autore | Zalinescu C. <1952-> |
Pubbl/distr/stampa | River Edge, N.J. ; ; London, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xx, 367 p. ) |
Disciplina | 515/.8 |
Soggetto topico |
Convex functions
Convex sets Functional analysis Vector spaces |
Soggetto genere / forma | Electronic books. |
ISBN | 981-277-709-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Preliminary results on functional analysis. 1.1. Preliminary notions and results. 1.2. Closedness and interiority notions. 1.3. Open mapping theorems. 1.4. Variational principles. 1.5. Exercises. 1.6. Bibliographical notes -- ch. 2. Convex analysis in locally convex spaces. 2.1. Convex functions. 2.2. Semi-continuity of convex functions. 2.3. Conjugate functions. 2.4. The subdifferential of a convex function. 2.5. The general problem of convex programming. 2.6. Perturbed problems. 2.7. The fundamental duality formula. 2.8. Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions. 2.9. Convex optimization with constraints. 2.10. A minimax theorem. 2.11. Exercises. 2.12. Bibliographical notes -- ch. 3. Some results and applications of convex analysis in normed spaces. 3.1. Further fundamental results in convex analysis. 3.2. Convexity and monotonicity of subdifferentials. 3.3. Some classes of functions of a real variable and differentiability of convex functions. 3.4. Well conditioned functions. 3.5. Uniformly convex and uniformly smooth convex functions. 3.6. Uniformly convex and uniformly smooth convex functions on bounded sets. 3.7. Applications to the geometry of normed spaces. 3.8. Applications to the best approximation problem. 3.9. Characterizations of convexity in terms of smoothness. 3.10. Weak sharp minima, well-behaved functions and global error bounds for convex inequalities. 3.11. Monotone multifunctions. 3.12. Exercises. 3.13. Bibliographical notes. |
Record Nr. | UNINA-9910451674103321 |
Zalinescu C. <1952->
![]() |
||
River Edge, N.J. ; ; London, : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Convex analysis in general vector spaces [[electronic resource] /] / C Zălinescu |
Autore | Zalinescu C. <1952-> |
Pubbl/distr/stampa | River Edge, N.J. ; ; London, : World Scientific, c2002 |
Descrizione fisica | 1 online resource (xx, 367 p. ) |
Disciplina | 515/.8 |
Soggetto topico |
Convex functions
Convex sets Functional analysis Vector spaces |
ISBN | 981-277-709-1 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | ch. 1. Preliminary results on functional analysis. 1.1. Preliminary notions and results. 1.2. Closedness and interiority notions. 1.3. Open mapping theorems. 1.4. Variational principles. 1.5. Exercises. 1.6. Bibliographical notes -- ch. 2. Convex analysis in locally convex spaces. 2.1. Convex functions. 2.2. Semi-continuity of convex functions. 2.3. Conjugate functions. 2.4. The subdifferential of a convex function. 2.5. The general problem of convex programming. 2.6. Perturbed problems. 2.7. The fundamental duality formula. 2.8. Formulas for conjugates and e-subdifferentials, duality relations and optimality conditions. 2.9. Convex optimization with constraints. 2.10. A minimax theorem. 2.11. Exercises. 2.12. Bibliographical notes -- ch. 3. Some results and applications of convex analysis in normed spaces. 3.1. Further fundamental results in convex analysis. 3.2. Convexity and monotonicity of subdifferentials. 3.3. Some classes of functions of a real variable and differentiability of convex functions. 3.4. Well conditioned functions. 3.5. Uniformly convex and uniformly smooth convex functions. 3.6. Uniformly convex and uniformly smooth convex functions on bounded sets. 3.7. Applications to the geometry of normed spaces. 3.8. Applications to the best approximation problem. 3.9. Characterizations of convexity in terms of smoothness. 3.10. Weak sharp minima, well-behaved functions and global error bounds for convex inequalities. 3.11. Monotone multifunctions. 3.12. Exercises. 3.13. Bibliographical notes. |
Record Nr. | UNINA-9910778253603321 |
Zalinescu C. <1952->
![]() |
||
River Edge, N.J. ; ; London, : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
Convex analysis in general vector spaces / C. Zalinescu |
Autore | Zalinescu, C. |
Pubbl/distr/stampa | [River Edge], N. J. : World Scientific, c2002 |
Descrizione fisica | xx, 367 p. ; 24 cm |
Disciplina | 515.8 |
Soggetto topico |
Convex functions
Convex sets Functional analysis Vector spaces |
ISBN | 9812380671 |
Classificazione |
AMS 49-02
LC QA331.5.Z34 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISALENTO-991002547169707536 |
Zalinescu, C.
![]() |
||
[River Edge], N. J. : World Scientific, c2002 | ||
![]() | ||
Lo trovi qui: Univ. del Salento | ||
|
Convex and Set-Valued Analysis : Selected Topics / / Aram V. Arutyunov, Valeri Obukhovskii |
Autore | Arutyunov Aram V. |
Pubbl/distr/stampa | Berlin ; ; Boston : , : De Gruyter, , [2016] |
Descrizione fisica | 1 online resource (210 pages) |
Disciplina | 515.882 |
Collana | De Gruyter Textbook |
Soggetto topico |
Convex sets
Hausdorff measures Topological spaces Differential inclusions Set-valued maps |
ISBN |
3-11-046041-6
3-11-046030-0 |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Frontmatter -- Preface -- Contents -- Part I: Convex analysis -- 1. Convex sets and their properties -- 2. The convex hull of a set. The interior of convex sets -- 3. The affine hull of sets. The relative interior of convex sets -- 4. Separation theorems for convex sets -- 5. Convex functions -- 6. Closedness, boundedness, continuity, and Lipschitz property of convex functions -- 7. Conjugate functions -- 8. Support functions -- 9. Differentiability of convex functions and the subdifferential -- 10. Convex cones -- 11. A little more about convex cones in infinite-dimensional spaces -- 12. A problem of linear programming -- 13. More about convex sets and convex hulls -- Part II: Set-valued analysis -- 14. Introduction to the theory of topological and metric spaces -- 15. The Hausdorff metric and the distance between sets -- 16. Some fine properties of the Hausdorff metric -- 17. Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps -- 18. A base of topology of the space Hc(X) -- 19. Measurable set-valued maps. Measurable selections and measurable choice theorems -- 20. The superposition set-valued operator -- 21. The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations -- 22. Special selections of set-valued maps -- 23. Differential inclusions -- 24. Fixed points and coincidences of maps in metric spaces -- 25. Stability of coincidence points and properties of covering maps -- 26. Topological degree and fixed points of set-valued maps in Banach spaces -- 27. Existence results for differential inclusions via the fixed point method -- Notation -- Bibliography -- Index |
Record Nr. | UNINA-9910162993403321 |
Arutyunov Aram V.
![]() |
||
Berlin ; ; Boston : , : De Gruyter, , [2016] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|