top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The architecture of cognition : rethinking Fodor and Pylyshyn's systematicity challenge / / edited by Paco Calvo and John Symons
The architecture of cognition : rethinking Fodor and Pylyshyn's systematicity challenge / / edited by Paco Calvo and John Symons
Pubbl/distr/stampa Cambridge, MA : , : MIT Press, , [2014]
Descrizione fisica 1 online resource (483 p.)
Disciplina 153
Soggetto topico Cognition
Human information processing
Connectionism
Soggetto non controllato PHILOSOPHY/Philosophy of Mind/General
COGNITIVE SCIENCES/General
ISBN 0-262-02723-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910790926903321
Cambridge, MA : , : MIT Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The architecture of cognition : rethinking Fodor and Pylyshyn's systematicity challenge / / edited by Paco Calvo and John Symons
The architecture of cognition : rethinking Fodor and Pylyshyn's systematicity challenge / / edited by Paco Calvo and John Symons
Pubbl/distr/stampa Cambridge, MA : , : MIT Press, , [2014]
Descrizione fisica 1 online resource (483 p.)
Disciplina 153
Soggetto topico Cognition
Human information processing
Connectionism
Soggetto non controllato PHILOSOPHY/Philosophy of Mind/General
COGNITIVE SCIENCES/General
ISBN 0-262-02723-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910808415803321
Cambridge, MA : , : MIT Press, , [2014]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connection science
Connection science
Pubbl/distr/stampa [Abingdon, Oxfordshire], : Carfax International Publishers
Descrizione fisica 1 online resource
Disciplina 006.3
Soggetto topico Neural computers
Artificial intelligence
Cognitive science
Connectionism
Cognition
Computer systems
Artificial Intelligence
Computer Systems
Models, Neurological
Ordinateurs neuronaux
Intelligence artificielle
Sciences cognitives
Connexionnisme
Neurale netwerken
Kunstmatige intelligentie
Cognitiewetenschap
Soggetto genere / forma Periodicals.
ISSN 1360-0494
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNISA-996213104103316
[Abingdon, Oxfordshire], : Carfax International Publishers
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Connection science
Connection science
Pubbl/distr/stampa [Abingdon, Oxfordshire], : Carfax International Publishers
Descrizione fisica 1 online resource
Disciplina 006.3
Soggetto topico Neural computers
Artificial intelligence
Cognitive science
Connectionism
Cognition
Computer systems
Artificial Intelligence
Computer Systems
Models, Neurological
Ordinateurs neuronaux
Intelligence artificielle
Sciences cognitives
Connexionnisme
Neurale netwerken
Kunstmatige intelligentie
Cognitiewetenschap
artificial intelligence
cognition
Soggetto genere / forma Periodicals.
ISSN 1360-0494
Formato Materiale a stampa
Livello bibliografico Periodico
Lingua di pubblicazione eng
Record Nr. UNINA-9910137799403321
[Abingdon, Oxfordshire], : Carfax International Publishers
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connectionism [[electronic resource] ] : A Hands-on Approach
Connectionism [[electronic resource] ] : A Hands-on Approach
Autore Dawson Michael R. W
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2008
Descrizione fisica 1 online resource (210 p.)
Disciplina 153
Soggetto topico Connectionism
Social Sciences
Psychology
Soggetto genere / forma Electronic books.
ISBN 1-4051-4387-8
1-280-19855-9
9786610198559
0-470-69407-6
1-4051-4389-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONNECTIONISM; Contents; Chapter 1:Hands-On Connectionism; 1.1 Connectionism in Principle and in Practice; 1.2 The Organization of This Book; Chapter 2:The Distributed Associative Memory; 2.1 The Paired Associate Task; 2.2 The Standard Pattern Associator; 2.3 Exploring the Distributed Associative Memory; Chapter 3:The James Program; 3.1 Introduction; 3.2 Installing the Program; 3.3 Teaching a Distributed Memory; 3.4 Testing What the Memory Has Learned; 3.5 Using the Program; Chapter 4:Introducing Hebb Learning; 4.1 Overview of the Exercises; 4.2 Hebb Learning of Basis Vectors
4.3 Hebb Learning of Orthonormal,Non-Basis VectorsAppendix - Creating mutually orthogonal vectors with Maple; Chapter 5:Limitations of Hebb Learning; 5.1 Introduction; 5.2 The Effect of Repetition; 5.3 The Effect of Correlation; Appendix - Creating the linearly independent set of vectors; Chapter 6:Introducing the Delta Rule; 6.1 Introduction; 6.2 The Delta Rule; 6.3 The Delta Rule and the Effect of Repetition; 6.4 The Delta Rule and the Effect of Correlation; Chapter 7:Distributed Networks and Human Memory; 7.1 Background on the Paired Associate Paradigm
7.2 The Effect of Similarity on the Distributed Associative MemoryChapter 8:Limitations of Delta Rule Learning; 8.1 Introduction; 8.2 The Delta Rule and Linear Dependency; Chapter 9:The Perceptron; 9.1 Introduction; 9.2 The Limits of Distributed Associative Memories,and Beyond; 9.3 Properties of the Perceptron; 9.4 What Comes Next; Chapter 10:The Rosenblatt Program; 10.1 Introduction; 10.2 Installing the Program; 10.3 Training a Perceptron; 10.4 Testing What the Memory Has Learned; Chapter 11:Perceptrons and Logic Gates; 11.1 Introduction; 11.2 Boolean Algebra
11.3 Perceptrons and Two-Valued AlgebraChapter 12:Performing More Logic With Perceptrons; 12.1 Two-Valued Algebra and Pattern Spaces; 12.2 Perceptrons and Linear Separability; Appendix - The DawsonJots Font; Chapter 13:Value Units and Linear Nonseparability; 13.1 Linear Separability and Its Implications; 13.2 Value Units and the Exclusive-Or Relation; 13.3 Value Units and Connectedness; Chapter 14:Network By Problem Type Interactions; 14.1 All Networks Were Not Created Equally; 14.2 Value Units and the Two-Valued Algebra; Chapter 15:Perceptrons and Generalization; 15.1 Background
15.2 Generalization and Savings for the 9-Majority ProblemChapter 16:Animal Learning Theory and Perceptrons; 16.1 Discrimination Learning; 16.2 Linearly Separable Versions of Patterning; Chapter 17:The Multilayer Perceptron; 17.1 Creating Sequences of Logical Operations; 17.2 Multilayer Perceptrons and the Credit Assignment Problem; 17.3 The Implications of the Generalized Delta Rule; Chapter 18:The Rumelhart Program; 18.1 Introduction; 18.2 Installing the Program; 18.3 Training a Multilayer Perceptron; 18.4 Testing What the Network Has Learned; Chapter 19:Beyond the Perceptron 's Limits
19.1 Introduction
Record Nr. UNINA-9910145579003321
Dawson Michael R. W  
Hoboken, : Wiley, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connectionism [[electronic resource] ] : A Hands-on Approach
Connectionism [[electronic resource] ] : A Hands-on Approach
Autore Dawson Michael R. W
Edizione [1st ed.]
Pubbl/distr/stampa Hoboken, : Wiley, 2008
Descrizione fisica 1 online resource (210 p.)
Disciplina 153
Soggetto topico Connectionism
Social Sciences
Psychology
ISBN 1-4051-4387-8
1-280-19855-9
9786610198559
0-470-69407-6
1-4051-4389-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONNECTIONISM; Contents; Chapter 1:Hands-On Connectionism; 1.1 Connectionism in Principle and in Practice; 1.2 The Organization of This Book; Chapter 2:The Distributed Associative Memory; 2.1 The Paired Associate Task; 2.2 The Standard Pattern Associator; 2.3 Exploring the Distributed Associative Memory; Chapter 3:The James Program; 3.1 Introduction; 3.2 Installing the Program; 3.3 Teaching a Distributed Memory; 3.4 Testing What the Memory Has Learned; 3.5 Using the Program; Chapter 4:Introducing Hebb Learning; 4.1 Overview of the Exercises; 4.2 Hebb Learning of Basis Vectors
4.3 Hebb Learning of Orthonormal,Non-Basis VectorsAppendix - Creating mutually orthogonal vectors with Maple; Chapter 5:Limitations of Hebb Learning; 5.1 Introduction; 5.2 The Effect of Repetition; 5.3 The Effect of Correlation; Appendix - Creating the linearly independent set of vectors; Chapter 6:Introducing the Delta Rule; 6.1 Introduction; 6.2 The Delta Rule; 6.3 The Delta Rule and the Effect of Repetition; 6.4 The Delta Rule and the Effect of Correlation; Chapter 7:Distributed Networks and Human Memory; 7.1 Background on the Paired Associate Paradigm
7.2 The Effect of Similarity on the Distributed Associative MemoryChapter 8:Limitations of Delta Rule Learning; 8.1 Introduction; 8.2 The Delta Rule and Linear Dependency; Chapter 9:The Perceptron; 9.1 Introduction; 9.2 The Limits of Distributed Associative Memories,and Beyond; 9.3 Properties of the Perceptron; 9.4 What Comes Next; Chapter 10:The Rosenblatt Program; 10.1 Introduction; 10.2 Installing the Program; 10.3 Training a Perceptron; 10.4 Testing What the Memory Has Learned; Chapter 11:Perceptrons and Logic Gates; 11.1 Introduction; 11.2 Boolean Algebra
11.3 Perceptrons and Two-Valued AlgebraChapter 12:Performing More Logic With Perceptrons; 12.1 Two-Valued Algebra and Pattern Spaces; 12.2 Perceptrons and Linear Separability; Appendix - The DawsonJots Font; Chapter 13:Value Units and Linear Nonseparability; 13.1 Linear Separability and Its Implications; 13.2 Value Units and the Exclusive-Or Relation; 13.3 Value Units and Connectedness; Chapter 14:Network By Problem Type Interactions; 14.1 All Networks Were Not Created Equally; 14.2 Value Units and the Two-Valued Algebra; Chapter 15:Perceptrons and Generalization; 15.1 Background
15.2 Generalization and Savings for the 9-Majority ProblemChapter 16:Animal Learning Theory and Perceptrons; 16.1 Discrimination Learning; 16.2 Linearly Separable Versions of Patterning; Chapter 17:The Multilayer Perceptron; 17.1 Creating Sequences of Logical Operations; 17.2 Multilayer Perceptrons and the Credit Assignment Problem; 17.3 The Implications of the Generalized Delta Rule; Chapter 18:The Rumelhart Program; 18.1 Introduction; 18.2 Installing the Program; 18.3 Training a Multilayer Perceptron; 18.4 Testing What the Network Has Learned; Chapter 19:Beyond the Perceptron 's Limits
19.1 Introduction
Record Nr. UNINA-9910830778203321
Dawson Michael R. W  
Hoboken, : Wiley, 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connectionism : a hands-on approach / / Michael R.W. Dawson
Connectionism : a hands-on approach / / Michael R.W. Dawson
Autore Dawson Michael Robert William <1959->
Edizione [1st ed.]
Pubbl/distr/stampa Oxford, UK ; ; Malden, MA, : Blackwell Pub., 2005
Descrizione fisica 1 online resource (210 p.)
Disciplina 153
Soggetto topico Connectionism
ISBN 1-4051-4387-8
1-280-19855-9
9786610198559
0-470-69407-6
1-4051-4389-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto CONNECTIONISM; Contents; Chapter 1:Hands-On Connectionism; 1.1 Connectionism in Principle and in Practice; 1.2 The Organization of This Book; Chapter 2:The Distributed Associative Memory; 2.1 The Paired Associate Task; 2.2 The Standard Pattern Associator; 2.3 Exploring the Distributed Associative Memory; Chapter 3:The James Program; 3.1 Introduction; 3.2 Installing the Program; 3.3 Teaching a Distributed Memory; 3.4 Testing What the Memory Has Learned; 3.5 Using the Program; Chapter 4:Introducing Hebb Learning; 4.1 Overview of the Exercises; 4.2 Hebb Learning of Basis Vectors
4.3 Hebb Learning of Orthonormal,Non-Basis VectorsAppendix - Creating mutually orthogonal vectors with Maple; Chapter 5:Limitations of Hebb Learning; 5.1 Introduction; 5.2 The Effect of Repetition; 5.3 The Effect of Correlation; Appendix - Creating the linearly independent set of vectors; Chapter 6:Introducing the Delta Rule; 6.1 Introduction; 6.2 The Delta Rule; 6.3 The Delta Rule and the Effect of Repetition; 6.4 The Delta Rule and the Effect of Correlation; Chapter 7:Distributed Networks and Human Memory; 7.1 Background on the Paired Associate Paradigm
7.2 The Effect of Similarity on the Distributed Associative MemoryChapter 8:Limitations of Delta Rule Learning; 8.1 Introduction; 8.2 The Delta Rule and Linear Dependency; Chapter 9:The Perceptron; 9.1 Introduction; 9.2 The Limits of Distributed Associative Memories,and Beyond; 9.3 Properties of the Perceptron; 9.4 What Comes Next; Chapter 10:The Rosenblatt Program; 10.1 Introduction; 10.2 Installing the Program; 10.3 Training a Perceptron; 10.4 Testing What the Memory Has Learned; Chapter 11:Perceptrons and Logic Gates; 11.1 Introduction; 11.2 Boolean Algebra
11.3 Perceptrons and Two-Valued AlgebraChapter 12:Performing More Logic With Perceptrons; 12.1 Two-Valued Algebra and Pattern Spaces; 12.2 Perceptrons and Linear Separability; Appendix - The DawsonJots Font; Chapter 13:Value Units and Linear Nonseparability; 13.1 Linear Separability and Its Implications; 13.2 Value Units and the Exclusive-Or Relation; 13.3 Value Units and Connectedness; Chapter 14:Network By Problem Type Interactions; 14.1 All Networks Were Not Created Equally; 14.2 Value Units and the Two-Valued Algebra; Chapter 15:Perceptrons and Generalization; 15.1 Background
15.2 Generalization and Savings for the 9-Majority ProblemChapter 16:Animal Learning Theory and Perceptrons; 16.1 Discrimination Learning; 16.2 Linearly Separable Versions of Patterning; Chapter 17:The Multilayer Perceptron; 17.1 Creating Sequences of Logical Operations; 17.2 Multilayer Perceptrons and the Credit Assignment Problem; 17.3 The Implications of the Generalized Delta Rule; Chapter 18:The Rumelhart Program; 18.1 Introduction; 18.2 Installing the Program; 18.3 Training a Multilayer Perceptron; 18.4 Testing What the Network Has Learned; Chapter 19:Beyond the Perceptron 's Limits
19.1 Introduction
Record Nr. UNINA-9910877572503321
Dawson Michael Robert William <1959->  
Oxford, UK ; ; Malden, MA, : Blackwell Pub., 2005
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connectionism [[electronic resource] ] : theory and practice / / edited by Steven Davis
Connectionism [[electronic resource] ] : theory and practice / / edited by Steven Davis
Pubbl/distr/stampa New York, : Oxford University Press, 1992
Descrizione fisica 322 p. : ill
Disciplina 153
Altri autori (Persone) DavisSteven <1937->
Collana Vancouver studies in cognitive science
Soggetto topico Connectionism
Cognition
Soggetto genere / forma Electronic books.
ISBN 1-280-44253-0
0-19-536035-4
1-4237-6479-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910450618703321
New York, : Oxford University Press, 1992
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connectionism [[electronic resource] ] : theory and practice / / edited by Steven Davis
Connectionism [[electronic resource] ] : theory and practice / / edited by Steven Davis
Pubbl/distr/stampa New York, : Oxford University Press, 1992
Descrizione fisica 322 p. : ill
Disciplina 153
Altri autori (Persone) DavisSteven <1937->
Collana Vancouver studies in cognitive science
Soggetto topico Connectionism
Cognition
ISBN 0-19-773507-X
1-280-44253-0
0-19-536035-4
1-4237-6479-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910784749903321
New York, : Oxford University Press, 1992
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Connectionism : theory and practice / / edited by Steven Davis
Connectionism : theory and practice / / edited by Steven Davis
Edizione [1st ed.]
Pubbl/distr/stampa New York, : Oxford University Press, 1992
Descrizione fisica 322 p. : ill
Disciplina 153
Altri autori (Persone) DavisSteven <1937->
Collana Vancouver studies in cognitive science
Soggetto topico Connectionism
Cognition
ISBN 0-19-773507-X
1-280-44253-0
0-19-536035-4
1-4237-6479-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- 1. Using Coherence Assumptions to Discover the Underlying Causes of the Sensory Input -- Comment -- 2. A Deeper Unity: Some Feyerabendian Themes in Neurocomputational Form -- Comment -- 3. Towards a Microstructural Account of Human Reasoning -- 4. Connectionism without Tears -- Comment -- 5. Grammatical Structure and Distributed Representations -- Comment -- 6. Structured Representations in Connectionist Systems? -- 7. Local Modelling in Phonology -- 8. Connectionism and the Philosophy of Mental Representation -- 9. Connectionism and the Computional Neurobiology of Curve Detection -- 10. PDP Learnability and Innate Knowledge of Language.
Record Nr. UNINA-9910823135903321
New York, : Oxford University Press, 1992
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui