Advanced control of power converters : techniques and Matlab/Simulink implementation / / Hasan Komurcugil [and four others] |
Autore | Komurcugil Hasan |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2023] |
Descrizione fisica | 1 online resource (467 pages) |
Disciplina | 621.3815322 |
Collana | IEEE Press Series on Control Systems Theory and Applications Series |
Soggetto topico |
Convertidors de corrent elèctric
Control no lineal, Teoria de Electric current converters Nonlinear control theory |
Soggetto non controllato |
Electronics
Electric Power System Theory Technology & Engineering Science |
ISBN |
9781119854432
1-119-85443-1 1-119-85441-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Authors -- List of Abbreviations -- Preface -- Acknowledgment -- About the Companion Website -- Chapter 1 Introduction -- 1.1 General Remarks -- 1.2 Basic Closed-Loop Control for Power Converters -- 1.3 Mathematical Modeling of Power Converters -- 1.4 Basic Control Objectives -- 1.4.1 Closed-Loop Stability -- 1.4.2 Settling Time -- 1.4.3 Steady-State Error -- 1.4.4 Robustness to Parameter Variations and Disturbances -- 1.5 Performance Evaluation -- 1.5.1 Simulation-Based Method -- 1.5.2 Experimental Method -- 1.6 Contents of the Book -- References -- Chapter 2 Introduction to Advanced Control Methods -- 2.1 Classical Control Methods for Power Converters -- 2.2 Sliding Mode Control -- 2.3 Lyapunov Function-Based Control -- 2.3.1 Lyapunov's Linearization Method -- 2.3.2 Lyapunov's Direct Method -- 2.4 Model Predictive Control -- 2.4.1 Functional Principle -- 2.4.2 Basic Concept -- 2.4.3 Cost Function -- References -- Chapter 3 Design of Sliding Mode Control for Power Converters -- 3.1 Introduction -- 3.2 Sliding Mode Control of DC-DC Buck and Cuk Converters -- 3.3 Sliding Mode Control Design Procedure -- 3.3.1 Selection of Sliding Surface Function -- 3.3.2 Control Input Design -- 3.4 Chattering Mitigation Techniques -- 3.4.1 Hysteresis Function Technique -- 3.4.2 Boundary Layer Technique -- 3.4.3 State Observer Technique -- 3.5 Modulation Techniques -- 3.5.1 Hysteresis Modulation Technique -- 3.5.2 Sinusoidal Pulse Width Modulation Technique -- 3.5.3 Space Vector Modulation Technique -- 3.6 Other Types of Sliding Mode Control -- 3.6.1 Terminal Sliding Mode Control -- 3.6.2 Second-Order Sliding Mode Control -- References -- Chapter 4 Design of Lyapunov Function-Based Control for Power Converters -- 4.1 Introduction -- 4.2 Lyapunov-Function-Based Control Design Using Direct Method.
4.3 Lyapunov Function-Based Control of DC-DC Buck Converter -- 4.4 Lyapunov Function-Based Control of DC-DC Boost Converter -- References -- Chapter 5 Design of Model Predictive Control -- 5.1 Introduction -- 5.2 Predictive Control Methods -- 5.3 FCS Model Predictive Control -- 5.3.1 Design Procedure -- 5.3.2 Tutorial 1: Implementation of FCS-MPC for Three-Phase VSI -- 5.4 CCS Model Predictive Control -- 5.4.1 Incremental Models -- 5.4.2 Predictive Model -- 5.4.3 Cost Function in CCSMPC -- 5.4.4 Cost Function Minimization -- 5.4.5 Receding Control Horizon Principle -- 5.4.6 Closed-Loop of an MPC System -- 5.4.7 Discrete Linear Quadratic Regulators -- 5.4.8 Formulation of the Constraints in MPC -- 5.4.9 Optimization with Equality Constraints -- 5.4.10 Optimization with Inequality Constraints -- 5.4.11 MPC for Multi-Input Multi-Output Systems -- 5.4.12 Tutorial 2: MPC Design For a Grid-Connected VSI in dq Frame -- 5.5 Design and Implementation Issues -- 5.5.1 Cost Function Selection -- 5.5.1.1 Examples for Primary Control Objectives -- 5.5.1.2 Examples for Secondary Control Objectives -- 5.5.2 Weighting Factor Design -- 5.5.2.1 Empirical Selection Method -- 5.5.2.2 Equal-Weighted Cost-Function-Based Selection Method -- 5.5.2.3 Lookup Table-Based Selection Method -- References -- Chapter 6 MATLAB/Simulink Tutorial on Physical Modeling and Experimental Setup -- 6.1 Introduction -- 6.2 Building Simulation Model for Power Converters -- 6.2.1 Building Simulation Model for Single-Phase Grid-Connected Inverter Based on Sliding Mode Control -- 6.2.2 Building Simulation Model for Three-Phase Rectifier Based on Lyapunov-Function-Based Control -- 6.2.3 Building Simulation Model for Quasi-Z Source Three-Phase Four-Leg Inverter Based on Model Predictive Control -- 6.2.4 Building Simulation Model for Distributed Generations in Islanded AC Microgrid. 6.3 Building Real-Time Model for a Single-Phase T-Type Rectifier -- 6.4 Building Rapid Control Prototyping for a Single-Phase T-Type Rectifier -- 6.4.1 Components in the Experimental Testbed -- 6.4.1.1 Grid Simulator -- 6.4.1.2 A Single-Phase T-Type Rectifier Prototype -- 6.4.1.3 Measurement Board -- 6.4.1.4 Programmable Load -- 6.4.1.5 Controller -- 6.4.2 Building Control Structure on OP-5707 -- References -- Chapter 7 Sliding Mode Control of Various Power Converters -- 7.1 Introduction -- 7.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 7.2.1 Mathematical Modeling of Grid-Connected Inverter with LCL Filter -- 7.2.2 Sliding Mode Control -- 7.2.3 PWM Signal Generation Using Hysteresis Modulation -- 7.2.3.1 Single-Band Hysteresis Function -- 7.2.3.2 Double-Band Hysteresis Function -- 7.2.4 Switching Frequency Computation -- 7.2.4.1 Switching Frequency Computation with Single-Band Hysteresis Modulation -- 7.2.4.2 Switching Frequency Computation with Double-Band Hysteresis Modulation -- 7.2.5 Selection of Control Gains -- 7.2.6 Simulation Study -- 7.2.7 Experimental Study -- 7.3 Three-Phase Grid-Connected Inverter with LCL Filter -- 7.3.1 Physical Model Equations for a Three-Phase Grid-Connected VSI with an LCL Filter -- 7.3.2 Control System -- 7.3.2.1 Reduced State-Space Model of the Converter -- 7.3.2.2 Model Discretization and KF Adaptive Equation -- 7.3.2.3 Sliding Surfaces with Active Damping Capability -- 7.3.3 Stability Analysis -- 7.3.3.1 Discrete-Time Equivalent Control Deduction -- 7.3.3.2 Closed-Loop System Equations -- 7.3.3.3 Test of Robustness Against Parameters Uncertainties -- 7.3.4 Experimental Study -- 7.3.4.1 Test of Robustness Against Grid Inductance Variations -- 7.3.4.2 Test of Stability in Case of Grid Harmonics Near the Resonance Frequency -- 7.3.4.3 Test of the VSI Against Sudden Changes in the Reference Current. 7.3.4.4 Test of the VSI Under Distorted Grid -- 7.3.4.5 Test of the VSI Under Voltage Sags -- 7.3.5 Computational Load and Performances of the Control Algorithm -- 7.4 Three-Phase AC-DC Rectifier -- 7.4.1 Nonlinear Model of the Unity Power Factor Rectifier -- 7.4.2 Problem Formulation -- 7.4.3 Axis-Decoupling Based on an Estimator -- 7.4.4 Control System -- 7.4.4.1 Kalman Filter -- 7.4.4.2 Practical Considerations: Election of Q and R Matrices -- 7.4.4.3 Practical Considerations: Computational Burden Reduction -- 7.4.5 Sliding Mode Control -- 7.4.5.1 Inner Control Loop -- 7.4.5.2 Outer Control Loop -- 7.4.6 Hysteresis Band Generator with Switching Decision Algorithm -- 7.4.7 Experimental Study -- 7.5 Three-Phase Transformerless Dynamic Voltage Restorer -- 7.5.1 Mathematical Modeling of Transformerless Dynamic Voltage Restorer -- 7.5.2 Design of Sliding Mode Control for TDVR -- 7.5.3 Time-Varying Switching Frequency with Single-Band Hysteresis -- 7.5.4 Constant Switching Frequency with Boundary Layer -- 7.5.5 Simulation Study -- 7.5.6 Experimental Study -- 7.6 Three-Phase Shunt Active Power Filter -- 7.6.1 Nonlinear Model of the SAPF -- 7.6.2 Problem Formulation -- 7.6.3 Control System -- 7.6.3.1 State Model of the Converter -- 7.6.3.2 Kalman Filter -- 7.6.3.3 Sliding Mode Control -- 7.6.3.4 Hysteresis Band Generator with SDA -- 7.6.4 Experimental Study -- 7.6.4.1 Response of the SAPF to Load Variations -- 7.6.4.2 SAPF Performances Under a Distorted Grid -- 7.6.4.3 SAPF Performances Under Grid Voltage Sags -- 7.6.4.4 Spectrum of the Control Signal -- References -- Chapter 8 Design of Lyapunov Function-Based Control of Various Power Converters -- 8.1 Introduction -- 8.2 Single-Phase Grid-Connected Inverter with LCL Filter -- 8.2.1 Mathematical Modeling and Controller Design -- 8.2.2 Controller Modification with Capacitor Voltage Feedback. 8.2.3 Inverter-Side Current Reference Generation Using Proportional-Resonant Controller -- 8.2.4 Grid Current Transfer Function -- 8.2.5 Harmonic Attenuation and Harmonic Impedance -- 8.2.6 Results -- 8.3 Single-Phase Quasi-Z-Source Grid-Connected Inverter with LCL Filter -- 8.3.1 Quasi-Z-Source Network Modeling -- 8.3.2 Grid-Connected Inverter Modeling -- 8.3.3 Control of Quasi-Z-Source Network -- 8.3.4 Control of Grid-Connected Inverter -- 8.3.5 Reference Generation Using Cascaded PR Control -- 8.3.6 Results -- 8.4 Single-Phase Uninterruptible Power Supply Inverter -- 8.4.1 Mathematical Modeling of Uninterruptible Power Supply Inverter -- 8.4.2 Controller Design -- 8.4.3 Criteria for Selecting Control Parameters -- 8.4.4 Results -- 8.5 Three-Phase Voltage-Source AC-DC Rectifier -- 8.5.1 Mathematical Modeling of Rectifier -- 8.5.2 Controller Design -- 8.5.3 Results -- References -- Chapter 9 Model Predictive Control of Various Converters -- 9.1 CCS MPC Method for a Three-Phase Grid-Connected VSI -- 9.1.1 Model Predictive Control Design -- 9.1.1.1 VSI Incremental Model with an Embedded Integrator -- 9.1.1.2 Predictive Model of the Converter -- 9.1.1.3 Cost Function Minimization -- 9.1.1.4 Inclusion of Constraints -- 9.1.2 MATLAB®/Simulink® Implementation -- 9.1.3 Simulation Studies -- 9.2 Model Predictive Control Method for Single-Phase Three-Level Shunt Active Filter -- 9.2.1 Modeling of Shunt Active Filter (SAPF) -- 9.2.2 The Energy-Function-Based MPC -- 9.2.2.1 Design of Energy-Function-Based MPC -- 9.2.2.2 Discrete-Time Model -- 9.2.3 Experimental Studies -- 9.2.3.1 Steady-State and Dynamic Response Tests -- 9.2.3.2 Comparison with Classical MPC Method -- 9.3 Model Predictive Control of Quasi-Z Source Three-Phase Four-Leg Inverter -- 9.3.1 qZS Four-Leg Inverter Model -- 9.3.2 MPC Algorithm -- 9.3.2.1 Determination of References. 9.3.2.2 Discrete-Time Models of the System. |
Record Nr. | UNINA-9910735566603321 |
Komurcugil Hasan | ||
Hoboken, New Jersey : , : Wiley, , [2023] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Convertidores conmutados de potencia : test de autoevaluación / / Ana Pozo Ruz |
Autore | Pozo Ruz Ana |
Edizione | [Segunda edición] |
Pubbl/distr/stampa | Barcelona : , : Marcombo, S.A., , [2017] |
Descrizione fisica | 1 online resource (421 pages) |
Collana | MarcomboUniversitaria |
Soggetto topico | Convertidors de corrent elèctric |
ISBN |
9788426734341
84-267-3434-0 84-267-3144-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | spa |
Nota di contenuto | Intro -- Primeras_OK -- Temas 1-4_OK -- Temas 5-6_OK -- Temas 7-12_OK -- Temas 13-15_OK -- Bibliografia_OK -- Página en blanco. |
Record Nr. | UNINA-9910865493603321 |
Pozo Ruz Ana | ||
Barcelona : , : Marcombo, S.A., , [2017] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Design, control, and application of modular multilevel converters for HVDC transmission systems / / Kamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu |
Autore | Sharifabadi Kamran <1963-> |
Pubbl/distr/stampa | Chichester, West Sussex, United Kingdom : , : Wiley & Sons, , 2016 |
Descrizione fisica | xxiii, 386 s : ill |
Disciplina | 621.31/7 |
Soggetto topico |
Convertidors de corrent elèctric
Energia elèctrica - Transmissió - Corrent continu Electric power transmission - Direct current - Equipment and supplies Electric current converters - Automatic control Electric current converters - Design and construction |
ISBN |
9781118851555
1-118-85154-4 1-118-85152-8 1-118-85155-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
-- Preface xiii -- Acknowledgements xv -- About the Companion Website xvii -- Nomenclature xix -- Introduction 1 -- 1 Introduction to Modular Multilevel Converters 7 -- 1.1 Introduction 7 -- 1.2 The Two-Level Voltage Source Converter 9 -- 1.2.1 Topology and Basic Function 9 -- 1.2.2 Steady-State Operation 12 -- 1.3 Benefits of Multilevel Converters 15 -- 1.4 Early Multilevel Converters 17 -- 1.4.1 Diode Clamped Converters 17 -- 1.4.2 Flying Capacitor Converters 20 -- 1.5 Cascaded Multilevel Converters 23 -- 1.5.1 Submodules and Submodule Strings 23 -- 1.5.2 Modular Multilevel Converter with Half-Bridge Submodules 28 -- 1.5.3 Other Cascaded Converter Topologies 43 -- 1.6 Summary 57 -- References 58 -- 2 Main-Circuit Design 60 -- 2.1 Introduction 60 -- 2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 61 -- 2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors 61 -- 2.2.2 Basic Conduction Properties of Power Semiconductor Devices 64 -- 2.2.3 P-N Junctions for Blocking 65 -- 2.2.4 Conduction Properties and the Need for Carrier Injection 67 -- 2.2.5 Switching Properties 72 -- 2.2.6 Packaging 73 -- 2.2.7 Reliability of Power Semiconductor Devices 80 -- 2.2.8 Silicon Carbide Power Devices 84 -- 2.3 Medium-Voltage Capacitors for Submodules 92 -- 2.3.1 Design and Fabrication 93 -- 2.3.2 Self-Healing and Reliability 95 -- 2.4 Arm Inductors 96 -- 2.5 Submodule Configurations 98 -- 2.5.1 Existing Half-Bridge Submodule Realizations 99 -- 2.5.2 Clamped Single-Submodule 104 -- 2.5.3 Clamped Double-Submodule 105 -- 2.5.4 Unipolar-Voltage Full-Bridge Submodule 106 -- 2.5.5 Five-Level Cross-Connected Submodule 107 -- 2.5.6 Three-Level Cross-Connected Submodule 107 -- 2.5.7 Double Submodule 108 -- 2.5.8 Semi-Full-Bridge Submodule 109 -- 2.5.9 Soft-Switching Submodules 110 -- 2.6 Choice of Main-Circuit Parameters 112 -- 2.6.1 Main Input Data 112 -- 2.6.2 Choice of Power Semiconductor Devices 114 -- 2.6.3 Choice of the Number of Submodules 115.
2.6.4 Choice of Submodule Capacitance 117 -- 2.6.5 Choice of Arm Inductance 117 -- 2.7 Handling of Redundant and Faulty Submodules 118 -- 2.7.1 Method 1 118 -- 2.7.2 Method 2 119 -- 2.7.3 Comparison of Method 1 and Method 2 120 -- 2.7.4 Handling of Redundancy Using IGBT Stacks 121 -- 2.8 Auxiliary Power Supplies for Submodules 121 -- 2.8.1 Using the Submodule Capacitor as Power Source 121 -- 2.8.2 Power Supplies with High-Voltage Inputs 123 -- 2.8.3 The Tapped-Inductor Buck Converter 125 -- 2.9 Start-Up Procedures 126 -- 2.10 Summary 126 -- References 127 -- 3 Dynamics and Control 133 -- 3.1 Introduction 133 -- 3.2 Fundamentals 134 -- 3.2.1 Arms 135 -- 3.2.2 Submodules 135 -- 3.2.3 AC Bus 136 -- 3.2.4 DC Bus 136 -- 3.2.5 Currents 136 -- 3.3 Converter Operating Principle and Averaged Dynamic Model 137 -- 3.3.1 Dynamic Relations for the Currents 137 -- 3.3.2 Selection of the Mean Sum Capacitor Voltages 137 -- 3.3.3 Averaging Principle 138 -- 3.3.4 Ideal Selection of the Insertion Indices 140 -- 3.3.5 Sum-Capacitor-Voltage Ripples 141 -- 3.3.6 Maximum Output Voltage 144 -- 3.3.7 DC-Bus Dynamics 146 -- 3.3.8 Time Delays 148 -- 3.4 Per-Phase Output-Current Control 148 -- 3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller 149 -- 3.4.2 Resonant Filters and Generalized Integrators 150 -- 3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller 152 -- 3.4.4 Parameter Selection for a PR Current Controller 153 -- 3.4.5 Output-Current Controller Design 157 -- 3.5 Arm-Balancing (Internal) Control 161 -- 3.5.1 Circulating-Current Control 163 -- 3.5.2 Direct Voltage Control 163 -- 3.5.3 Closed-Loop Voltage Control 166 -- 3.5.4 Open-Loop Voltage Control 168 -- 3.5.5 Hybrid Voltage Control 172 -- 3.6 Three-Phase Systems 175 -- 3.6.1 Balanced Three-Phase Systems 175 -- 3.6.2 Imbalanced Three-Phase Systems 175 -- 3.6.3 Instantaneous Active Power 176 -- 3.6.4 Wye (Y) and Delta (̧Æ) Connections 177 -- 3.6.5 Harmonics 177 -- 3.6.6 Space Vectors 178 -- 3.6.7 Instantaneous Power 182. 3.6.8 Selection of the Space-Vector Scaling Constant 184 -- 3.7 Vector Output-Current Control 184 -- 3.7.1 PR (PI) Controller 186 -- 3.7.2 Reference-Vector Saturation 188 -- 3.7.3 Transformations 188 -- 3.7.4 Zero-Sequence Injection 190 -- 3.8 Higher-Level Control 192 -- 3.8.1 Phase-Locked Loop 193 -- 3.8.2 Open-Loop Active- and Reactive-Power Control 197 -- 3.8.3 DC-Bus-Voltage Control 198 -- 3.8.4 Power-Synchronization Control 200 -- 3.9 Control Architectures 207 -- 3.9.1 Communication Network 209 -- 3.9.2 Fault-Tolerant Communication Networks 211 -- 3.10 Summary 212 -- References 212 -- 4 Control under Unbalanced Grid Conditions 214 -- 4.1 Introduction 214 -- 4.2 Grid Requirements 214 -- 4.3 Shortcomings of Conventional Vector Control 215 -- 4.3.1 PLL with Notch Filter 216 -- 4.4 Positive/Negative-Sequence Extraction 219 -- 4.4.1 DDSRF-PNSE 219 -- 4.4.2 DSOGI-PNSE 221 -- 4.5 Injection Reference Strategy 223 -- 4.5.1 PSI with PSI-LVRT Compliance 225 -- 4.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance 226 -- 4.6 Component-Based Vector Output-Current Control 226 -- 4.6.1 DDSRF-PNSE-Based Control 226 -- 4.6.2 DSOGI-PNSE-Based Control 227 -- 4.7 Summary 228 -- References 231 -- 5 Modulation and Submodule Energy Balancing 232 -- 5.1 Introduction 232 -- 5.2 Fundamentals of Pulse-Width Modulation 233 -- 5.2.1 Basic Concepts 233 -- 5.2.2 Performance of Modulation Methods 234 -- 5.2.3 Reference Third-Harmonic Injection in Three-Phase Systems 235 -- 5.3 Carrier-Based Modulation Methods 236 -- 5.3.1 Two-Level Carrier-Based Modulation 236 -- 5.3.2 Analysis by Fourier Series Expansion 237 -- 5.3.3 Polyphase Systems 242 -- 5.4 Multilevel Carrier-Based Modulation 243 -- 5.4.1 Phase-Shifted Carriers 243 -- 5.4.2 Level-Shifted Carriers 250 -- 5.5 Nearest-Level Control 252 -- 5.6 Submodule Energy Balancing Methods 256 -- 5.6.1 Submodule Sorting 256 -- 5.6.2 Predictive Sorting 259 -- 5.6.3 Tolerance Band Methods 263 -- 5.6.4 Individual Submodule-Capacitor-Voltage Control 269. 5.7 Summary 270 -- References 271 -- 6 Modeling and Simulation 272 -- 6.1 Introduction 272 -- 6.2 Leg-Level Averaged (LLA) Model 274 -- 6.3 Arm-Level Averaged (ALA) Model 275 -- 6.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK) 276 -- 6.4 Submodule-Level Averaged (SLA) Model 278 -- 6.4.1 Vectorized Simulation Models 279 -- 6.5 Submodule-Level Switched (SLS) Model 280 -- 6.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation 281 -- 6.6 Summary 281 -- References 282 -- 7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application 283 -- 7.1 Introduction 283 -- 7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes 284 -- 7.2.1 UK's Regulatory Framework for Offshore Transmission Assets 285 -- 7.2.2 Germany's Regulatory Framework for Offshore Transmission Assets 286 -- 7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals 286 -- 7.4 Components of an Offshore MMC-HVDC Converter 287 -- 7.4.1 Offshore HVDC Converter Transformer 289 -- 7.4.2 Phase Reactors and DC Pole Reactors 290 -- 7.4.3 Converter Valve Hall 292 -- 7.4.4 Control and Protection Systems 293 -- 7.4.5 AC and DC Switchyards 293 -- 7.4.6 Auxiliary Systems 293 -- 7.5 Offshore Platform Concepts 294 -- 7.5.1 Accommodation Offshore 295 -- 7.6 Onshore HVDC Converter 295 -- 7.6.1 Onshore DC Choppers/Dynamic Brakers 296 -- 7.6.2 Inrush Current Limiter Resistors 297 -- 7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP 298 -- 7.7.1 Conceptual and Feasibility Studies with Steady-State Load Flow 299 -- 7.7.2 Short-Circuit Analysis 301 -- 7.7.3 Dynamic System Performance Analysis 301 -- 7.7.4 Transient Stability Analysis 301 -- 7.7.5 Harmonic Analysis 302 -- 7.7.6 Ferroresonance 302 -- 7.8 Summary 303 -- References 303 -- 8 MMC-HVDC Standards and Commissioning Procedures 305 -- 8.1 Introduction 305 -- 8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology 306. 8.2.1 Hierarchy of Available and Applicable Codes, Standards and Best Practice Recommendations for MMC-HVDC Projects 309 -- 8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests 309 -- 8.3.1 Pre-Commissioning 311 -- 8.3.2 Offsite Commissioning Tests or Factory Acceptance Tests 312 -- 8.3.3 Onsite Testing and Site Acceptance Tests 313 -- 8.3.4 Onsite Energizing Tests 314 -- 8.4 Summary 317 -- References 317 -- 9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 318 -- 9.1 Introduction 318 -- 9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 319 -- 9.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency 321 -- 9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 322 -- 9.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer 323 -- 9.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325 -- 9.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325 -- 9.5 MMC-HVDC Component Failures 327 -- 9.5.1 Submodule Semiconductor Failures 327 -- 9.5.2 Submodule Capacitor Failure 328 -- 9.5.3 Phase Reactor Failure 329 -- 9.5.4 Converter Transformer Failure 329 -- 9.6 MMC-HVDC Protection Systems 329 -- 9.6.1 AC-Side Protections 331 -- 9.6.2 DC-Side Protections 331 -- 9.6.3 DC-Bus Undervoltage, Overvoltage Protection 331 -- 9.6.4 DC-Bus Voltage Unbalance Protection 332 -- 9.6.5 DC-Bus Overcurrent Protection 332 -- 9.6.6 DC Bus Differential Protection 332 -- 9.6.7 Valve and Submodule Protection 332 -- 9.6.8 Transformer Protection 333 -- 9.6.9 Primary Converter AC Breaker Failure Protection 333 -- 9.7 Summary 333 -- References 334 -- 10 MMC-HVDC Transmission Technology and MTDC Networks 336 -- 10.1 Introduction 336 -- 10.2 LCC-HVDC Transmission Technology 336 -- 10.3 Two-Level VSC-HVDC Transmission Technology 338 -- 10.3.1 Comparison of VSC-HVDC vs. LCC-HVDC Technology 338. 10.4 Modular Multilevel HVDC Transmission Technology 339 -- 10.4.1 Monopolar Asymmetric MMC-HVDC Scheme Configuration 340 -- 10.4.2 Symmetrical Monopole MMC-HVDC Scheme Configuration 340 -- 10.4.3 Bipolar HVDC Scheme Configuration 341 -- 10.4.4 Homopolar HVDC Scheme Configuration 342 -- 10.4.5 Back-to-Back HVDC Scheme Configuration 342 -- 10.5 The European HVDC Projects and MTDC Network Perspectives 343 -- 10.5.1 The North Sea Countries Offshore Grid Initiative (NSCOGI) 343 -- 10.5.2 Large Integration of Offshore Wind Farms and Creation of the Offshore DC Grid 344 -- 10.6 Multi-Terminal HVDC Configurations 345 -- 10.6.1 Series-Connected MTDC Network 346 -- 10.6.2 Parallel-Connected MTDC Network 346 -- 10.6.3 Meshed MTDC Networks 347 -- 10.7 DC Load Flow Control in MTDC Networks 348 -- 10.8 DC Grid Control Strategies 349 -- 10.8.1 Dynamic Voltage Control and Power Balancing in MTDC Networks 350 -- 10.8.2 Power and Voltage Droop Control Strategy 351 -- 10.8.3 Voltage Margin Control Method 352 -- 10.8.4 Dead-Band Droop Control 352 -- 10.8.5 Centralized and Distributed Voltage Control Strategies 354 -- 10.9 DC Fault Detection and Protection in MTDC Networks 355 -- 10.10 Fault-Detection Methods in MTDC 357 -- 10.10.1 Overcurrent and Voltage Detection Methods 357 -- 10.10.2 Distance Relay Protection 359 -- 10.10.3 Differential Line Protection 359 -- 10.10.4 Voltage Derivative Detection 359 -- 10.10.5 Traveling Wave Based Detection 360 -- 10.10.6 Frequency Domain Based Detection 361 -- 10.10.7 Wavelet Based Fault Detection 361 -- 10.11 DC Circuit Breaker Technologies 362 -- 10.11.1 DC Circuit Breaker with MOVs in Series with the DC Line 364 -- 10.11.2 DC Breakers with MOVs in Parallel with the DC Line 366 -- 10.12 Fault-Current Limiters 367 -- 10.12.1 Fault Current Limiting Reactors 367 -- 10.12.2 Solid-State Fault-Current Limiters 368 -- 10.12.3 Superconducting Fault-Current Limiters 369 -- 10.13 The Influence of Grounding Strategy on Fault Currents 369 -- 10.14 DC Supergrids of the Future 370. 10.15 Summary 371 -- References 371 -- Index 373. |
Record Nr. | UNINA-9910134875803321 |
Sharifabadi Kamran <1963-> | ||
Chichester, West Sussex, United Kingdom : , : Wiley & Sons, , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
HVDC grids : for offshore and supergrid of the future / / edited by Dirk van Hertem, Oriol Gomis-Bellmunt, Jun Liang |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2016] |
Descrizione fisica | 1 online resource (529 pages) : illustrations |
Disciplina | 621.31 |
Collana | IEEE press series on power engineering |
Soggetto topico |
Convertidors de corrent elèctric
Parcs eòlics marins Electric power systems Electrical engineering |
ISBN |
1-5231-2360-5
1-119-11522-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
HVDC GRIDS; Contents; List of Figures; List of Tables; Contributors; Foreword; Preface; Acknowledgments; Acronyms; PART 1 HVDC Grids in the Energy Vision of the Future; 1 Drivers for the development of HVDC grids; 1.1 Introduction; 1.2 From the vertically integrated industry to fast moving liberalized market; 1.2.1 Brief History of the Transmission System Before Liberalization; 1.3 Drivers for change; 1.3.1 Liberalized Energy Market; 1.3.2 More Renewables in the Energy Mix; 1.4 Investments in the grid; 1.4.1 Why Investments Are Needed in the Transmission System
1.4.2 Difficulties with New Transmission Lines1.4.3 Available Investments Technologies; 1.4.4 HVDC Technology; 1.5 Towards HVDC grids; 1.5.1 Transmission Technology; 1.5.2 Why Not AC?; 1.5.3 HVDC Grids as a Supergrid; 1.6 Conclusions; References; 2 Energy Scenarios: Projections on Europe's future generation and load; 2.1 Introduction; 2.2 System setting; 2.2.1 Supply; 2.2.2 Demand; 2.2.3 Matching Supply and Demand; 2.2.4 European Energy Policy; 2.3 Scenarios for Europe's energy provision; 2.3.1 The Role of Defining Scenarios; 2.3.2 Supply Side; 2.3.3 Demand Side 2.3.4 Implications Towards the Grid2.3.5 International Cooperation and Market Perspective; 2.4 Conclusions; References; PART 2 HVDC Technology and Technology for Offshore Grids; 3 HVDC technology overview; 3.1 Introduction; 3.2 LCC-HVDC systems; 3.2.1 Configurations; 3.2.2 Reactive Power Properties of LCC HVDC; 3.3 LCC-HVDC converter station technology; 3.3.1 Converter Station; 3.3.2 Transformers; 3.3.3 Filters and Reactive Compensation; 3.3.4 Other Required Components; 3.4 VSC-HVDC systems; 3.5 VSC-HVDC converter station technology; 3.5.1 Converter Configurations; 3.5.2 Switching Components 3.5.3 AC Filters3.5.4 Transformers; 3.5.5 AC Phase Reactor and Arm Inductor in a Multilevel Converter; 3.5.6 DC Capacitors; 3.5.7 DC Chopper; 3.5.8 HVDC Switchgear; 3.6 Transmission lines; 3.6.1 HVDC Overhead Lines; 3.6.2 HVDC Cables; 3.7 Conclusions; References; 4 Comparison of HVAC and HVDC technologies; 4.1 INTRODUCTION; 4.2 CURRENT TECHNOLOGY LIMITS; 4.2.1 Onshore Equipment; 4.2.2 Offshore Equipment; 4.2.3 Current Ratings for HVDC Technology; 4.3 TECHNICAL COMPARISON; 4.3.1 Charging Currents-Transmission Distance; 4.3.2 Asynchronous Networks; 4.3.3 Power Flow Control Capability 4.3.4 Voltage Support4.3.5 Dynamic System Performance; 4.3.6 Stability Limits; 4.3.7 Right-of-Way; 4.3.8 Black Start Capability; 4.3.9 Electromagnetic Fields; 4.3.10 Insulation Requirements; 4.3.11 Reliability; 4.4 ECONOMIC COMPARISON; 4.4.1 Onshore Transmission; 4.4.2 Offshore Transmission; 4.4.3 AC Transmission Losses; 4.4.4 DC Transmission Losses; 4.4.5 Comparison of AC and DC Equipment Losses; 4.5 CONCLUSIONS; References; 5 Wind turbine technologies; 5.1 Introduction; 5.2 Parts of the wind turbine; 5.3 Wind turbine types; 5.3.1 Fixed-Speed Wind Turbines |
Record Nr. | UNINA-9910136253003321 |
Hoboken, New Jersey : , : Wiley, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
HVDC grids : for offshore and supergrid of the future / / edited by Dirk van Hertem, Oriol Gomis-Bellmunt, Jun Liang |
Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2016] |
Descrizione fisica | 1 online resource (529 pages) : illustrations |
Disciplina | 621.31 |
Collana | IEEE press series on power engineering |
Soggetto topico |
Convertidors de corrent elèctric
Parcs eòlics marins Electric power systems Electrical engineering |
ISBN |
1-5231-2360-5
1-119-11522-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
HVDC GRIDS; Contents; List of Figures; List of Tables; Contributors; Foreword; Preface; Acknowledgments; Acronyms; PART 1 HVDC Grids in the Energy Vision of the Future; 1 Drivers for the development of HVDC grids; 1.1 Introduction; 1.2 From the vertically integrated industry to fast moving liberalized market; 1.2.1 Brief History of the Transmission System Before Liberalization; 1.3 Drivers for change; 1.3.1 Liberalized Energy Market; 1.3.2 More Renewables in the Energy Mix; 1.4 Investments in the grid; 1.4.1 Why Investments Are Needed in the Transmission System
1.4.2 Difficulties with New Transmission Lines1.4.3 Available Investments Technologies; 1.4.4 HVDC Technology; 1.5 Towards HVDC grids; 1.5.1 Transmission Technology; 1.5.2 Why Not AC?; 1.5.3 HVDC Grids as a Supergrid; 1.6 Conclusions; References; 2 Energy Scenarios: Projections on Europe's future generation and load; 2.1 Introduction; 2.2 System setting; 2.2.1 Supply; 2.2.2 Demand; 2.2.3 Matching Supply and Demand; 2.2.4 European Energy Policy; 2.3 Scenarios for Europe's energy provision; 2.3.1 The Role of Defining Scenarios; 2.3.2 Supply Side; 2.3.3 Demand Side 2.3.4 Implications Towards the Grid2.3.5 International Cooperation and Market Perspective; 2.4 Conclusions; References; PART 2 HVDC Technology and Technology for Offshore Grids; 3 HVDC technology overview; 3.1 Introduction; 3.2 LCC-HVDC systems; 3.2.1 Configurations; 3.2.2 Reactive Power Properties of LCC HVDC; 3.3 LCC-HVDC converter station technology; 3.3.1 Converter Station; 3.3.2 Transformers; 3.3.3 Filters and Reactive Compensation; 3.3.4 Other Required Components; 3.4 VSC-HVDC systems; 3.5 VSC-HVDC converter station technology; 3.5.1 Converter Configurations; 3.5.2 Switching Components 3.5.3 AC Filters3.5.4 Transformers; 3.5.5 AC Phase Reactor and Arm Inductor in a Multilevel Converter; 3.5.6 DC Capacitors; 3.5.7 DC Chopper; 3.5.8 HVDC Switchgear; 3.6 Transmission lines; 3.6.1 HVDC Overhead Lines; 3.6.2 HVDC Cables; 3.7 Conclusions; References; 4 Comparison of HVAC and HVDC technologies; 4.1 INTRODUCTION; 4.2 CURRENT TECHNOLOGY LIMITS; 4.2.1 Onshore Equipment; 4.2.2 Offshore Equipment; 4.2.3 Current Ratings for HVDC Technology; 4.3 TECHNICAL COMPARISON; 4.3.1 Charging Currents-Transmission Distance; 4.3.2 Asynchronous Networks; 4.3.3 Power Flow Control Capability 4.3.4 Voltage Support4.3.5 Dynamic System Performance; 4.3.6 Stability Limits; 4.3.7 Right-of-Way; 4.3.8 Black Start Capability; 4.3.9 Electromagnetic Fields; 4.3.10 Insulation Requirements; 4.3.11 Reliability; 4.4 ECONOMIC COMPARISON; 4.4.1 Onshore Transmission; 4.4.2 Offshore Transmission; 4.4.3 AC Transmission Losses; 4.4.4 DC Transmission Losses; 4.4.5 Comparison of AC and DC Equipment Losses; 4.5 CONCLUSIONS; References; 5 Wind turbine technologies; 5.1 Introduction; 5.2 Parts of the wind turbine; 5.3 Wind turbine types; 5.3.1 Fixed-Speed Wind Turbines |
Record Nr. | UNINA-9910830356303321 |
Hoboken, New Jersey : , : Wiley, , [2016] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|