top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2022 International Conference on Machine Learning, Control, and Robotics (MLCR) / / Institute of Electrical and Electronics Engineers
2022 International Conference on Machine Learning, Control, and Robotics (MLCR) / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa Piscataway, New Jersey : , : IEEE, , 2022
Descrizione fisica 1 online resource
Disciplina 006.31
Soggetto topico Machine learning
Computational learning theory
ISBN 1-66545-459-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti 2022 International Conference on Machine Learning, Control, and Robotics
Record Nr. UNISA-996575092603316
Piscataway, New Jersey : , : IEEE, , 2022
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
2830-2021 : IEEE Standard for Technical Framework and Requirements of Trusted Execution Environment based Shared Machine Learning / / Institute of Electrical and Electronics Engineers
2830-2021 : IEEE Standard for Technical Framework and Requirements of Trusted Execution Environment based Shared Machine Learning / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY, USA : , : IEEE, , 2021
Descrizione fisica 1 online resource (23 pages)
Disciplina 006.31
Soggetto topico Machine learning
Deep learning (Machine learning)
Reinforcement learning
Computational learning theory
ISBN 1-5044-7724-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910503501803321
New York, NY, USA : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
2830-2021 : IEEE Standard for Technical Framework and Requirements of Trusted Execution Environment based Shared Machine Learning / / Institute of Electrical and Electronics Engineers
2830-2021 : IEEE Standard for Technical Framework and Requirements of Trusted Execution Environment based Shared Machine Learning / / Institute of Electrical and Electronics Engineers
Pubbl/distr/stampa New York, NY, USA : , : IEEE, , 2021
Descrizione fisica 1 online resource (23 pages)
Disciplina 006.31
Soggetto topico Machine learning
Deep learning (Machine learning)
Reinforcement learning
Computational learning theory
ISBN 1-5044-7724-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996574913703316
New York, NY, USA : , : IEEE, , 2021
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press
Descrizione fisica 1 online resource (438 p.)
Disciplina 006.3/1
Altri autori (Persone) SuykensJohan A. K
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Computational learning theory
Machine learning - Mathematical models
Soggetto genere / forma Electronic books.
ISBN 1-280-50590-7
9786610505906
1-4175-1139-7
600-00-0332-3
1-60129-401-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions
9 Extension of the ν-SVM Range for Classification10 Kernels Methods for Text Processing; 11 An Optimization Perspective on Kernel Partial Least Squares Regression; 12 Multiclass Learning with Output Codes; 13 Bayesian Regression and Classification; 14 Bayesian Field Theory: from Likelihood Fields to Hyperfields; 15 Bayesian Smoothing and Information Geometry; 16 Nonparametric Prediction; 17 Recent Advances in Statistical Learning Theory; 18 Neural Networks in Measurement Systems (an engineering view); List of participants; Subject Index; Author Index
Record Nr. UNINA-9910449823103321
Amsterdam ; ; Washington, DC, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Advances in learning theory [[electronic resource] ] : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press
Descrizione fisica 1 online resource (438 p.)
Disciplina 006.3/1
Altri autori (Persone) SuykensJohan A. K
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Computational learning theory
Machine learning - Mathematical models
ISBN 1-280-50590-7
9786610505906
1-4175-1139-7
600-00-0332-3
1-60129-401-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions
9 Extension of the ν-SVM Range for Classification10 Kernels Methods for Text Processing; 11 An Optimization Perspective on Kernel Partial Least Squares Regression; 12 Multiclass Learning with Output Codes; 13 Bayesian Regression and Classification; 14 Bayesian Field Theory: from Likelihood Fields to Hyperfields; 15 Bayesian Smoothing and Information Geometry; 16 Nonparametric Prediction; 17 Recent Advances in Statistical Learning Theory; 18 Neural Networks in Measurement Systems (an engineering view); List of participants; Subject Index; Author Index
Record Nr. UNINA-9910783421103321
Amsterdam ; ; Washington, DC, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in learning theory : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Advances in learning theory : methods, models, and applications / / edited by Johan Suykens ... [et al.]
Edizione [1st ed.]
Pubbl/distr/stampa Amsterdam ; ; Washington, DC, : IOS Press
Descrizione fisica 1 online resource (438 p.)
Disciplina 006.3/1
Altri autori (Persone) SuykensJohan A. K
Collana NATO science series. Series III, Computer and systems sciences
Soggetto topico Computational learning theory
Machine learning - Mathematical models
ISBN 1-280-50590-7
9786610505906
1-4175-1139-7
600-00-0332-3
1-60129-401-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover; Title page; Preface; Organizing committee; List of chapter contributors; Contents; 1 An Overview of Statistical Learning Theory; 2 Best Choices for Regularization Parameters in Learning Theory: On the Bias-Variance Problem; 3 Cucker Smale Learning Theory in Besov Spaces; 4 High-dimensional Approximation by Neural Networks; 5 Functional Learning through Kernels; 6 Leave-one-out Error and Stability of Learning Algorithms with Applications; 7 Regularized Least-Squares Classification; 8 Support Vector Machines: Least Squares Approaches and Extensions
9 Extension of the ν-SVM Range for Classification10 Kernels Methods for Text Processing; 11 An Optimization Perspective on Kernel Partial Least Squares Regression; 12 Multiclass Learning with Output Codes; 13 Bayesian Regression and Classification; 14 Bayesian Field Theory: from Likelihood Fields to Hyperfields; 15 Bayesian Smoothing and Information Geometry; 16 Nonparametric Prediction; 17 Recent Advances in Statistical Learning Theory; 18 Neural Networks in Measurement Systems (an engineering view); List of participants; Subject Index; Author Index
Record Nr. UNINA-9910814308603321
Amsterdam ; ; Washington, DC, : IOS Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational and robotic models of the hierarchical organization of behavior / / Gianluca Baldassarre, Marco Mirolli, editors
Computational and robotic models of the hierarchical organization of behavior / / Gianluca Baldassarre, Marco Mirolli, editors
Edizione [1st ed. 2013.]
Pubbl/distr/stampa Heidelberg [Germany] : , : Springer, , 2013
Descrizione fisica 1 online resource (vi, 358 pages) : illustrations (some color)
Disciplina 004
006.3
150.72
612.8
Collana Gale eBooks
Soggetto topico Computational learning theory
ISBN 3-642-39875-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chap. 1 - Computational and Robotic Models of the Hierarchical Organization of Behavior: An Overview -- Chap. 2 - Behavioral Hierarchy: Exploration and Representation -- Chap. 3 - Self-organized Functional Hierarchy Through Multiple Timescales: Neurodynamical Accounts for Behavioral Compositionality -- Chap. 4 - Autonomous Representation Learning in a Developing Agent -- Chap. 5 - Hierarchies for Embodied Action Perception -- Chap. 6 - Learning and Coordinating Repertoires of Behaviors with Common Reward: Credit Assignment and Module Activation -- Chap. 7 - Modular, Multimodal Arm Control Models -- Chap. 8 - Generalization and Interference in Human Motor Control -- Chap. 9 - A Developmental Framework for Cumulative Learning Robots -- Chap. 10 - The Hierarchical Accumulation of Knowledge in the Distributed Adaptive Control Architecture -- Chap. 11 - The Hierarchical Organization of Cortical and Basal Ganglia Systems: A Computationally Informed Review and Integrated Hypothesis -- Chap. 12 - Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humans -- Chap. 13 - Neural Network Modelling of Hierarchical Motor Function in the Brain -- Chap. 14 - Restoring Purpose in Behavior.
Record Nr. UNINA-9910437571503321
Heidelberg [Germany] : , : Springer, , 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational learning theory and natural learning systems
Computational learning theory and natural learning systems
Pubbl/distr/stampa Cambridge, Mass. ; ; London, : MIT Press
Descrizione fisica 1 online resource (xxiii, 407 p.)
Disciplina 006.31
Altri autori (Persone) GreinerRussell
PetscheThomas
HansonStephen José
Collana A Bradford Book
Soggetto topico Computational learning theory
Soggetto non controllato COGNITIVE SCIENCES/General
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910260612803321
Cambridge, Mass. ; ; London, : MIT Press
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational thinking : a beginner's guide to problem-solving and programming / / Karl Beecher
Computational thinking : a beginner's guide to problem-solving and programming / / Karl Beecher
Autore Beecher Karl
Edizione [1st edition]
Pubbl/distr/stampa Swindon, UK : , : BCS : the Chartered Institute for IT, , [2017]
Descrizione fisica 1 online resource (1 volume) : illustrations
Soggetto topico Computer science - Study and teaching
Computer programming - Study and teaching
Computational learning theory
ISBN 1-5231-1687-0
1-78017-366-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910796534203321
Beecher Karl  
Swindon, UK : , : BCS : the Chartered Institute for IT, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational thinking : a beginner's guide to problem-solving and programming / / Karl Beecher
Computational thinking : a beginner's guide to problem-solving and programming / / Karl Beecher
Autore Beecher Karl
Edizione [1st edition]
Pubbl/distr/stampa Swindon, UK : , : BCS : the Chartered Institute for IT, , [2017]
Descrizione fisica 1 online resource (1 volume) : illustrations
Soggetto topico Computer science - Study and teaching
Computer programming - Study and teaching
Computational learning theory
ISBN 1-5231-1687-0
1-78017-366-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910817760203321
Beecher Karl  
Swindon, UK : , : BCS : the Chartered Institute for IT, , [2017]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui